Plant physical and chemical traits associated with ...

17
Journal of Ecology. 2020;108:733–749. wileyonlinelibrary.com/journal/jec | 733 © 2019 The Authors. Journal of Ecology © 2019 British Ecological Society Received: 7 July 2019 | Accepted: 5 September 2019 DOI: 10.1111/1365-2745.13286 RESEARCH ARTICLE Plant physical and chemical traits associated with herbivory in situ and under a warming treatment Patrice Descombes 1,2 | Alan Kergunteuil 3 | Gaëtan Glauser 4 | Sergio Rasmann 3 | Loïc Pellissier 1,2 1 Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland 2 Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland 3 Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland 4 Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland Correspondence Patrice Descombes Email: [email protected] Funding information Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Number: 162604 and 179481 Handling Editor: Ayub Oduor Abstract 1. Plants protect themselves against herbivore attacks with physical traits and toxic secondary metabolites. Levels of plant defences and herbivore performance might shift under climate warming, particularly in alpine habitats, where herbivore pressure is currently low. Plant responses to warming should be driven by species- specific shifts in physical and chemical defence traits. 2. We investigated the association between plant leaf physical and chemical traits and herbivory under current and warmer climates in three grasslands along a subalpine to alpine gradient. Specifically, we measured the rate of in situ natural herbivory, and performed bioassays to measure overall plant species-level resist- ance using the extreme generalist non-native caterpillar Spodoptera littoralis. We simulated warmer conditions by using open-top chambers and assessed the effect of warming on leaf physical and chemical traits, and how trait changes affect cat- erpillar performance. 3. Natural herbivory and caterpillar performance were associated with plant physical traits, including specific leaf area, and with ordination axes representing dimen- sions of the plant chemical profile. We found that the warming treatment inde- pendently decreased the number of distinct chemical compounds per species, and marginally increased specific leaf area. Changes in leaf functional traits were not systematically associated with changes in caterpillar performance. 4. Synthesis. Plant physical traits and chemical profiles are both related to natural herbivory and plant resistance against Spodoptera littoralis. While leaf physical and chemical traits of high elevation plants were modified by the warming treatment, these changes did not result in predictable effects on plant resistance against herbivores. KEYWORDS climate change, functional traits, herbivore, liquid chromatography, metabolomics, open-top chamber, phylogenetic signal, plant–herbivore interactions

Transcript of Plant physical and chemical traits associated with ...

Page 1: Plant physical and chemical traits associated with ...

Journal of Ecology. 2020;108:733–749. wileyonlinelibrary.com/journal/jec  | 733© 2019 The Authors. Journal of Ecology © 2019 British Ecological Society

Received:7July2019  |  Accepted:5September2019DOI:10.1111/1365-2745.13286

R E S E A R C H A R T I C L E

Plant physical and chemical traits associated with herbivory in situ and under a warming treatment

Patrice Descombes1,2  | Alan Kergunteuil3 | Gaëtan Glauser4 | Sergio Rasmann3  | Loïc Pellissier1,2

1LandscapeEcology,InstituteofTerrestrialEcosystems,DepartmentofEnvironmentalSystemsScience,ETHZürich,Zürich,Switzerland2SwissFederalInstituteforForest,SnowandLandscapeResearchWSL,Birmensdorf,Switzerland3LaboratoryofFunctionalEcology,InstituteofBiology,UniversityofNeuchâtel,Neuchâtel,Switzerland4NeuchâtelPlatformofAnalyticalChemistry,UniversityofNeuchâtel,Neuchâtel,Switzerland

CorrespondencePatriceDescombesEmail:[email protected]

Funding informationSchweizerischerNationalfondszurFörderungderWissenschaftlichenForschung,Grant/AwardNumber:162604and 179481

HandlingEditor:AyubOduor

Abstract1. Plantsprotectthemselvesagainstherbivoreattackswithphysicaltraitsandtoxicsecondary metabolites. Levels of plant defences and herbivore performancemightshiftunderclimatewarming,particularlyinalpinehabitats,whereherbivorepressureiscurrentlylow.Plantresponsestowarmingshouldbedrivenbyspecies-specificshiftsinphysicalandchemicaldefencetraits.

