Portfolio Optimization and Risk Prediction with Non ...

52
1/52 Portfolio Optimization and Risk Prediction with Non-Gaussian COMFORT Models Marc S. Paolella b,c Pawe l Polak a,c a Columbia University b Swiss Finance Institute c University of Z¨ urich September 16, 2016 Marc S. Paolella & Pawel Polak COMFORT: Portfolio Optimization, Risk Management

Transcript of Portfolio Optimization and Risk Prediction with Non ...

Page 1: Portfolio Optimization and Risk Prediction with Non ...

1/52

Portfolio Optimization and Risk Prediction withNon-Gaussian COMFORT Models

Marc S. Paolellab,c Pawe l Polaka,c

aColumbia University bSwiss Finance Institute c University of Zurich

September 16, 2016

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 2: Portfolio Optimization and Risk Prediction with Non ...

2/52

• VaR Performance • ES Performance • MLE > Ad-Hoc 2-Step • JRSS-A 2016

• MGHyp-CCC-GARCH

Framework • EM Algo. Estimation • Common Market

Factor • Option Pricing • JoE 2015

• Analytic ES • DCC Modeling • Portfolio Optimization • Risk Tracking Method • Sharpe Ratios > 1 • Submitted

Risk Modeling

Primary Model COMFORT

PSARM

• Leverage Investing • Risk Trackers • Tactical Asset

Allocation • Large Swiss Banks

and Pension Funds

Generalizing the MGHyp: • Multi-Factors for Full

Tail Heterogeneity • Lévy-Stable /

Tempered Stable

• FREE-COMFORT • Markov-Switching CCC • PCA Factor Structure • High-Freq. Strategy • Black-Litterman • Machine Learning

COMFORT Road Map Highway

Academic

Industry Consulting

Large-Scale Port. Opt.

30 min talk!!!

PSARM - Portfolio Selection with Active Risk Monitoring.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 3: Portfolio Optimization and Risk Prediction with Non ...

3/52

Normal Model vs. Stylized Facts of Financial Returns

Normal World vs. Real World

Returns DistributionMultivariate Normal (Gaussian) → Multivariate Fat-Tailed

Risk MeasureVolatility → VaR and Expected Shortfall

Measure of DependenceCorrelations → Correlations & Tail Dependence

Market DynamicsConstant Volatility & Correlations → Time Varying Volatility & Correlation

SymmetryAll Returns Are Symmetric → Asset Specific Skewness

... the biggest problems we now have with the whole evaluation of risk is the fat-tail problem, which is really creatingvery large conceptual difficulties. Because as we all know, the assumption of normality enables us to drop off a hugeamount of complexity of our equations very much to the right of the equal sign. Because once you start putting innon-normality assumptions, which unfortunately is what characterizes the real world, then the issues become extremelydifficult.

Greenspan, A. (1997)

Our models capture the stylized facts of financial returns from the RealWorld.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 4: Portfolio Optimization and Risk Prediction with Non ...

4/52

Pitfalls of Copula Models

Copula Models vs. COMFORT Models

AssumptionsAll Taken From The Real World → All Taken From The Real World

Model EstimationFast → Fast

Two Step Fixed Point Algorithm(I) Margins; (II) Dependency

Portfolio DistributionNo Closed Form - Needs Simulations → Closed Form

(slow) (fast)

Both methods allow for time-varying volatilities and non-ellipticity, and also are fast toestimate.

Simulation from the copula is required to generate the portfolio predictive density, and astail risk is often the concern, a very large number of replications will be required to achieveadequate accuracy, thus rendering the method, particularly for high dimensions, too slow forasset allocation purposes.

Our models maintain the flexibility of Copula models (real worldassumptions, estimation speed), but deliver a closed form expression for

the portfolio distribution.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 5: Portfolio Optimization and Risk Prediction with Non ...

5/52

Modern Portfolio Management

Markowitz Portfolio vs. COMFORT Portfolio

AssumptionsAll Taken From The Normal World → All Taken From The Real World

ErrorsHuge Modeling Error → Small Modeling Error

Portfolio DistributionClosed Form - Univariate Normal → Closed Form

Portfolio OptimizationFast → Fast

Quadratic Programming Problem Convex Optimization Problem

Our portfolio methods maintain the benefits of the iid MultivariateNormal framework (estimation speed, tractability of the portfoliodistribution), but have much smaller modeling error, and deliver a

superior forecast.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 6: Portfolio Optimization and Risk Prediction with Non ...

6/52

Table of Contents:

Multivariate Normal Mean-Variance Mixture Dist. and MGHyp case.

MGHyp in Finance.

New Class of COMFORT Models.

The Model and The Dynamics.

Fast VaR and ES Formulae, and Portfolio Optimization.

VaR backtesting, and Portfolio Performance.

Risk Fear Portfolio Strategy.

Equities Example.

Equities + Fixed Income Example.

COMFORT + Machine Learning for Improved PortfolioPerformance.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 7: Portfolio Optimization and Risk Prediction with Non ...

7/52

Multivariate Normal Mean-Variance Mixture Distribution

The random vector Y is said to have a multivariate normalmean-variance mixture distribution (MNMVM) if

Y = m (G ) + H1/2√GZ,

where

Z ∼ N (0, IK );

G ≥ 0 is a non-negative, univariate random variable which isindependent of Z;

H is a K × K symmetric and positive definite matrix; and

m : [ 0,∞ )→ Rd is a measurable function.

The name MNMVM comes from the fact that:

Y | (G = g) ∼ N (m (g) , gH) .

The multivariate generalized hyperbolic (MGHyp) distribution is aspecial case of MNMVM with:

m (G ) = µ+ γG and G ∼ GIG (λ, χ, ψ) .

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 8: Portfolio Optimization and Risk Prediction with Non ...

