Polarization Diversity for Base Station

20
Polarization Diversity for Base Station Antennas  Martin Nilsson, Allgon System Allgon System

Transcript of Polarization Diversity for Base Station

Page 1: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 1/20

Polarization Diversity for Base Station

Antennas

 Martin Nilsson,Allgon System

Allgon System

Page 2: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 2/20

2

Outline

• Problem formulation• Model for the radio channel and the antenna reception

• Derivation of the relation between power correlation and

far-field coupling

• Simulated antennas: Dual polarized Aperture Coupled

Patch and slanted dipoles

• Measured radiation patterns of base station antennas and

calculated correlation

• Far-field coupling from amplitude only measurements

• Correlation and diversity gain

• Slant ±45° vs. vertical/horizontal polarization

• Conclusion

Page 3: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 3/20

3

Problem Formulation• Base station antenna used in a Rayleigh fading

environment

• We wish to use polarization diversity with equal meanpower on both branches; thus the two antenna channels

should be symmetrical• We assume un-correlated envelopes of vertical and

horizontal incident field components

What is the output signal correlation from the antenna?

 Is there a difference between different antenna configurations?

What is the impact in terms of diversity gain of using different types of 

base station antennas?

Page 4: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 4/20

Measurements of the radio chan

E n v i r o n m e n t a n d s o u r c e M o b i l e O r i e n t a t i o n     d B F r e q u e n c y C o r r e l a

 U r b a n 1 V e r t i c a l c a r a n t e n n a 4 - 7 9 2 0 M H z m e d i a

 U r b a n 2 3 0 

o n l a r g e g r o u n d p l a n e 7 4 6 3 M H z - 0 .

 S u b - u r b a n 2 1 2 0 .

 U r b a n & s u b - u r b a n 3 0 

1 0 1 7 9 0 M H z    0 . 7 f

4 5 

4 . 6 - 6 . 3      0 . 7 f

 U r b a n 4 7 0  1 5 

i n - a n d o u t d o o r 1 - 4 1 8 2 1 M H z    0 . 2 f

 S u b - u r b a n 4 2 - 7     0 . 1 f

 U r b a n & s u b - u r b a n 5 0 

4 - 7 1 8 4 8 M H z    0 . 5 f

4 5 

 0     0 . 5 f

 U r b a n 6 C a r m o u n t e d m o n o p o l e 7  :  6  2  : 1 9 7 0 M H z 0  :  0 9 

  1 S . K o z o n o , T . T s u r u h a r a , a n d M . S a k a m o t o , B a s e s t a t i o n p o l a r i z a t i o n d i v e r s i t y r e c e p t i o n f o r

T r a n s . V e h . T e c h n o l .  , v o l . 3 3 , p p . 3 0 1 3 0 6 , N o v . 1 9 8 4 .

  2 R . G . V a u g h a n , P o l a r i z a t i o n d i v e r s i t y i n m o b i l e c o m m u n i c a t i o n s , "  I E E E T r a n s . V e h . T e c h n

1 8 6 , A u g . 1 9 9 0 .

  3 A . M . D . T u r k m a n i , A . A . A r o w o j o l u , P . A . J e o r d , a n d C . J . K e l l e t t , A n e x p e r i m e n t

 p e r f o r m a n c e o f t w o b r a n c h s p a c e a n d p o l a r i z a t i o n d i v e r s i t y s c h e m e s a t 1 8 0 0 M H z , "  I E E E T r a n s . V

 p p . 3 1 8 3 2 6 , M a y 1 9 9 5 .