2. Weinvestigatedtheassociationbetweenplant leafphysicalandchemicaltraitsand herbivory under current and warmer climates in three grasslands along asubalpinetoalpinegradient.Specifically,wemeasuredtherateofinsitunaturalherbivory,andperformedbioassaystomeasureoverallplantspecies-levelresist-anceusingtheextremegeneralistnon-nativecaterpillarSpodoptera littoralis.Wesimulatedwarmerconditionsbyusingopen-topchambersandassessedtheeffectofwarmingonleafphysicalandchemicaltraits,andhowtraitchangesaffectcat-erpillarperformance.

3. Naturalherbivoryandcaterpillarperformancewereassociatedwithplantphysicaltraits, includingspecificleafarea,andwithordinationaxesrepresentingdimen-sionsoftheplantchemicalprofile.Wefoundthatthewarmingtreatmentinde-pendentlydecreasedthenumberofdistinctchemicalcompoundsperspecies,andmarginallyincreasedspecificleafarea.Changesinleaffunctionaltraitswerenotsystematicallyassociatedwithchangesincaterpillarperformance.

4. Synthesis.Plantphysical traits andchemicalprofilesareboth related tonaturalherbivoryandplantresistanceagainstSpodoptera littoralis.Whileleafphysicalandchemicaltraitsofhighelevationplantsweremodifiedbythewarmingtreatment,these changes did not result in predictable effects on plant resistance againstherbivores.

K E Y W O R D S

climatechange,functionaltraits,herbivore,liquidchromatography,metabolomics,open-topchamber,phylogeneticsignal,plant–herbivoreinteractions

Page 2: Plant physical and chemical traits associated with ...

734  |    Journal of Ecology DESCOMBES Et al.

1  | INTRODUC TION

Plantshaveevolvedawidearrayofdefencetraitsthatprovidepro-tectionagainstherbivoreattacks,includingphysicalstructuresandtoxic secondary metabolites (Agrawal & Fishbein, 2006; Farmer,2014; Rhoades, 1979; Schoonhoven, van Loon, & Dicke, 2005).Physicaldefences,suchas leaf toughness, trichomesorsilicacon-tent, affect herbivore performance by decreasing leaf palatabilityanddigestibility(Awmack&Leather,2002;Brizuela,Detling,&Cid,1986;Hanley,Lamont,Fairbanks,&Rafferty,2007;Massey,Ennos,&Hartley,2006;Massey&Hartley,2009).Chemicaldefences,suchas alkaloids, terpenoids andphenolic compounds, act as toxins ordigestibility reducers (Mithöfer&Boland, 2012). The current par-adigm indicates that chemical and physical defences act together,in the form of syndromes, to counteract awide variety of herbi-vores(Agrawal&Fishbein,2006;Callis-Duehl,Vittoz,Defossez,&Rasmann,2017;Kursaretal.,2009).Inadditiontotheselectiveef-fectofherbivoresonplantdefencetraits(Agrawal,1998;Kessler&Baldwin,2001),abioticfactors,especiallytemperature,canchangetheexpressionofplantphenotypes(Gutbrodt,Mody,&Dorn,2011;Pellissier,Roger,Bilat,&Rasmann,2014;Totland,1999).Forinstance,leaffunctionaltraitshavebeenshowntoshiftunderwarmercondi-tions (Hudson,Henry,&Cornwell,2011),whichmay in turn influ-enceplantinteractionswithherbivores(Lemoine,Drews,Burkepile,& Parker, 2013). Hence, to understand how climate change mayreshapeplant–herbivoreinteractions,therelationshipbetweenthemultivariateplantdefencephenotypeandherbivoryshouldbedoc-umentedunderbothcurrent temperaturesandwarmerconditions(DeLucia,Nabity,Zavala,&Berenbaum,2012).