8/52

MGHyp in Finance

Y = µ+ γG + H1/2√GZ, and G ∼ GIG (λ, χ, ψ) .

introduced by Barndorff-Nielsen (1977);

an inf. div. dist. used to construct Levy process (e.g.Ornstein-Uhlenbeck model driven by Levy & superpositions of them);

tractable portfolio dist.: w′Y ∼ GHyp (w′µ,w′γ,w′Hw, λ, χ, ψ);

used in: (i) portfolio, (ii) risk management, and (iii) option pricing;

special and limiting cases include:

multivariate normalmultivariate Laplacemultivariate normal inverse Gaussian (NIG)multivariate t-distributionvariance-gamma, Madan and Seneta (1990), Seneta (2004);

the tail behavior of the GHyp distribution spans a range fromexponential, to power tail.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 9: Portfolio Optimization and Risk Prediction with Non ...

9/52

New Class of MGHyp-CC and hybrid GARCH-SV Models

unconditional models conditional models

Yti.i.d.∼ N (µ,H) → univariate:

(t-GARCH) Yt | Ft−1 ∼t (µt , σt , ν)Yt | Ft−1 ∼GHyp (µ, γ, σt , λ, χ, ψ)

↓ multivariate (Gaussian):Yt | Ft−1 ∼ N (µt ,Ht) ; µt ,Ht ∈ Ft−1

BEKK, CCC, VC, DCC, ADCC, RSDC↓

Yti.i.d.∼ MGHyp (µ,γ,H, λ, χ, ψ) → MGHyp(µ,γ,Ht , λ, χ, ψ)-CC models

Ht = StΓtSt ; St ∈ Ft−1

Γt from CCC, VC, DCC, cDCC, RSDC,. . .

Notation: Ft = σ (εs : s ≤ t); ξ ∈ Ft−1 means that ξ is measurable with respect to Ft−1.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 10: Portfolio Optimization and Risk Prediction with Non ...

10/52

One Interesting Feature: The Common Market Factor G

-20

-10

0

10

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

MR

K

10

20

30

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

Gt

2

4

6

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

S t

2

4

6

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

vol t|t

-1

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 11: Portfolio Optimization and Risk Prediction with Non ...

11/52

Financial Applications: Risk Measures and Portfolio

The MGHyp class, including all the limiting cases, is closed under linearoperations, so, the conditional distribution of the portfolio Pt = w′Yt isdirectly available and it is given by

Pt | Φt−1 ∼ GHyp (w′µ,w′γ,w′Htw, λ, χ, ψ) .

Given the density of the portfolio, VaR and ES can be numericallycomputed.

Standard methods to compute VaR and ES are time consuming, here wepropose faster solutions.

From the predictive portfolio distribution, one can do mean–variance ormean–ES portfolio optimization.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 12: Portfolio Optimization and Risk Prediction with Non ...

12/52

Fast VaR Formula for Risk Prediction

The corresponding portfolio cdf can be written as

Pr (Pt ≤ r) =

∫ ∞0

Φ

(r − µw − γwg

σt,w

)fGt (g ;λ, χ, ψ)dg ,

where Φ is the cdf of standard normal random variable.

Use of this representation reduces the computation time required for thenumerical inversion in the computation of the VaR values by a factor offour.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 13: Portfolio Optimization and Risk Prediction with Non ...

13/52

Fast ES Formula for Risk Prediction

Proposition

If P ∼ GHyp (µ, γ, h, λ, χ, ψ), then

ESα (P) = −µ− γ

αE [G ]FP∗ (−VaRα (P)) +

h

α

C√2π,

where FP∗ is the cdf of P∗ ∼ GHyp (µ, γ, h, λ+ 1, χ, ψ); and theconstant C is given by

C =χ−λ (√χψ)λ2Kλ

(√χψ) 2K

λ

(√χψ

)χ−λ

(√χψ

)λ exp

(−

(VaRα (P) + µ) γ

h2

),

with λ = λ+ 1/2, χ = χ+ (VaRα(P)+µ)2

h2 , and ψ = ψ + γ2

h2 .

Fast and accurate computation of ES for GHyp portfolio, e.g., in theelliptical case this is 100 times faster than standard ES computation!

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 14: Portfolio Optimization and Risk Prediction with Non ...

14/52

Portfolio Optimization

The minimum-variance portfolio and the mean-variance portfolio are thesolutions of

minw∈W

σ2t,w, (1)

where

W ={

w ∈ RK :∑K

k=1 wk = 1, wk ≥ 0, k = 1, . . . ,K}

, and,

in case of the classical Markowitz (1952) mean-variance portfolio,µw + γwE [Gt | Φt−1] ≥ p, where p is a constant for the targetminimum return of the portfolio,

the minimum-ES (min-ES) portfolio and mean-ES portfolio replacethe conditional variance σ2

t,w by the conditional ES in (1),

the computational efficiency of min-ES portfolio optimization isgreatly increased by using the results from Rockafeller and Uryasev(2000).

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 15: Portfolio Optimization and Risk Prediction with Non ...

15/52

mean-ES and min-ES Portfolio Optimization

Rockafeller and Uryasev (2000) introduce an auxiliary function

Fα (x ,w) = x +1

α

∫ ∞−∞

[p + x ]− fPt (p | µw, γw, σt,w, λ, χ, ψ) dp,

where [z ]− = −z if z ≤ 0, and [z ]− = 0 if z > 0, and

min(x,w)∈R×W

Fα (x ,w) = minw∈W

ESt|t−1α (Pt) , (2)

where the pair (x∗,w∗) achieves the first minimum if and only if w∗

achieves the second minimum and x∗ = VaRt|t−1α

(w∗′Yt

).

The first minimization in (2) is more efficient and provides globaloptimum because :

it completely avoids the calculation of the ES (and VaR) of thecandidate portfolios,

it is a convex programming problem.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 16: Portfolio Optimization and Risk Prediction with Non ...

16/52

Empirics

Data: 2, 767 daily vector returns of K = 30 components of the DowJones Industrial Index (DJ-30) from January 2nd, 2001, toDecember 30th, 2011 (from Wharton Data Base).