  4 F . L o t s e , J . - E . B e r g , U . F o r s s e n , a n d P . I d a h l , B a s e s t a t i o n p o l a r i z a t i o n d i v e r s i t y r e c e p t

Page 5: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 5/20

5

Antenna model

  The channelvectors a ,b areprojected onto

the polarizationellipse of axialratio χ0.5

Page 6: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 6/20

Derivation of Power Correlation from

Far-field CouplingI n c i d e n t e l d :  

E

 

= E

 

 ̂ = r

 

   t     e

,  j

    t    

 ̂   1  

E

 

= E

 

 ̂

   = r

 

   t     e

,  j

 

    t    

 ̂

   . 2  

 w h e r e

 p    r   =

r

e

,  r

2

 =  2   

2

  3  

A n t e n n a r e p r e s e n t a t i o n b y f a r - e l d v e c t o r f u n c t i o n s :  

a =  a    ;       ̂ a    ;     4  

b  =  b     ;     

 ̂

 b     ;     5  

I f w e d e n e a m a t r i x :  

A =

 

a

 h   ̂ ;  ̂a  i  a

 h 

 ̂

  ;  ̂a  i 

 h   ̂ ;

 ̂

b   i  b 

 h 

 ̂

  ;

 ̂

b   i 

 

  6  

 t h e n t h e o u t p u t f r o m t h e a n t e n n a i s 

 

 V

 a

 V

 b 

 

= A

 

E

 

E

 

 

 o r   y = A   . 7  

T h e c o v a r i a n c e m a t r i x o f t h e i n p u t s i g n a l i s  

T h e c o m p l e x n o r m a l i z e d c r o s s - c o v

 

 c

=

 C

  2   ; 1  

 y

 q

 C

  1   ; 1  

 y

 C

  2   ; 2  

 y

=

 C

  1   ; 2

 y

 q

 C

  1   ; 1  

 y

 C

 a n d f o r t h e c i r c u l a r l y s y m m e t r i c R a y

 

 p o w e r

=  j   

 c

 j 

=

 j   C

  2   ; 1  

 y

 j   C

  1   ; 1  

 y

 C

 

 y

F o r t h e u n - p o l a r i z e d c a s e w i t h e q u a

 t h e v e r t i c a l a n d h o r i z o n t a l c o m p o n e n

 

 c

=  h   ̂a ;

 ̂

b   i 

e

,  j   a r g  f   a b 

 g 

 S o 1 1 r e d u c e s t o : 

 

 p o w e r

=  j h   ̂a ;

 ̂

b   i j 

:

T h u s , t h e p o w e r c o r r e l a t i o n i s e q u a l

 t h e f a r - e l d c o u p l i n g .

Page 7: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 7/20

7

Output CorrelationIdeal ±45º Slanted Dual Polarized Antenna

Environment

(XPD in dB)

Received Polarization

Statistical Distribution

Output Correlation

Coefficient ((ρρpower))

0 (indoor-microcell)

3 (urban)

6 (urban-suburban)

9 (rural)

0.00

0.11

0.36

0.77

Page 8: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 8/20

8

Geometry of the simulated antennas

Aperture Coupled Patch overan infinite groundplane

Slanted dipoles over aninfinite groundplane

Page 9: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 9/20

9

Simulated Patterns(HP-Momentum and λ / 2 dipole theory)

Aperture Coupled Patch overan infinite groundplane:

HBW = 72 degrees

Slanted dipoles over aninfinite groundplane:

HBW = 75 degrees

Page 10: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 10/20

10

Simulated Patterns, cont.Phase between horizontal and vertical

far-field components

Page 11: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 11/20

11

Far-field coupling

The scalar product of the normalized far-fields of 

the two channels: <a,b> = (a,b*)

Page 12: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 12/20

12

Calculated Output PowerCorrelation for Rayleigh Distributed

Incident Fields

Aperture Coupled Patch overan infinite groundplane

Slanted dipoles over aninfinite groundplane

Page 13: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 13/20

13

Geometry of the

two Measured

Base Station

Antennas

•Dual polarizedantenna arrays of 8elements.•Aperture CoupledPatch elements are

symmetrical andcentred•Dipole elements aredisplaced to increaseisolation

Page 14: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 14/20

14

Measured Radiation Patterns:

Co- and Cross-Polar

ACP antenna Slanted dipole antenna

Page 15: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 15/20

15

Measured Radiation Patterns:

