Polarization driven exciton dynamics in asymmetric nanostructures

30
Polarization driven exciton dynamics in asymmetric nanostructures Margaret Hawton, Lakehead University Marc Dignam, Queens University

description

Polarization driven exciton dynamics in asymmetric nanostructures. Margaret Hawton, Lakehead University Marc Dignam, Queens University Ontario, Canada. Outline. Excitons with a dipole moment are created by a laser pulse, giving polarization P inter . - PowerPoint PPT Presentation

Transcript of Polarization driven exciton dynamics in asymmetric nanostructures

Page 1: Polarization driven exciton dynamics in asymmetric nanostructures

Polarization driven exciton dynamics in asymmetric nanostructures

Margaret Hawton, Lakehead University

Marc Dignam, Queens University

Ontario, Canada

Page 2: Polarization driven exciton dynamics in asymmetric nanostructures

• Excitons with a dipole moment are created by a laser pulse, giving polarization Pinter.

• This results in a diffraction grating and an internal electric field, E (Pintra).

• Simulation retains inter and intraband coherence, results shown are for a BSSL.

Outline

Page 3: Polarization driven exciton dynamics in asymmetric nanostructures

Ultrafast experiments

k1 (pump)21

k2 (probe)

FWM Signal2k2- k1

PP Signal

z

x

y

THz emission

SWM Signal, etc2 13 2k k

Page 4: Polarization driven exciton dynamics in asymmetric nanostructures

QW made asymmetric by Edc

Edc

Energy or frequency

c Laser pulsen=1

n=2

Egap

+

-G (dipole mom.)

VB

CB

Page 5: Polarization driven exciton dynamics in asymmetric nanostructures

Biased SC Superlattice (BSSL)

energy or frequency

1 0

'

intraband dipole:

'

;( )e h

G e d G G

e

G r r

=2

d

Edc

-

+

G22

d

Page 6: Polarization driven exciton dynamics in asymmetric nanostructures

=2

d

Edc

=0=1

=-1

Bloch oscillations:/B dcedE

frequency

0 B

B

(Stark ladder)

c Laser pulse

<G>

-

+

--

Biased SC Superlattice (BSSL)

Page 7: Polarization driven exciton dynamics in asymmetric nanostructures

Bloch Oscillationsof dipole moment (QM interference)

Page 8: Polarization driven exciton dynamics in asymmetric nanostructures

B

G22

G-1 -1

G00

G22

B

Page 9: Polarization driven exciton dynamics in asymmetric nanostructures

Exciton: bound e and h in 2D H-like state, C of M wave vector K

+-

2a0

=1

H-like binding lowers

below free e-h pair.

Kz

x,y

Basis { , } stands for { ,H-like, ,spin}. K K

1s

Page 10: Polarization driven exciton dynamics in asymmetric nanostructures

c=0

Linear response (note H-like binding)

Page 11: Polarization driven exciton dynamics in asymmetric nanostructures

k1/k2 interference: the polarization grating

13 by 2

intra1 2

0

expmm

im

P P k k R

2/|k2-k1|+ harmonics

z

x,y

k2

2k2-k1= K-3

FWM Signal

Page 12: Polarization driven exciton dynamics in asymmetric nanostructures

thus Ks are discrete

1 2

2 1 2

0 0

0

2

1

2

: for

:

to by steps of 2 for grati

intraband even

interband

ng

odd

c onverged at 1 )n 3(

m

m

m

m

m

n

m

m n

K k k

K k k k

Page 13: Polarization driven exciton dynamics in asymmetric nanostructures

intra

intr

inter

int

a †' ' '

e

', '

r *

',

1

1

creates an exciton

Polarization density:

. .V

V

B

B c

B

h

B

K

K Κ K KK

Κ

K K

K K

P

P

P P

M

G

P

Inter and intraband polarization

Page 14: Polarization driven exciton dynamics in asymmetric nanostructures

PZW (multipolar) Hamiltonian which we write as:

,

2

iex field

e

nt

in

x

t

field

VV

H H H

H B B

H Kc a

H

H

a

K K K KΚ Κ

Κ ΚΚ

Κ ΚΚ

D P P P

Page 15: Polarization driven exciton dynamics in asymmetric nanostructures

Dipole approximation

Hamiltonian is exact, P is approximate, includes self-energy.

230

2

223

1stationary dipole: 2

1free dipole ~

self-energy negl

02

1:

2 2

for N excitons if igible free.

d r ed

ed

eded

V Nd r

V

r r

Page 16: Polarization driven exciton dynamics in asymmetric nanostructures

EM field

, 1

†' ' ' '

22 2

2

dOHeisenberg Picture: i

exp . .

, (true bosons)

dynamics in

Using Heisenbergs twice:

, , , an

,dt

cancels in td

KcV

i a t i h c

a a

dK K

dt

t t t

O H

K KK

K K KK

ΚΚ Κ

D e K R

DD P

E R D R DP R

B

raband , for Kc>> leaving .

