polymer Nanocomposites and Electrical Conductivity

download polymer Nanocomposites and Electrical Conductivity

of 16

Transcript of polymer Nanocomposites and Electrical Conductivity

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    1/42

    MAT706

    Advanced Structure-PropertiesRelationship in Materials

    10  – Electrical Conductivity in Polymer Nanocomposites

    Emiliano Bilotti

    [email protected] 

    mailto:[email protected]:[email protected]

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    2/42

    MAT706

    Organiser:Dr Asa H. Barber

    Reader in Materials

    Deputy Organiser:Dr Emiliano Bilotti

    Lecturer in Materials

    Contact: [email protected] 

    Room E403, Engineering Building

    Phone: 020-7882-7575

    mailto:[email protected]:[email protected]

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    3/42

    Topic  Lecturer  Week Date 

    Introduction  Asa Barber   1  24 Sept 

    Practical  Asa Barber   2  1 Oct 

    Practical  Asa Barber   3  8 Oct 

     Nanomaterials  Asa Barber   4  15 Oct 

     Nanocomposites  Asa Barber   5  22 Oct 

     Nanocomposites  Asa Barber   6  29 Oct 

    Biological nanomaterials  Asa Barber   8  12 Nov 

    Polymer Nanocomposites and

    Electrical Conductivity 

    Emiliano Bilotti  9  19 Nov 

    Polymer NanocompositesThermal Properties 

    Emiliano Bilotti  10  26 Nov 

    Polymer Nanocomposites and

    other Functional Properties 

    Emiliano Bilotti  11  3 Dec 

    Revision  Asa /Emiliano  12  10 Dec 

    op cs

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    4/42

    Electrical Conductivity

    L

     A

     Ammeter Battery

    Voltmeter

    Variable Resistor

    e-=1.6·10-19 C

    R=V/I=[Ω]

    ρ=RA/L=[Ωm] σ=1/ρ=[Sm-1]

    V=I·R=[V]

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    5/42

    Electrical Conductivity

       R  e   l  a   t   i  v  e

       E  n  e  r  g  y

    Filled stated

    Filled Band Filled

    Valence

    Band

    Empty stated

    Band gap

    Empty Band

    Empty Band

    Ef Band gap

    Empty

    Conduction

    Band

    Filled

    Valence

    Band

    Band gap

    Empty

    Conduction

    Band

    MetalMetal Insulator Semi-Conductor

    Metallic bond Covalent or ionic bond

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    6/42

    109

    106

    103

    100

    10-3

    10-6

    10-9

    10-12

    Electrical Conductivity

    Al

    CuAu

    Nylon

    Polymers

    Metals

    Semiconductors

    CNT

    Carbon

    Si

       C  o  n   d  u  c   t   i  v   i   t  y ,  σ   [   S  m  -   1   ]

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    7/42

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    8/42

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    9/42

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    10/42

     How to provide electrical conductivity to a (electrical insulating) polymer?

    By addition of electrical conductive particles -> Polymer composites

     How many particles we need to add to the polymer?

    Electrical Conductive Polymer/(nano)-

    Composites

    El i l C d i P l /( )

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    11/42

    Electrical Conductive Polymer/(nano)-

    Composites

     Note the sudden increase of conductivity in correspondence of

    a critical concentration, called percolation threshold

     Importance of aspect ratio of conductive particle!

     The percolation threshold for CNTs is typically well below 1 wt%!

    • Conductive fillers: different carbon fillers

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    12/42

    Rule of Mixture Vs Percolation

    Phenomena

       C  o  m  p  o  s   i   t  e   Y  o  u  n

      g   ’  s   M  o   d  u   l  u  s

        E  c   (   G   P

      a   )

    Mechanical Properties Electrical Conductivity Properties

    Rule of Mixture Percolation Phenomena

    Please note:

     The scale of variation of the physical Properties

     The shape of the curve (Linear Vs Exponential)

     The amount of filler needed to reach maximum

    Filler vol. %

    ~1

    ~600

    PP/MWNT

    0 100

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    13/42

    Percolation  – Intuitive Concept

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    14/42

    Percolation of Conductive Particles

    Formation of nanofiller-based network

    via particle-particle interactions

    Courtesy of Prof. G.-F. Gerard, INSA, Lyon

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    15/42

    Double Percolation 

    Single Percolation

    Double Percolation

     A

    B

     A

    B

     A

    Phase A

    Phase BCNT

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    16/42

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    17/42

    Percolation Theory 

    1E-3 0.01 0.1 1 1010

    -5

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

     

      m  a  x   [

       S  m  -   1   ]

    Percolation Threshold, p c  [wt.%]

    Low viscosity High Viscosity

    Sandler et al. Polymer 2003

    Yu et al. NanoLetter 2008

    Thakre et al. JAPS 2010

    0 1 2 3 4 5 6 7 8 9 10

    1E-6

    1E-5

    1E-4

    1E-3

    0.01

    0.1

    1

    10

     

       C  o  n   d  u

      c   t   i  v   i   t  y   [   S  m  -   1   ]

    CNT Vol.% [-]

     pc

    NO!