The returns for each asset are computed asyk,t = 100 log (pk,t/pk,t−1), where pk,t is the price of a share ofasset k at time t.

Models compared:

Bollerslev (1990) MN-CCC; Tse and Tsui (2002) MN-VC; Engle(2002) MN-DCC; Aielli (2011) MN-cDCC;COMFORT models, non-elliptical (estimated via EM):

MALap, MNIG, MAt;CCC, VC, DCC, cDCC;GARCH(1, 1), GJR-GARCH(1, 1);

some elliptical models (estimated in 3-steps and via EM):

MLap, MNIG, Mt

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 17: Portfolio Optimization and Risk Prediction with Non ...

17/52

Tails of Q-Q Plots for Residuals from MN-CCC vs.MN-cDCC GARCH(1,1)

−4 −3 −2 −1−12−10

−8−6−4−2

MN−CCC GARCH (MSFT)

1 2 3 4

2

4

6

MN−CCC GARCH (MSFT)

−4 −3 −2 −1−12−10

−8−6−4−2

MN−cDCC GARCH (MSFT)

1 2 3 4

2

4

6

MN−cDCC GARCH (MSFT)

−4 −3 −2 −1

−8

−6

−4

−2

MN−CCC GARCH (KO)

1 2 3 41

2

3

4

5MN−CCC GARCH (KO)

−4 −3 −2 −1

−8

−6

−4

−2

MN−cDCC GARCH (KO)

1 2 3 41

2

3

4

5MN−cDCC GARCH (KO)

−4 −3 −2 −1

−6

−4

−2

MN−CCC GARCH (DD)

1 2 3 4

2

4

6

MN−CCC GARCH (DD)

−4 −3 −2 −1

−6

−4

−2

MN−cDCC GARCH (DD)

1 2 3 4

2

4

6

MN−cDCC GARCH (DD)

−4 −3 −2 −1

−5

−4

−3

−2

−1MN−CCC GARCH (XOM)

1 2 3 41

2

3

4

5MN−CCC GARCH (XOM)

−4 −3 −2 −1

−5

−4

−3

−2

−1MN−cDCC GARCH (XOM)

1 2 3 41

2

3

4

5MN−cDCC GARCH (XOM)

H−1/2t

(Yt − µ

)Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 18: Portfolio Optimization and Risk Prediction with Non ...

18/52

Tails of Q-Q Plots for Residuals from MN-cDCC vs.MNIG-cDCC GARCH(1,1)-SV

−4 −3 −2 −1−12−10

−8−6−4−2

MN−cDCC GARCH (MSFT)

1 2 3 4

2

4

6

MN−cDCC GARCH (MSFT)

−4 −3 −2 −1−12−10

−8−6−4−2

MNIG−cDCC GARCH−SV (MSFT)

1 2 3 4

2

4

6

MNIG−cDCC GARCH−SV (MSFT)

−4 −3 −2 −1

−8

−6

−4

−2

MN−cDCC GARCH (KO)

1 2 3 41

2

3

4

5MN−cDCC GARCH (KO)

−4 −3 −2 −1

−8

−6

−4

−2

MNIG−cDCC GARCH−SV (KO)

1 2 3 41

2

3

4

5MNIG−cDCC GARCH−SV (KO)

−4 −3 −2 −1

−6

−4

−2

MN−cDCC GARCH (DD)

1 2 3 4

2

4

6

MN−cDCC GARCH (DD)

−4 −3 −2 −1

−6

−4

−2

MNIG−cDCC GARCH−SV (DD)

1 2 3 4

2

4

6

MNIG−cDCC GARCH−SV (DD)

−4 −3 −2 −1

−5

−4

−3

−2

−1MN−cDCC GARCH (XOM)

1 2 3 41

2

3

4

5MN−cDCC GARCH (XOM)

−4 −3 −2 −1

−5

−4

−3

−2

−1MNIG−cDCC GARCH−SV (XOM)

1 2 3 41

2

3

4

5MNIG−cDCC GARCH−SV (XOM)

H−1/2t

(Yt − µ

)and G

−1/2t H

−1/2t

(Yt − µ − γGt

)Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 19: Portfolio Optimization and Risk Prediction with Non ...

19/52

Correlation Dynamics

0.2

0.4

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

Corrt|t−1

(KO,CAT)

MN−cDCC GARCH(1,1) MNIG−cDCC hybrid GARCH(1,1)−SV MAt−DCC GARCH(1,1) MNIG−cDCC GARCH(1,1)

0.2

0.3

0.4

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

Corrt|t−1

(KO,CSCO)

0.55

0.6

0.65

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

Corrt|t−1

(GE,AXP)

0.4

0.5

0.6

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

Corrt|t−1

(IBM,CSCO)

0.4

0.5

0.6

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

Corrt|t−1

(IBM,INTC)

0.2

0.3

0.4

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

Corrt|t−1

(CAT,MRK)

0.65

0.7

0.75

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

Corrt|t−1

(BAC,C)

0.5

0.6

0.7

02/01/01 07/10/03 06/07/06 06/04/09 30/12/11

Corrt|t−1

(VZ,T)

KO - Coca-Cola; CSCO - Cisco; CAT - Caterpillar; IBM - Intl. Business Machines; INTC - Intel; AXP - American Express; GE - General

Electric; BAC - Bank of America; MRK - Merck & Co; C - CitygroupMarc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 20: Portfolio Optimization and Risk Prediction with Non ...