The amount and diversity of physical and chemical defencescanvaryamongspecies, implyingdifferent susceptibility toherbi-vores (Agrawal&Fishbein,2006).Physicaldefences result fromacombinationof leaf toughness,abrasivecompoundssuchas silica,andotherstructuressuchastrichomes(Awmack&Leather,2002;Brizuelaetal.,1986;Hanleyetal.,2007;Masseyetal.,2006;Massey&Hartley,2009).Beyondphysicaltraits,theelementalcompositionof leaveshasa large influenceontheirpalatability.Lorangeretal.(2012) identified that leafnitrogenand ligninconcentrationdeter-minedthelevelofnaturalherbivoryinalocalpoolofplantspecies.Becausenitrogenisgenerallyscarceinplantsandalimitingnutrientformanyherbivores(Mattson,1980),herbivoresdisplayapreferencefortenderleaveswithhighernitrogencontent(Pérez-Harguindeguyet al., 2003). In addition tocontainingprimarymetabolites,plantsproduce amyriad of secondarymetabolites to counteract herbiv-ory (Mithöfer&Boland,2012;Rhoades,1979).Becausequantify-inganddocumentingcomplexchemicalprofilesofplantextractsistechnicallychallenging,researchershaveoftenmeasuredtheeffectofplantchemistryonherbivoryusingcontrolledfeedingbioassays,inwhichtheperformanceofhighlypolyphagous insectherbivoresisusedasaproxyforgeneralplant toxicity (Pellissieretal.,2012;Pérez-Harguindeguyetal.,2003).Therefore,thecurrentchallengefor research on plant–herbivore interactions is to combine recentdevelopments in analytical chemistry with the direct assessment

ofherbivoryandherbivoreperformancefora largerangeofplantspeciesgrowingundernaturalconditions(Coley,Endara,&Kursar,2018;Kergunteuil,Descombes,Glauser,Pellissier,&Rasmann,2018;Richardsetal.,2015;Salazaretal.,2018).

The levelsanddiversityofphysical andchemicaldefencesvar-ies across plant lineages. In particular, plant phylogenetic positionhastraditionallybeenusedasaproxyfortheeffectofphytochem-ical diversity on plant–herbivore interactions (Futuyma&Agrawal,2009). The level of herbivory has been shown to vary among lin-eages,andthesedifferencesmightbeassociatedwithphylogeneti-callyconservedtraitssuchasplantchemicalcompounds(Ehrlich&Raven,1964).Forinstance,Wink(2003)usedmolecularphylogeniesofFabaceae,SolanaceaeandLamiaceae tomap thedistributionofdefencecompoundsthataretypicalforeachoftheseplantfamiliesandshowedthatclassesofsecondarymetabolitesaregenerallycon-served. Moreover, phylogenetically conserved interactions withinplant–herbivore networks suggest that plant phylogenies can beusedasproxiesbothforplantphysicalandchemicalprofiles(Farrell&Mitter,1998;Janz&Nylin,1998;Pellissieretal.,2013;Rasmann&Agrawal,2011;Rønstedetal.,2012).Forexample,RasmannandAgrawal(2011)showedthattheexpressionofsecondarymetabolitesin Asclepiasisassociatedwithboththeecologyandthephylogeneticposition of the species. However, only aweak phylogenetic signalof leafsecondarychemicalswasfoundforthegenusPiper (Salazar,Jaramillo,&Marquis,2016)andforthetropicalspeciesinthegenusInga(Kursaretal.,2009),bothcaseswhereco-occurringspeciestendtodiverge inchemicalcomposition.Hence,whetherplantchemicalprofileshaveastrongphylogeneticsignalandwhetherthe latter isstrongerthanthesignalfromphysicaltraitsremaintobeevaluatedacrosssystems.Aphylogeneticsignalindefencetraitswouldpossiblyimplydifferentlevelsofherbivory,butalsopotentiallydifferentre-sponsesofplanttraitstoclimatechange(Pellissieretal.,2018).