    σmax

     Are the values of pc  and σ max fixed for a given system?

    Polymer/CNT

    Why?

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    18/42

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    19/42

    Dynamic Percolation 

    0 50 100 150 200 25010

    -12

    10-10

    10-8

    10-6

    10-4

    10-2

    100

    102

     

    5% CNT

     3% CNT

     2% CNT

     1% CNT

           (   S  m  -   1   )

    T  (oC)

    CNT weight fraction

    0 4 810

    -5

    10-4

    10-3

    10-2

    10-1

    100

    0 1 2 3 4

    50

    100

    150

    200

     

          T

       (  o   C   )

    t  (106 ms)

     172oC

     180oC

     190oC

     

           (   S  m

      -   1   )

    t  (ms 106)

     172oC

     180oC

     190oC

    (a)

    T scan tests Isothermal tests

    E. Bilotti, et al. J. Mater. Chem., 2010

    The principal way to study the dynamic (or kinetic) percolation is via time-dependent tests

    What is the reason for this increase?...

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    20/42

    Dynamic Percolation 

     CNT re-aggregation - Dynamic Process:

    Importance of viscosity of the host polymer!

    …CNT re-aggregation!

    Poor dispersion Perfect dispersion -Not percolated

    Optimal dispersion -Percolated

     The classic statistic Percolation Theory assumes random dispersion of conductive

    particles in an insulating matrix

     In reality the dispersion of nanoparticles, like CNT, is non-ideal and it can vary in time

    if sufficient energy is given to the system

    Poor mechanical

    properties and electrical

    conductivity

    Good mechanical

    properties

    Poor electrical conductivity

    Good electrical conductivity

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    21/42

    Controlling Dynamic Percolation

    2 3 4 5 6 710

    -5

    10-4

    10-3

    10-2

    10-1

    100

     

    3% CNT

       C  o  n   d  u  c   t   i  v   i   t  y   [   S  m

      -   1   ]

    Chill Roll speed [m min-1]

    220 C

    200 210 220 230 2400.01

    0.1

    1

    10

     

         (   S

       /  m   )

    T (oC)

      5 wt.% CNT

      3 wt.% CNT

    (diluted from 5 wt. MB)

    Example: Melt spinning of TPU / MWNT monofilaments 

    die

    • Conductivity ↑ increases 

    with the die temperature

    • Conductivity ↓ decreases

    with the chill roll speed

    How to make use of the CNT re-aggregation to get larger electrical conductivity

    in real manufacturing processes?

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    22/42

    Controlling Dynamic Percolation 

    0 1 2 3 4 510

    -12

    10-10

    10-8

    10-6

    10-4

    10-2

    100

    102

    260oC

    220oC

    200oC

    240oC

              (   S   /  m   )

    CNT weight Fraction ( wt.%)

     CNT composite film

     Composite Strand @ 210

     Composite Strand @ 190

     Melt spun fibre @ various T

    0 1 2 3 4 510

    -12

    10-10

    10-8

    10-6

    10-4

    10-2

    100

    102

    260oC

    220oC

    200oC

    240oC

              (   S   /  m   )

    CNT weight Fraction ( wt.%)

     CNT composite film

     Composite Strand @ 210

     Composite Strand @ 190

     Melt spun fibre @ various T

    Example: Melt spinning of TPU / MWNT monofilaments 

     By fine-tuning the processing conditions it is possible to control the dynamic percolation

    process of CNT within a thermoplastic polymer and optimise the electrical conductivity

    E. Bilotti, et al. J. Mater. Chem., 2010

    C lli D i P l i

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    23/42

    10-1

    100

    101

    102

    103

    104

    105

    2.10 2.15 2.20 2.25

    103

    104

    105

     

        n   0

       (   P  a  s   )

    T -1 (K

    -1 10

    3)

     

        n   0   (

       P  a  s   )

    ang. Freq. (rad s

    -1

    )

    172oC

    182oC

    190oC

    200oC

     CNT re-aggregationHypothesis: It is an energy activated process -> regulated by an Arrhenius-type law

     ΔE = 249 kJ mol-1 

    )exp(0  RT 

     E c

     

     

    The energy barrier for CNT re-aggregation

    is supposed to be the same as the one

    relative to the pure polymer viscosity

     In analogy with the time-temperature superposition principle it is

    possible to impose a conductivity-time superposition principle.