20/52

VaR Backtesting - Forecast Failure Rates

M VaR 1% VaR 5% VaR 10%

MNIG-CCC GARCH(1, 1)-SV 0.0096 0.0526 0.0905MNIG-CCC GJR-GARCH(1, 1)-SV 0.0084 0.0469 0.0837MNIG-CCC GJR-GARCH(1, 1) 0.0118 0.0481 0.0888MAt-CCC GJR-GARCH(1, 1) 0.0118 0.0605 0.0984MNIG-CCC GARCH(1, 1) 0.0130 0.0571 0.0962MNIG (EM-elliptical)-CCC GARCH(1, 1) 0.0130 0.0605 0.1018MALap-CCC GJR-GARCH(1, 1) 0.0135 0.0565 0.0945Mlap (EM-elliptical)-CCC GARCH(1, 1) 0.0135 0.0611 0.1013Mt (EM-elliptical)-CCC GARCH(1, 1) 0.0135 0.0639 0.1052MAt-CCC GARCH(1, 1) 0.0147 0.0633 0.1058MALap-CCC GARCH(1, 1) 0.0152 0.0616 0.1001MLap (3-step elliptical)-CCC-GARCH(1, 1) 0.0045 0.0255 0.0617MALap-CCC GJR-GARCH(1, 1)-SV 0.0158 0.0656 0.1041Mt (3-step elliptical)-CCC-GARCH(1, 1) 0.0040 0.0357 0.0775MNIG (3-step elliptical)-CCC-GARCH(1, 1) 0.0040 0.0272 0.0623MALap-CCC GARCH(1, 1)-SV 0.0175 0.0696 0.1052MALap-IID 0.0237 0.0628 0.1007MN-cDCC GARCH(1, 1) 0.0254 0.0718 0.1041MN-DCC GARCH(1, 1) 0.0265 0.0718 0.1041MN-VC GJR-GARCH(1, 1) 0.0271 0.0696 0.1013MN-CCC GJR-GARCH(1, 1) 0.0271 0.0701 0.1013MN-DCC GJR-GARCH(1, 1) 0.0271 0.0701 0.1007MN-cDCC GJR-GARCH(1, 1) 0.0271 0.0701 0.1007MN-VC GARCH(1, 1) 0.0271 0.0724 0.1041MN-CCC GARCH(1, 1) 0.0277 0.0730 0.1041

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 21: Portfolio Optimization and Risk Prediction with Non ...

21/52

VaR Backtesting MN-GARCH vs.MALap-IID vs.COMFORT

−10

−5

0

5

10

28/12/04 28/09/06 01/07/08 05/04/10 30/12/11

1% VaR for 1/K portfolio

1/K portfolio returnsNIG−CCC GARCH(1,1)−SV1% VaR violationsMALap−IID1% VaR violationsMN−cDCC GARCH(1,1)1% VaR violations

Failure rates: NIG-CCC GARCH(1, 1)-SV 0.0102; MALap-IID 0.0238; MN-cDCC GARCH(1, 1) 0.0255.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 22: Portfolio Optimization and Risk Prediction with Non ...

22/52

The Risk Fear Portfolio: “Run For The Exit”

Define, respectively, σ# and ES# as a portfolio volatility and expectedshortfall thresholds above which the investor exits the market. Then themin-Var and min-ES optimal portfolios with risk fear are defined by

w∗VF

(σ#)

= w∗1(0,σ#) (σw∗) , w∗ESF

(ES#

)= w∗1(0,ES#) (ESw∗),

where σw∗ is the predicted conditional volatility for the min-Var optimalportfolio w∗, and ESw∗ is the predicted conditional expected shortfall forthe optimal portfolio w∗.

The strategy agrees with the stylized fact of “Runs for the Exit”, i.e.,stock market major sell-offs during the initial stage of market downturns.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 23: Portfolio Optimization and Risk Prediction with Non ...

23/52

The Risk Fear Portfolio: Risk Thresholds

We assume that the investor uses the following simple rules to set thethresholds

σ# (δ) = σw∗ + δ std (σw∗) , ES# (δ) = ESw∗ + δ std (ESw∗) ,

where

σw∗ and ESw∗ are sample moving averages, based on 1, 000observations, of the optimal portfolio volatility and expectedshortfall, respectively;

std (σw∗) and std (ESw∗) are the associated sample standarddeviations; and

δ is a parameter to be selected by the investor, e.g., δ = 1.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 24: Portfolio Optimization and Risk Prediction with Non ...

24/52

The Risk Fear Portfolio: Performance

90

100

110

120

130

140

150

160

170

180

28.12.2004 28.09.2006 01.07.2008 05.04.2010 30.12.2011

Cumulative Returns of Risk Fear Strategies

ES−Fear MNIG−CCC GARCH(1,1)σ−Fear MNIG−CCC GARCH(1,1)ES−Fear MN−DCC GARCH(1,1)σ−Fear MN−DCC GARCH(1,1)MNIG−CCC GARCH(1,1)

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.20.4

0.5

0.6

0.7

0.8

0.9

1

1.1SR of Risk Fear Strategies

δ0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4SR of min−Var vs. SR of min−ES (Risk Fear Strategies with δ = 1)

SR(min−Var)

SR(m

in−E

S)

The minimum ES portfolios tend to perform better than the minimumvariance portfolios.In result, the SR increases from 0.49 up to 1.1.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 25: Portfolio Optimization and Risk Prediction with Non ...

25/52

Equities + Fixed Income Example: Three Different Portfolio Models withPortfolio Weights Constraints

(Case study done for a large Swiss Bank)

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 26: Portfolio Optimization and Risk Prediction with Non ...

26/52

Prices, Returns and PSARM Forecasted Volatilities

21-May-2008 01-Feb-2010 12-Oct-2011 21-Jun-2013 03-Mar-201550

100

150Out-of-sample normalized prices

Fixed Income Index World Government Bond Index MSCI World Index Bond Index Rating AAA-BBB Swiss Performance Index Real Estate Funds

21-May-2008 01-Feb-2010 12-Oct-2011 21-Jun-2013 03-Mar-2015

-10

-5

0

5

10Out-of-sample returns

21-May-2008 01-Feb-2010 12-Oct-2011 21-Jun-2013 03-Mar-2015

1

2

3

4

5Forecasted volatilities

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 27: Portfolio Optimization and Risk Prediction with Non ...