Climate change might modify plant phenotypes and reshapeplant–herbivore interactions (Gutbrodt et al., 2011; Pellissier etal., 2018; Pellissier & Rasmann, 2018), and such changes coulddepend on a species' functional group or phylogenetic position.Higher temperatures can alter the efficiency of plant defencesagainstherbivores,makingplantseithermoreor less susceptible(Lemoineetal.,2013;Pellissieretal.,2014;Stamp&Yang,1996).Inparticular,plantsmightbebetterdefendedunderwarmingasaresultofeitheramorerapidmetabolismwithincreasedmetaboliteproductionoran increase intolerance.First,experimentalwarm-inghasbeenshowntoenhanceplantbiomass(Dawesetal.,2015;Doiron,Gauthier,&Lévesque,2014)andmodifyleaftraits(Hudsonetal.,2011;Baruah,Molau,Bai,&Alatalo,2017),whichmightalsoincreasetherateofherbivory.Increasedtemperaturehasfurtherbeenshowntomodulatethenutritionalcontentandtheconcentra-tionsofdefencecompoundsinplants,therebyaffectingherbivorefeedingpreferences(Coley,Bryant,&Chapin,1985;Evans&Burke,2013;Gutbrodtetal.,2011).Moreover,ameta-analysisbyZverevaandKozlov(2006)showedthatwarmingcandecreaseleafnitrogenor sugar content, thereby influencing plant palatability to herbi-vores.Warmingfurther inducesplantstress (Melilloetal.,2002),

Page 3: Plant physical and chemical traits associated with ...

     |  735Journal of EcologyDESCOMBES Et al.

and thus plant susceptibility to herbivory (Evans & Burke, 2013;Gutbrodtetal.,2011).Second,temperaturemightincreasetherateof plantmetabolism and the amount of leaf chemicals (Pellissieret al., 2014).Most studiesquantifying the impactofwarmingonplant–herbivoreinteractionshavefocusedonhowwarmingaffectsfoliardamagecausedbyherbivores(Lemoine,Burkepile,&Parker,2014;Lemoineetal.,2013),plantgrowthrates(O'Connor,22009;Richardson,Press,Parsons,&Hartley,2002)orplantnutrientcon-tents (Zvereva&Kozlov,2006).However, fewstudieshavebeenconductedtoinvestigatehowalteredphysicalandchemicalplanttraitsunderwarmerclimateconditionsmightaffectherbivoreper-formance(DeLuciaetal.,2012).

Here, wemeasured physical defence traits, nutritional com-position,andchemicaltraitsofc.135subalpineandalpineplantspecies,andinvestigatedtheirassociationwithnaturalherbivoryandwithplant palatability assessedwith a generalist caterpillar.Moreover,wequantifiedtheeffectoftemperaturechangeonleaftraitsandplantpalatabilitytoherbivoresbywarmingalpineplantcommunitiesusingopen-topchambers (OTC).Weasked the fol-lowingquestions:

1. Are natural herbivory and plant palatability to a generalistcaterpillar associated with physical and chemical traits?

2. Arechemicaltraitsmorephylogenetically-conservedthanphysi-caltraits?

3. Howdoesanincreaseintemperaturereshapephysicalandchem-icaltraitsandplantpalatabilitytoageneralistcaterpillar?

Our studyprovides a large-scalemulti-species analysisof theas-sociation between physical and chemical traits and herbivory.Based on present associations between traits and herbivory andthechangeinthesetraitsunderawarmingtreatment,wediscussthepredictabilityofplant–herbivore interactionsunderawarmer

climate.Weexpected both natural herbivory and plant palatabil-ity tobeassociatedwith leafphysical traitsandchemicalproper-ties,owingtobiomechanicalandchemicalfeedingconstraintsfortheherbivores.Wealsoexpectedastrongerphylogeneticsignalinchemicaltraitsthaninphysicaltraits,owingtohigherconservatismofplantchemicalprofiles.Finally,weexpectedthatwarmingwouldspeed up plant metabolism, thus modifying plant leaf traits andchemicaldiversityanddecreasingplantpalatabilityforherbivores.