PP

Page 17: Polarization driven exciton dynamics in asymmetric nanostructures

longitudinal/transverse Pintra

z

x

-------

+++++++

K Kz

L

Pintra

L .2m

1m

Kz >> K

intra

2 2

2

exp

sinc

K

Kz

L L

K L

P iKx z z

P

P z

z

Kz

L

For GaAs/Ga.7Al0.3As (67A/17A) 30 period superlattice

Page 18: Polarization driven exciton dynamics in asymmetric nanostructures

† '; ' †' ' , ' , ' '' '' ' ''' '' '

'' '' '

, ' , ; ' '

';00 * ' '' '''*'' '''

'

† †

, = - 2

B

B

B

B B

PSF

X

B X

KKK Κ K K Κ K

K Κ Κ

k k

K k kK

K

k

k kk

PSF

H-like excitons are (approximate) quasibosons.

+ -k-k

eh-pair

+ -H-like exciton

Page 19: Polarization driven exciton dynamics in asymmetric nanostructures

HP exciton dynamics

†' ' ' ; ' '

' '

†' ' ; ' ' ' '' ' '' ; '' ''

††

†' ' '' ' ''

', ' , '''

''

' ' '' ''

opt THz

S

S

dBi B PSF

PSF B PS

Bd

B

F

t

Κ Κ ΚK

K Κ Κ Κ Κ Κ

K

ΚΚ

ΚK K

K K

E

E

G

M

M

G

To solve numerically, must take expectation value.

inter intraNote that . KK KKD PE P

Page 20: Polarization driven exciton dynamics in asymmetric nanostructures

PSF ~ n/n0

n= exciton areal density =109 to 1010 cm-2

n0 = 1/a02 = 2x1011 cm-2

n/n0 < 0.1

Will omit PSF in numerical calculations here.

Page 21: Polarization driven exciton dynamics in asymmetric nanostructures

(1)†(1)†

'2inter

1

1st order interband dynamics:

1 ext

opt

d B ii BTdt

Κ

Κ E M

Can solve to any definite order in Eopt

(2)†(2)†

2intra

(1)(1)* †

(2) (2)* † †' ' ' ' ' '

' '

Can then get intraband dynamics:

2nd orde

r

extopt

extTHz

d B B ii B B

dt T

B B

B B B B

Κ P

Κ P

P Κ

Κ P Κ ΚK

E M M

E G G

(1)†' ' '

' '

+ extTHz B

ΚK

E G

etc, etc

Page 22: Polarization driven exciton dynamics in asymmetric nanostructures

Lyssenko et al PRL 79, 301 (1997)

but solving to any finite order isn’t good enough - experiments show peaks oscillate

Page 23: Polarization driven exciton dynamics in asymmetric nanostructures

†† †

' ' ' '' ' ''' ' ' ', '' ''

1 -

d Bi B Bdt

Κ

Κ K ΚK K K

E M G

Need infinite order, factored, like SBEs

* † †' ' ' '' ' ''

' ' '' ''

1 + terms

d B Bi B B

dt

dBB B B B

dt

Κ P

Κ P

PK P Κ P Κ

K K

E M G

Retains exciton-exciton correlations, no biexcitons.

intrinter awhere . K KK KPD PE

Page 24: Polarization driven exciton dynamics in asymmetric nanostructures

††

†' '

inte

' '' ' ''' ' ' ', '' ''

r

1

+ higher order

id B

B

Ti Bdt

ΚΚ

K ΚK K K

E M G

with phenomenological decay

* † †' ' ' '' ' ''

' ' '

2

' ''

intra

1 + terms

d B Bi B B

dt

dBB B B B

dt

i

T

Κ P

Κ P

PK P Κ P Κ

K K

E M G

Page 25: Polarization driven exciton dynamics in asymmetric nanostructures

Convergence: n0=3 (dash), 5(dot) and 13 (solid)

FWM

EWMSWM

Page 26: Polarization driven exciton dynamics in asymmetric nanostructures

-2 -1 0 1

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

=+1

=0

=-1

Spectrally-Resolved FWM Intensityfor Different time delays,

21

n=6.36 x 109 cm-2

c=

0-2.27

B

=-3

=-2

FW

M S

pe

ctru

m (

arb

. un

its)

(-0)/

B

21

=0.235 ps

21=0.340 ps

21

=0.445 ps

21=0.550 ps

21

=0.655 ps

Page 27: Polarization driven exciton dynamics in asymmetric nanostructures

Origin of peak oscillations is quantum interference

2 1

THz k k 2, 2 1k k

2', k2'', 2 1k k

2 1

THz k k0THz

'.opt

.opt

2, 2 1k k

2', k

+ higher order processes

Page 28: Polarization driven exciton dynamics in asymmetric nanostructures

back to PSF † † †

'

, '

' '''' ' ''' ''' ' '' '''

† †' ''' '' '',1

'',1 ' '',1 1

If 0 , ' 0 , etc.

| '

' | '' '''

1 1 1 1 1 | ' '''

s

s s s

B B B

X

s s B B B s s s

Work on PSF in the exciton basis is in progress.

Page 29: Polarization driven exciton dynamics in asymmetric nanostructures

Summary

• Our model is a system of excitons described by and K, driven and scattered by E=D-P.

• Infinite order calculations retain exciton-exciton correlations and show observed oscillations due to internal field, P/.

• The chief merit of our approach is sufficient simplicity for numerical work and a direct connection to the physics.

Page 30: Polarization driven exciton dynamics in asymmetric nanostructures

Acknowledgements

• Collaborator: Marc Dignam, Queens University

• Financial support: NSERC Canada