27/52

Portfolio Models, Constraints & Transaction Costs

Model 1

Asset Class Lower Limit BM Upper Limit TC - Buy TC - Sell

CASH 0.00% 0.00% 0.10% 0.00% 0.00%

Fixed Income Index 13.00% 15.00% 17.00% 0.12% 0.12%

World Government Bond Index 9.00% 10.00% 11.00% 0.09% 0.02%

MSCI World Index 24.00% 27.00% 30.00% 0.09% 0.07%

Bond Index Rating AAA - BBB 22.00% 25.00% 28.00% 0.65% 0.00%

Swiss Performance Index 16.00% 18.00% 20.00% 0.02% 0.02%

Real Estate Funds 4.00% 5.00% 6.00% 0.05% 0.05%

Model 2

Asset Class Lower Limit BM Upper Limit TC - Buy TC - Sell

CASH 0.00% 0.00% 10.00% 0.00% 0.00%

Fixed Income Index 5.00% 15.00% 25.00% 0.12% 0.12%

World Government Bond Index 0.00% 10.00% 20.00% 0.09% 0.02%

MSCI World Index 17.00% 27.00% 37.00% 0.09% 0.07%

Bond Index Rating AAA - BBB 15.00% 25.00% 35.00% 0.65% 0.00%

Swiss Performance Index 8.00% 18.00% 28.00% 0.02% 0.02%

Real Estate Funds 0.00% 5.00% 15.00% 0.05% 0.05%

Model 3

Asset Class Lower Limit BM Upper Limit TC - Buy TC - Sell

CASH 0.00% 0.00% 100.00% 0.00% 0.00%

Fixed Income Index 0.00% 15.00% 100.00% 0.12% 0.12%

World Government Bond Index 0.00% 10.00% 100.00% 0.09% 0.02%

MSCI World Index 0.00% 27.00% 100.00% 0.09% 0.07%

Bond Index Rating AAA - BBB 0.00% 25.00% 100.00% 0.65% 0.00%

Swiss Performance Index 0.00% 18.00% 100.00% 0.02% 0.02%

Real Estate Funds 0.00% 5.00% 100.00% 0.05% 0.05%

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 28: Portfolio Optimization and Risk Prediction with Non ...

28/52

Out-Of-Sample Performance Comparison

Asset Class Correlations

Fixed Income Index 1.00 0.74 -0.28 0.46 -0.23 -0.05

World Government Bond Index 0.74 1.00 -0.38 0.55 -0.33 -0.09

MSCI World Index -0.28 -0.38 1.00 -0.22 0.74 0.17

Bond Index Rating AAA - BBB 0.46 0.55 -0.22 1.00 -0.23 -0.07

Swiss Performance Index -0.23 -0.33 0.74 -0.23 1.00 0.19

Real Estate Funds -0.05 -0.09 0.17 -0.07 0.19 1.00

Whole Sample Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4

Time Periods

21/05/2008-

03/03/2015

21/05/2008-

31/01/2010

01/02/2010-

11/10/2011

12/10/2011-

20/06/2013

21/06/2013-

03/03/2015

Asset Class \ Portfolio Strategy

Exp.

Ret. Vol. SR

Exp.

Ret. Vol. SR

Exp.

Ret. Vol. SR

Exp.

Ret. Vol. SR

Exp.

Ret. Vol. SR

Fixed Income Index 4.03% 5.46% 0.74 2.53% 6.92% 0.37 7.28% 5.19% 1.40 1.82% 4.92% 0.37 4.51% 4.48% 1.01

World Government Bond Index 3.89% 2.56% 1.52 4.55% 3.36% 1.36 3.46% 2.53% 1.36 2.35% 2.15% 1.09 5.22% 1.96% 2.66

MSCI World Index -0.28% 20.51% -0.01 -13.77% 30.12% -0.46 -7.39% 20.15% -0.37 9.90% 11.79% 0.84 10.23% 15.15% 0.67

Bond Index Rating AAA - BBB 4.04% 2.31% 1.75 6.60% 2.71% 2.44 3.39% 2.44% 1.39 1.08% 1.98% 0.55 5.09% 2.04% 2.49

Swiss Performance Index 3.58% 18.17% 0.20 -12.04% 26.01% -0.46 -0.01% 17.20% 0.00 14.47% 12.65% 1.14 12.02% 13.69% 0.88

Real Estate Funds 6.06% 6.85% 0.88 6.68% 6.65% 1.00 4.76% 6.76% 0.70 1.87% 6.40% 0.29 10.98% 7.57% 1.45

Benchmark 2.88% 7.98% 0.36 -3.07% 11.76% -0.26 0.53% 7.44% 0.07 6.15% 4.93% 1.25 7.95% 6.07% 1.31

PSARM Model 1 3.80% 7.67% 0.50 -0.97% 11.13% -0.09 1.71% 7.26% 0.23 6.46% 4.91% 1.32 8.02% 5.86% 1.37

PSARM Model 2 3.76% 4.94% 0.76 0.91% 7.22% 0.13 2.97% 4.49% 0.66 4.42% 3.35% 1.32 6.76% 3.78% 1.79

PSARM Model 3 3.69% 2.01% 1.84 3.94% 2.71% 1.46 2.43% 1.72% 1.42 2.60% 1.79% 1.45 5.80% 1.63% 3.55

PSARM outperforms the Benchmark in the whole sample, in every subperiod, and for everymodel.Relaxing the constraints on the portfolio weights improves the performance of PSARM.There is no need to invest into cash because there are highly negatively correlated assets inthe portfolio.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 29: Portfolio Optimization and Risk Prediction with Non ...

29/52

PSARM Cumulative Returns After Transaction Costs

21-May-2008 01-Feb-2010 12-Oct-2011 21-Jun-2013 03-Mar-2015

80

90

100

110

120

Model 1: BM vs. PSARM ( SR(BM) = 0.36, SR(PSARM) = 0.5 )

PSARMBenchmark

21-May-2008 01-Feb-2010 12-Oct-2011 21-Jun-2013 03-Mar-2015

80

90

100

110

120

Model 2: BM vs. PSARM ( SR(BM) = 0.36, SR(PSARM) = 0.76 )

PSARMBenchmark

21-May-2008 01-Feb-2010 12-Oct-2011 21-Jun-2013 03-Mar-2015

80

90

100

110

120

Model 3: BM vs. PSARM ( SR(BM) = 0.36, SR(PSARM) = 1.84 )

PSARMBenchmark

PSARM increases Sharpe ratios, from 0.36 for the Benchmark, to 0.5, 0.76, and1.84, for Model 1, Model 2, and Model 3, respectively (after transaction costs).