2  | MATERIAL S AND METHODS

2.1 | Study sites

The study sites are located in the western Swiss Alps in theChablais region (Figure 1).We selected three calcareous grass-landswithsimilarfloristiccompositions(Seslerionvegetationtypecommunity; Delarze, Gonseth, & Galland, 1998), where pasturegrazingisverylimitedorabsent.Thethreegrasslandsaredistrib-utedalongastraightelevationgradientfromthesubalpinetothealpinebeltat1,800(46°16′04″N,7°06′27″E),2070(46°16′35″N,7°09′19″E)and2,270(46°16′04″N,7°09′45″E)ma.s.l.(Figure1).Weusedthreesitesbecauseitenablesbettergeneralizationofre-sultsandinclusionofalargerpoolofplantspecies.Oneachgrass-land,weestablished16vegetationplotsof50cm×50cm thatwereassimilaraspossiblewithregardtotheirfloristiccomposi-tion,canopystructureandavailableplantbiomass.Werandomlyallocatedawarmingtreatmentoranambientcontroltotheplots,leadingtoeightreplicatedplotspersiteandtreatment.

2.2 | Measurement of natural herbivory

We counted the number of leaves with and without herbivorymarks for 101 plant species occurring in the ambient control

F I G U R E 1  Thestudysites,indicatedbytheredpoints,arelocatedinthewesternSwissAlpsat1,800,2,070and2,270ma.s.l.Oneachsite,open-topchambers(OTCs)wereplacedforwarmingvegetationplotsdirectlyaftersnowmeltanduntilthefirstsnowfallinautumn.Terrainmap:www.swisstopo.admin.ch. Picturecredit:P.Descombes[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 4: Plant physical and chemical traits associated with ...

736  |    Journal of Ecology DESCOMBES Et al.

vegetation plots of the three selected grasslands in September2016.Forthedominantplantspecies,wecountedthenumberofleavesoverareferencesurface(10cm×10cm)andextrapolateditover theentireplot.Whenherbivorymarkswerepresent, thepercentage of leaf eaten was visually estimated according to aseven-levelscale:1=<1%,2=[1–5]%,3=(5–13]%,4=(13–25]%,5= (25–50]%,6= (50–75]%,7= (75–100]%ofeach leaf (e.g. anherbivoryof1%belongstocategory2,5%tocategory2,13%tocategory3,andsoon).Weestimatedherbivoryonlyforchewingdamagebecausesapsucking,leafminingandraspingmarkswererarelyobserved.Wequantifiedthetotaldryleafmassofeachspe-cies ineachplot (g),asameasureofbiomassavailability forher-bivores,bymultiplyingthetotalnumberofleavesbytheaveragedrymassoftenundamagedleavesoftheplantspeciescollectedonthefieldsite.Weestimatedastandardizeddryleafmassofeachspeciesremovedbyherbivoresineachplot(mg)bymultiplyingtheproportionoftheleafeatenbytheaveragedrymassof10undam-agedleavesoftheplantspecies.

