POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons –...

19
POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization undulator photons positrons Basics of the Transmission Method for photon polarimetry for positron polarimetry Description of the Layouts and Hardware for the photon polarimeter for the positron polarimeter Expected Polarimeter Performance SLAC EPAC 12 June 2003 E166 Proposal Presentation K.P. Schüler

Transcript of POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons –...

Page 1: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

POLARIMETRYof MeV Photons and Positrons

Overview• Beam Characterization

– undulator photons

– positrons

• Basics of the Transmission Method– for photon polarimetry

– for positron polarimetry

• Description of the Layouts and Hardware– for the photon polarimeter

– for the positron polarimeter

• Expected Polarimeter Performance

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 2: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

2

Undulator Photon Beam

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

undulator basics (1st harmonic shown only)

E166 undulator parameters

Page 3: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

3

Undulator Photon Beam

SLAC EPAC12 June 2003

E166 undulator: photon spectrum, angular distr. and polarization E166 Proposal Presentation

K.P. Schüler

Page 4: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

4

Positron Beam Simulation

distributions behind the converter target (0.5 r.l. Ti)based on polarized EGS shower simulations by K. Flöttmann

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 5: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

5

Low-Energy PolarimetryCandidate Processes• Photons: Compton Scattering on polarized electrons

– forward scattering (e.g. Schopper et al.)– backward scattering– transmission method (e.g. Goldhaber et al.)

• Positrons: all on ferromagnetic = polarized e- targets– Annihilation polarimetry (e+e- ) (e.g. Corriveau et al.) – Bhabha scattering (e+e- e+e-) (e.g. Ullmann et al.)– brems/annihilation (e+ ) plus -transmission (Compton) polarimetry

Principle difficulties of e+ polarimetry:– huge multiple-scattering at low energies even in thin targets– cannot employ double-arm coincidence techniques or single-event counting due to poor machine duty cycle – low energies below 10 MeV, very vulnerable to backgrounds

All of the candidate processes have been explored by us: the transmission method is the most suitable

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 6: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

6

Transmission Polarimetry of (monochromatic) Photons

Pecomp

paircompphot

PP

0

M. Goldhaber et al.Phys. Rev. 106 (1957) 826.

all unpolarized contributions cancel in the

transmission asymmetry (monochromatic case)

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 7: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

7

Transmission Polarimetry of Photons

monochromatic case

But, undulator photons are not at all monochromatic: Must instead use integrated numbers or energies

Analyzing Power:

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 8: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

8

Transmission Polarimetry of Positrons2-step process:

• re-convert e+ via brems/annihilation process– polarization transfer from e+ to proceeds

in well-known manner

• measure polarization of re-converted photons

with the photon transmission method discussed earlier– infer the polarization of the parent positrons

from the measured photon polarization

experimental challenges:

• huge angular distribution of the positrons

at the production target: – e+ spectrometer collection & transport efficiency

– background rejection issues

• huge angular distribution of the re-converted photons– detected signal includes large fraction of Compton scattered photons

– requires extensive simulations to determine the effective Analyzing Power

formal procedure:

Fronsdahl & Überall; Olson & Maximon;

Page; McMaster

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 9: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

9

Polarimeter Layout Overview

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 10: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

10

Analyzer Magnets

g‘ = 1.919 0.002 for pure iron Scott (1962)

Error in e- polarization is dominated by knowledge in effective magnetization M

along the photon trajectory: 05.0/

07.0

ee

e

PP

P

active volumePhoton Analyzer Magnet: 50 mm dia. x 150 mm longPositron Analyzer Magnet: 50 mm dia. x 75 mm long

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 11: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

11

Photon Polarimeter Detectors

Si-W Calorimeter Aerogel threshold Cerenkov

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 12: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

12

Positron Polarimeter Layout

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 13: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

13

Positron Transport System

e+ transmission (%)through spectrometer

photon background

fraction reaching CsI-detector

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 14: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

14

CsI Calorimeter Detector

Crystals: from BaBar ExperimentNumber of crystals: 4 x 4 = 16Typical front face of one crystal: 4.7 cm x 4.7 cmTypical backface of one crystal: 6 cm x 6 cmTypical length: 30 cmDensity: 4.53 g/cm³Rad. Length 8.39 g/cm² = 1.85 cmMean free path (5 MeV): 27.6 g/cm² = 6.1 cmNo. of interaction lengths (5 MeV): 4.92Long. Leakage (5 MeV): 0.73 %

Photodiode Readout (2 per crystal): Hamamatsu S2744-08with preamps

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 15: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

15

Expected Photon Polarimeter Performance

62.0

07.0

0266.0

E

e

A

P

Si-W Calorimeter energy-weighted mean:

)(/)( EEEE

EA

Expected measured energy asymmetry

and energy-weighted analyzing power

determined through analytic integration and. with good agreement, through special polarized GEANT simulation

Aerogel Cerenkov See Table 12

all measurements very fast only syst. Error of should matter eP

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 16: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

16

Expected Positron Polarimeter Performance

Simulation based on modified GEANT code

which correctly describes the spin-dependence of the Compton process

Photon Spectrum & Angular Distr.

number & energy-weightedAnalyzing Power vs. Energy

10 Million simulated e+ per point & polarity on the re-conversion target

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 17: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

17

Expected Positron Polarimeter Performance

Table 13

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 18: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

18

Expected Positron Polarimeter Performance

Analyzing Powervs. Target Thickness

Analyzing Powervs. Energy Spread

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler

Page 19: POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.

19

Spin-Dependent Compton Scattering

SLAC EPAC12 June 2003

E166 Proposal PresentationK.P. Schüler