Very tight constraints on the portfolio weights do not allow for largeimprovements in Model 1.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 30: Portfolio Optimization and Risk Prediction with Non ...

30/52

COMFORT

We propose a unified framework for large-scale portfolio optimizationwith:

1. A new class of models for multivariate asset returns which:a hybrid of GARCH and SV (but without the estimation problemsassociated with the latter);can be applied to a portfolio of hundreds of assets;are simple and fast to estimate (allow for parallel estimation);support various forms of the dynamics in the dependency structure(VC, DCC, cDCC, Markov-switching);are based on a non-elliptical distribution with a tractable portfoliodistribution;nest several models previously proposed in the literature and massivelyoutperform them in terms of in-sample fit, out-of-sample densityforecasting, risk prediction, and portfolio performance.

2. A new risk fear portfolio strategy, which combines portfoliooptimization with active risk monitoring. It:

outperforms all types of optimal portfolios, even in the presence ofconservative transaction costs and frequent rebalancing;avoids all the losses during the 2008 financial crisis, and;profits from the subsequent market recovery.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 31: Portfolio Optimization and Risk Prediction with Non ...

31/52

Extensions of the Model

FREE-COMFORT: Fast Reduced Estimation COMFORT(Ongoing Research, joint work with Joris van der Aa from ETH)

(High Frequency Portfolio Optimization On the Components of the DowJones Industrial Index (DJ-30) from February 1st, 2010 to February 5th,

2016.)

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 32: Portfolio Optimization and Risk Prediction with Non ...

32/52

GARCH(1, 1) Estimates Across Models

5 10 15 20 25 30-0.2

0

0.2

k for k=1,...,30

5 10 15 20 25 30-0.2

0

0.2

k for k=1,...,30

5 10 15 20 25 30-0.05

0

0.05

0.1

k for k=1,...,30

5 10 15 20 25 30-0.2

0

0.2

k for k=1,...,30

5 10 15 20 25 30-0.05

0

0.05

0.1

k for k=1,...,30

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 33: Portfolio Optimization and Risk Prediction with Non ...

33/52

GARCH(1, 1) Estimates Across Models

MN-CCC GARCH(1, 1) MALap-CCC GARCH(1, 1) MALap-CCC GARCH(1, 1)-SV

5 10 15 20 25 300

0.1

0.2

k for k=1,...,30

5 10 15 20 25 300

0.1

0.2

k for k=1,...,30

5 10 15 20 25 300.8

0.9

1

k for k=1,...,30

5 10 15 20 25 300.9

0.95

1

k +

k for k=1,...,30

5 10 15 20 25 300

0.01

0.02

k for k=1,...,30

5 10 15 20 25 300

0.1

0.2

k for k=1,...,30

5 10 15 20 25 300.8

0.9

1

k for k=1,...,30

5 10 15 20 25 300.9

0.95

1

k +

k for k=1,...,30

5 10 15 20 25 300

0.01

0.02

k for k=1,...,30

5 10 15 20 25 300

0.1

0.2

k for k=1,...,30

5 10 15 20 25 300.8

0.9

1

k for k=1,...,30

5 10 15 20 25 300.9

0.95

1

k +

k for k=1,...,30

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 34: Portfolio Optimization and Risk Prediction with Non ...

34/52

Data

To demonstrate the performance of the HF min fear portfolio, we use a data set consistingof 115’654 intra-day returns on the 5-minute level and 1501 overnight returns. Ourcombined data set consists of 117’155 returns for K = 30 components of the Dow JonesIndustrial Index (DJ-30) from February 1st, 2010 to February 5th, 2016.

We take all DJ-30 components that are part of the composition as of 01.12.2015.

Each trading day consists of 77 equally spaced time points on which it is possible to trade.

The first possible trading moment of the day is at 9:31AM and the last trading moment isat 3:54PM.

At 3:54PM, we take on the optimal portfolio w∗ for 3:59PM and hold this positionovernight.

For our trading strategy, it is not possible to rebalance, close or open any positions before9.31AM or after 15.54PM.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 35: Portfolio Optimization and Risk Prediction with Non ...

35/52

Entry & Exit Thresholds

We set the thresholds for entering and exiting the market using the following two rules

ESδexit = ESw∗ + δexitstd(ESw∗ ), (3)

ESδenter = ESw∗ + δenterstd(ESw∗ ), (4)

where ESw∗ is the sample moving average, based on the last 1000 observations of the optimalportfolio expected shortfall; std(ESw∗ ) is the associated sample standard deviation; and δenter andδexit are parameters to be selected by the investor with δexit > δenter.We term our trading strategy the High Frequency Risk Fear Portfolio Strategy (hereafter HF minfear).

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 36: Portfolio Optimization and Risk Prediction with Non ...

36/52

Gross Performance

19-Feb-2010 12-Nov-2010 11-Aug-2011 09-May-2012 11-Feb-2013 06-Nov-2013 08-Aug-2014 08-May-2015 05-Feb-201605-Feb-20160

100

200

300

400

500

600Gross Cumulative Returns of HF min Fear Strategy vs. Other Models

HF min Fearmin RiskNaive (rebal)Gaussian IID

19-Feb-2010 29-Sep-2010 11-May-2011 20-Dec-2011 02-Aug-2012 20-Mar-2013 29-Oct-2013 13-Jun-2014 05-Feb-2015-1

0

1

2

3

4Sharpe Ratio as a Function of the Entry Date

HF min Fearmin RiskNaive (rebal)Gaussian IID

19-Feb-2010 29-Sep-2010 11-May-2011 20-Dec-2011 02-Aug-2012 20-Mar-2013 29-Oct-2013 13-Jun-2014 05-Feb-2015-1

0

1

2

3

4Sortino Ratio as a Function of the Entry Date

HF min Fearmin RiskNaive (rebal)Gaussian IID

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 37: Portfolio Optimization and Risk Prediction with Non ...