    Controlling Dynamic Percolation 

    E. Bilotti, et al. J. Mater. Chem., 2010

    C t lli D i P l ti

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    24/42

     Assumption:

    Conductive network formation is (or is limited by) a first order

    thermally activated phenomenon.

    and by substituting eqn (1):

    Controlling Dynamic Percolation 

    where ΔtT is the time required for a certain change in

    conductivity, Δσ to take place at a temperature T, and Δt’T*is the time needed for the same change to take place at a

    different temperature

    101

    103

    105

    107

    109

    10-6

    10-4

    10-2

    100

    102

     

           (   S

      m  -   1   )

    t'  (ms)

     172oC

     180oC

     190oC

     T scan

    In analogy with the time-temperature superposition:

    C t lli D i P l ti

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    25/42

    200 220 240 26010

    -4

    10-3

    10-2

    10-1

    100

    101

     

           (   S  m

      -   1   )

    T  (oC)

     3 wt.%2 wt.%

    First Predictive Model for Conductivity of Polymer / CNT melt-spun filaments! 

    E. Bilotti, et al. J. Mater. Chem., 2010

    Controlling Dynamic Percolation 

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    26/42

    St i S

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    27/42

    Strain Sensors

    0 50000 100000 150000 200000 250000 300000

    0

    24

    6

    8

    100.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

     

       S   t  r  a   i  n

       (   %   )

    time (ms)

    R0=53M

     

       R   /   R

       0

    Dynamic Strain Sensitivity of TPU/CNT filaments and derived fabrics

    TPU+3%CNT

    St i S

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    28/42

    Strain Sensors 

    http://images.google.co.uk/imgres?imgurl=http://www.cross-fashion.lu/images/marken/northsails.gif&imgrefurl=http://www.cross-fashion.lu/images/marken/?C=S;O=A&usg=__bIAvDqHUef442ZtIUtOGdaAjTUQ=&h=344&w=347&sz=7&hl=en&start=1&um=1&tbnid=PAQjtVe7oovrgM:&tbnh=119&tbnw=120&prev=/images?q=north+sails&hl=en&rlz=1T4ADBF_en-GBGB294NL302&sa=N&um=1

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    29/42

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    30/42

    Self-regulating Heating Compounds

    30

    Conductive path

    filler

    ON OFFOvercurrent heating device

    Trace Heating Cable

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    31/42

    Self-regulating Heating Compounds

    31

    HDPE/ Carbon Nanotubes (CNT)

    0.5 1.0 1.5 2.0 2.5 3.0

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

       C  o  n   d  u  c   t   i  v   i   t  y   (   S   /  c  m   )

    Filler Concentration (% V)

    CNT

    ECNT=1TPa

    σCNT=100 GPa

    20 40 60 80 100 120 140 160 180

    108

    10

    9

      r  e  s   i  s   t   i  v   i  y   (   l  o  g      c  m   )

    Temperature (

    o

    C)

    PTC

    NT

    C

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    32/42

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    33/42

    Vs Vs

    Self-regulating Heating Compounds

    Effect of filler size on PTC

    4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

    0

    1

    2

    3

    4

    5

    6

    7

    8

     100 microns

    20 microns

     5 microns

       P   T   C

       I  n   t  e  n  s   i   t  y

     Ag coated glass (% V)0 4 8 12 16 20 24

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

     5 microns

     20 microns

     100 microns

       C  o  n   d  u  c   t   i

      v   i   t  y   (   S   /  c  m   )

    Filler Content (% V)

    Flake size

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    34/42

    Hybrid Filler System: CNT + Conductive spheres

    +

    Self-regulating Heating Compounds

    0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

    102

    103

    104

    105

    106

    107

    108

    109

     8.37% V Ag coated glass spheres

     10.86% V Ag coated glass spheres

     11.91% V Ag coated glass spheres

       R  e  s   i  s   t   i  v   i   t  y

       (     c  m   )

    MWNT content (% V)0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

    0.4

    0.8

    1.2

    1.6

    2.0

    2.4

    2.8  8.37% V Ag coated glass spheres

     10.86% V Ag coated glass spheres

     11.91% V Ag coated glass spheres

       P   T   C    I

      n   t  e  n  s   i   t  y

    MWNT content (% V)

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    35/42

    HDPEPlastomer  

    a b

    conductive

    flakes

    Polymer blend: HDPE/Plastomer

    Self-regulating Heating Compounds

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    36/42

    CNT in Biodegradable polymer

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    37/42

    CNT in Biodegradable polymerConductive + Degradation Sensing

    Hot plate

     At selected immersionperiods, specimenswere removed from thevials, dried untilconstant weight.

    +-

    Pico-ameter

     V-source

     Voltmeter

    Sample

    Computer 

    (a) 

    PLA+5%CNT

    Biopolymer: PLA

    M. Fang et al. Polymer 2013

    37

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    38/42

    Graphene

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    39/42

    GrapheneOpportunities and Challenges

    Graphene

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    40/42

    WoK Search: “Graphene” + “composite*”  WoK Search: “CNT” + “composite*” 

    GrapheneOpportunities and Challenges

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    41/42

  • 8/20/2019 polymer Nanocomposites and Electrical Conductivity

    42/42

    End.