Vertical and Horizontal Polarizations

ACP antenna Slanted dipole antenna

Page 16: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 16/20

16

Simulated Output Envelope Correlation fromMeasured Radiation Patterns: 10000 samples

ACP antenna:

ρenvelope ~= 0.3 at -60 degrees

Slanted dipole antenna:

ρenvelope = 0.8 at -60 degrees

Both antennas: ρenvelope = 0.38 at boresight

due to projection onto the polarization ellipse

Page 17: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 17/20

Far-field coupling from

amplitude-only radiation patt

P r o j e c t    a a n d   b  o n t o t h e v e r t i c a l a n d h o r i z o n t a l  

 p o l a r i z a t i o n s : 

 a =  a

v

 ̂ v  +  a

 ̂

 h    1  

 b  =  b 

v

 ̂ v  +  b 

 ̂

 h  . 2  

N o w , i f t h e r e i s a s y m m e t r y i n t h e r a d i a t i o n

 p a t t e r n s w i t h r e s p e c t t o t h e v e r t i c a l a x i s , i . e : 

 b 

v

=  e

,  j  

 a

v

  3  

 b 

= ,  e

,  j  

 a

 , 4  

t h e F a r - e l d c o u p l i n g  h   a  ;  b   i  c a

 h   a  ;  b   i  =    a  ;  b 

  

=    a

v

 ̂ v  +  a

 ̂

 h           e

 j  

 a

v

 ̂ v

=  e

 j  

    j   a

v

 j 

, j   a

 j 

  

s i n c e    h   ̂ v ;

 ̂

 h   i  = 0 .

F o r t h e u n p o l a r i z e d c a s e    

 p

h e n c e t h e o u t p u t p o w e r c o r r e l a t

 

 p o w e r

=    j   a

v

 j 

, j   a

Page 18: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 18/20

18

• Mobile at -60 degrees azimuth (cell border):ρenvelope = 0.3 for ACP and 0.8 for slanted dipole antenna

• Radio channel XPD (vert./ hor. power) = 6 dB

Impact of correlation on diversity gain

a) Selection diversity

(Schwartz, Bennett, Stein 1966)

Dipoles:ρpower = 0.8 = 0.92

ρpower = 0

~2.5 dB

ρpower = 0.8 = 0.92

b) Maximum Ratio Combining

(Yongbing Wan, J.C. Chen 1995)

ρpower = 0

~2.8 dB

Note: ρenv ∼=ρpower = ρ2 for Rayleigh signals

ACP:ρpower = 0.3 =

= 0.552

ACP: ρpower = 0.3 = 0.552

= loss of diversity gain

1% level

Page 19: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 19/20

19

Slant ±45° vs.

vertical/horizontal polarization

Pre-detection combining:

•With orthogonal far-fields of the two channels, all power isreceived at the antenna and thus all the information in both cases•We can change slant ±45° to vertical/ horizontal using loss-less,reciprocal networks•The eigen-values of the covariance matrix and thus the probability

density function are identical in both cases⇒

no difference between the two with optimal combining (MRC)

digital signaldetectionof

RF-signal

non-linear!

RF signals MRC

Page 20: Polarization Diversity for Base Station

8/2/2019 Polarization Diversity for Base Station

http://slidepdf.com/reader/full/polarization-diversity-for-base-station 20/20

20

Conclusions

• A closed form expression for the output correlation as a function of far-field patterns has been shown.

• The output correlation is a function of the antenna far-field coupling as

well as the XPD of the environment.

• For an un-polarized environment (XPD = 0 dB) the output correlation

equals the square of this coupling.

• Symmetrical antenna designs with equal patterns for vertical and

horizontal polarizations provide orthogonal far-fields <=> low far-field

coupling.

• The aperture coupled patch provides the lower output correlation in all

investigated cases.

• For symmetrical radiation patterns, the far-field coupling can becalculated from amplitude-only patterns.

• A high far-field coupling, i.e. poor orthogonality, could result in a loss

of 2-3 dB diversity gain for selection or MR combining.