37/52

Parameters Calibration

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 38: Portfolio Optimization and Risk Prediction with Non ...

38/52

Analysis of Net Performance for Optimal Parameters

16-Apr-2010 04-Jan-2011 22-Sep-2011 14-Jun-2012 12-Mar-2013 27-Nov-2013 22-Aug-2014 15-May-2015 05-Feb-201605-Feb-201650

100

150

200

250Cumulative Returns of HF min Fear Strategy vs. Other Models for κ = 0.0005

HF min Fearmin RiskNaive (rebal)Gaussian IID

16-Apr-2010 16-Nov-2010 22-Jun-2011 26-Jan-2012 29-Aug-2012 10-Apr-2013 11-Nov-2013 19-Jun-2014 05-Feb-2015-0.5

0

0.5

1

1.5

2Sharpe Ratio as a Function of the Entry Date

HF min Fearmin RiskNaive (rebal)Gaussian IID

16-Apr-2010 16-Nov-2010 22-Jun-2011 26-Jan-2012 29-Aug-2012 10-Apr-2013 11-Nov-2013 19-Jun-2014 05-Feb-2015-0.5

0

0.5

1

1.5

2Sortino Ratio as a Function of the Entry Date

HF min Fearmin RiskNaive (rebal)Gaussian IID

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 39: Portfolio Optimization and Risk Prediction with Non ...

39/52

COMFORT & Machine Learning forImproved Portfolio Performance

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 40: Portfolio Optimization and Risk Prediction with Non ...

40/52

Trend Chasing Product For Improved PortfolioPerformance

We combine statistical and machine learning techniques topredict future returns of the components of a largeportfolio of assets.

Advanced Multivariate Times Series ModelingCaptures The Dynamics of Asset Returns.

Machine Learning Techniques Allow to Predict FutureReturns.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 41: Portfolio Optimization and Risk Prediction with Non ...

41/52

Portfolio Optimization with TrendPrediction

We backtest our Portfolio Strategy with Trend Prediction on 4 setsof stock returns:

Long History of the returns: daily returns of the 30 components ofthe Dow Jones Index, from 04.01.1993 until 31.12.2012.

The most recent data: daily returns of the 30 components of theDow Jones Index, more recent data and components from01.06.1999 until 31.12.2014.

Large Set of Assets: daily returns of the 459 components of the S&P500 Index, from 04.01.2009 until 15.05.2014.

High Frequency: 5 minutes returns of the 30 components of the DowJones Index, from 02.01.2009, 10.00.00 until 31.12.2009, 15.25.00.

In the backtesting procedure we used a rolling window of 250observations. First out-of-sample date is 29.12.1993, 24.05.2000,05.01.2010, and 07.01.2009, 14.25.00, respectively.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 42: Portfolio Optimization and Risk Prediction with Non ...

42/52

Portfolio Optimization with TrendPrediction

The strategy uses only information on past returns, does not usefuture returns, nor any exogenous variables.

It is a long-only portfolio (for negative predicted means, the portfolioweights are set to zero).

The Trend Prediction Portfolio Strategy can be integrated with theexisting portfolio strategy in a form of views on the marketanalogously to the views of the investor in the Black-Littermanmodel.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 43: Portfolio Optimization and Risk Prediction with Non ...

43/52

Equities Example: Components of DJ-30 Index(1993-2012)

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 44: Portfolio Optimization and Risk Prediction with Non ...

44/52

Trend Prediction: DJ-30 Components(1993-2012)

100

200

300

400

500

600

700

29.12.1993 19.09.1995 09.06.1997 02.03.1999 16.11.2000 16.08.2002 10.05.2004 31.01.2006 23.10.2007 16.07.2009 06.04.2011 28.12.2012

Cumulative Returns of Trend Chasing Portfolio vs. 1/N Portfolio

Trend Chasing Portfolio: E(R) = 31%; vol(R) = 26%; SR(R) = 1.211/N Portfolio: E(R) = 13%; vol(R) = 20%; SR(R) = 0.64

The cumulative returns of the portfolio are plotted over time, and compared with theequally weighted portfolio (1/N portfolio).

For the Trend Chasing Portfolio the average annual return, volatility, and Sharpe ratio aregiven by: 31%, 26%, 1.21, respectively.

While the equally weighted portfolio (proxy for the market) has the average annual return,volatility, and Sharpe ratio equal to 13%, 20%, 0.64, respectively.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 45: Portfolio Optimization and Risk Prediction with Non ...

45/52

Equities Example: Components of DJ-30 Index(2000-2014)

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 46: Portfolio Optimization and Risk Prediction with Non ...

46/52

Trend Prediction: DJ-30 Components(2000-2014)

50

100

150

200

250

300

350

400

24.05.2000 14.01.2002 27.08.2003 12.04.2005 21.11.2006 09.07.2008 22.02.2010 03.10.2011 20.05.2013 31.12.2014

Cumulative Returns: Trend Chasing vs. 1/N Portfolio (Benchmark), daily DJ−30 Components Data

1/N Portfolio E(R) = 7.5%; vol(R) = 20%; SR(R) = 0.38Trend Chasing E(R) = 20%; vol(R) = 25%; SR(R) = 0.79

The cumulative returns of the portfolio are plotted over time, and compared with theequally weighted portfolio (1/N portfolio).

For the Trend Chasing Portfolio the average annual return, volatility, and Sharpe ratio aregiven by: 20%, 25%, 0.79, respectively.

While the equally weighted portfolio (proxy for the market) has the average annual return,volatility, and Sharpe ratio equal to 7.5%, 20%, 0.38, respectively.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 47: Portfolio Optimization and Risk Prediction with Non ...

47/52

DJ-30 Components (2000-2014) WithReinvestment

100

200

300

400

500

600

700

800

900

1000

1100

24.05.2000 14.01.2002 27.08.2003 12.04.2005 21.11.2006 09.07.2008 22.02.2010 03.10.2011 20.05.2013 31.12.2014

Cumulative Returns: Trend Chasing vs. 1/N Portfolio (Benchmark), daily DJ−30 Components Data

1/N Portfolio E(R) = 7.5%; vol(R) = 20%; SR(R) = 0.38Trend Chasing E(R) = 20%; vol(R) = 25%; SR(R) = 0.791/N Portfolio (with reinvestment)Trend Chasing (with reinvestment)

The cumulative returns of the portfolio are plotted over time, and compared with theequally weighted portfolio (1/N portfolio).

Two types of portfolio with and without reinvestment.

For the Trend Chasing Portfolio the average annual return, volatility, and Sharpe ratio aregiven by: 20%, 25%, 0.79, respectively.

While the equally weighted portfolio (proxy for the market) has the average annual return,volatility, and Sharpe ratio equal to 7.5%, 20%, 0.38, respectively.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 48: Portfolio Optimization and Risk Prediction with Non ...

48/52

Equities Example: Components of SP-500 Index(2010-2014)

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 49: Portfolio Optimization and Risk Prediction with Non ...

49/52

Portfolio with Trend Prediction & Proportional TransactionCosts

100

120

140

160

180

200

220

240

260

280

05/01/2010 18/08/2010 04/04/2011 15/11/2011 29/06/2012 15/02/2013 30/09/2013 15/05/2014

Cumulative Returns: Trend Chasing vs. 1/N Portfolio (Benchmark), 459 stocks from the SP 500 Index, daily data

Trend Chasing, E(R)=42.78%; vol(R)=34.09%; SR(R)=1.25Trend Chasing TC=5bp (standard) E(R)=40.11%; vol(R)=34.08%; SR(R)=1.18Trend Chasing TC=10bp (conservative) E(R)=37.44%; vol(R)=34.08%; SR(R)=1.11/N Portfolio E(R)=12.85%; vol(R)=18.31%; SR(R)=0.7

The cumulative returns of the portfolio are plotted over time, and compared with theequally weighted portfolio (1/N portfolio).

The average annual return, volatility, and Sharpe ratio for the Trend Chasing Portfolio:(i) TC = 0: 42.78%, 34.09%, 1.25;

(ii) TC = 5bp (standard): 40.11%, 34.08%, 1.18; and(iii) TC = 10bp (conservative): 37.44%, 34.08%, 1.1, respectively.

While the equally weighted portfolio (proxy for the market) has the average annual return,volatility, and Sharpe ratio equal to 12.85%, 18.31%, 0.7, respectively.Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 50: Portfolio Optimization and Risk Prediction with Non ...

50/52

Equities Example: Components of DJ-30 Index

High Frequency Portfolio Strategy: 5 Minutes Data(07.01.2009 - 31.12.2009)

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 51: Portfolio Optimization and Risk Prediction with Non ...

51/52

Portfolio with Trend Prediction & Proportional TransactionCosts: HF

80

100

120

140

160

180

07JAN09 14:25:00 02MAR09 10:45:00 21APR09 12:30:00 10JUN09 14:15:00 31JUL09 10:35:00 21SEP09 12:20:00 09NOV09 14:05:00 31DEC09 15:20:00

Cumulative Returns: Trend Chasing vs. 1/N Portfolio (Benchmark), 5 minutes DJ 30 components data (02.01.2009 10:00:00 − 31.12.2009 15:25:00)

Trend Chasing, E(R)=78.96%; vol(R)=41.22%; SR(R)=1.92

Trend Chasing TC=5bp (standard) E(R)=59.99%; vol(R)=41.22%; SR(R)=1.46

Trend Chasing TC=10bp (conservative) E(R)=41.01%; vol(R)=41.22%; SR(R)=0.99

1/N Portfolio E(R)=17.06%; vol(R)=25.76%; SR(R)=0.66

The cumulative returns of the portfolio are plotted over time, and compared with theequally weighted portfolio (1/N portfolio).

The average annual return, volatility, and Sharpe ratio for the Trend Chasing Portfolio:(i) TC = 0: 78.96%, 41.22%, 1.92;

(ii) TC = 5bp (standard): 59.99%, 41.22%, 1.46; and(iii) TC = 10bp (conservative): 41.01%, 41.22%, 0.99, respectively.

While the equally weighted portfolio (proxy for the market) has the average annual return,volatility, and Sharpe ratio equal to 17.06%, 25.76%, 0.66, respectively.

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management

Page 52: Portfolio Optimization and Risk Prediction with Non ...

52/52

• VaR Performance • ES Performance • MLE > Ad-Hoc 2-Step • JRSS-A 2016

• MGHyp-CCC-GARCH

Framework • EM Algo. Estimation • Common Market

Factor • Option Pricing • JoE 2015

• Analytic ES • DCC Modeling • Portfolio Optimization • Risk Tracking Method • Sharpe Ratios > 1 • Submitted

Risk Modeling

Primary Model COMFORT

PSARM

• Leverage Investing • Risk Trackers • Tactical Asset

Allocation • Large Swiss Banks

and Pension Funds

Generalizing the MGHyp: • Multi-Factors for Full

Tail Heterogeneity • Lévy-Stable /

Tempered Stable

• FREE-COMFORT • Markov-Switching CCC • PCA Factor Structure • High-Freq. Strategy • Black-Litterman • Machine Learning

COMFORT Road Map Highway

Academic

Industry Consulting

Large-Scale Port. Opt.

30 min talk!!!

Thank you for your attention!Pawe l Polak

Marc S. Paolella & Pawe l Polak COMFORT: Portfolio Optimization, Risk Management