2.3 | Measurement of plant palatability in a bioassay

Weassessedspecies-levelherbivoreperformanceusingabioassayexperiment by quantifying theweight gain of non-native chewinginsectherbivoreacross135plant species.Weusedcaterpillarsofthe African cotton leafworm Spodoptera littoralis (Lepidoptera,Noctuidae) (Brown & Dewhurst, 1975) obtained from Syngenta(Switzerland). This species is known for being extremely polypha-gous(Brown&Dewhurst,1975)andiscommonlyusedinbioassaysto provide integrated information about the combined nutritionalcontent, as well as the physical and chemical defences of plants(Bossdorf, Schröder, Prati, & Auge, 2004; Descombes, Marchon,etal.,2017;Edwards,Wratten,&Cox,1985;Pellissieretal.,2012;Ruhnke,Schädler,Klotz,Matthies,&Brandl,2009;Schädler,Roeder,Brandl,&Matthies, 2007). Theuseof a non-native herbivore en-suresthattherearenopre-adaptationsbetweentheherbivoreandtheplants.

Well-developedandundamagedleaveswerecollectedinAugust2016fromatleastfiveundamagedindividualsrandomlysampledinthegrasslandsoutsideoftheexperimentalplots.Whenbothbasalandcaulineleaveswereavailable,wecollectedcaulineleaves.Leaveswerecollectedinthemorning,placedinmoistbagsandstoredinacoolbox(~8°C)untilthestartofthebioassayinthelaboratory.EachplantspecieswastestedseparatelyinthebioassaysothatS. littoralis caterpillarscouldonlyfeedononeplantspeciesatatime(no-choiceexperiment).LeafmaterialwasplacedinaPetridishtogetherwith10randomlyselectedfreshlyhatchedfirst-instarlarvaethathatchedonwetpaperat20°Cwithoutfoodmaximum12hrpriortotheonsetof thebioassay.Weofferedthecaterpillarsanon-limitingamountofplant leaves (two to10 leaves) collected in thegrasslands, rep-resentingapproximatelythesametotalfreshbiomassineachPetridish.WerandomizedthepositionofthePetridishesintheclimatechamberevery2days.Thebioassay lasted for5days inaclimatechamber at 24°C (light; L) and 18°C (dark;D), 55 ± 5%RH and a

14:10L:Dphotoperiod.Duringtheexperiment,leaveswerereplacedby leavesstoredat4°C inmoistbags,every2daysoratahigherfrequencywhenleaveswereeaten.After5daysoffeeding,allthelarvaeweredried for72hrat50°Candweighed.Whileall larvaereplicateswereinauniquePetridish,werepeatedtheexperimentforplantspeciesshowinghigh larvaemortalitytoconfirmadirecteffectoftheplantleafstructureandcompoundsonlarvaesurvivaland notmortality induced by other possibly uncontrolled factors.Wecalculatedthemeandrylarvalweight(mg)ineachPetridishandaveragedthesevaluesacrossreplicates.Thefinaldryweightofthecaterpillarswasconsideredareflectionoftheirabilitytoprocessthefreshplanttissue.

Weusedthedryweightasaproxyforherbivoreperformanceinsteadof freshweightbecause it isunbiasedbythewaterstatusoftheplantleaves,whichmayaffectcaterpillarfreshweightinde-pendently from physical or chemical traits. While calculating thedifferencebetween the finaland initialdryweightofeverysinglelarvaewouldprovideabetterestimateofherbivoreperformance,weoptedtouseonlythefinalaveragedryweightbecause(a)mea-suringlarvaeinitialdryweightisnotpossiblewithoutkillingthelar-vaeand(b)theinitialweightofS. littoralislarvae(<0.01mg)isveryclosetothedetectabilitythresholdofhigh-precisionbalance.Whilethismight lead touncertainty in the finalcomparisons,weexpectthatnotconsideringtheinitialdryweight(<0.01mg)forestimatingherbivoreperformanceisnotcriticalgiventhattheaveragecaterpil-larfinaldryweightis0.2mg(upto0.94mgforthebestperformingcaterpillars),muchlargerthantheinitialdryweight(weightincrease:40×onaverage,188× for thebestperformingcaterpillars). In ad-dition, while genetic variation in the egg qualitymight affect theperformanceofsomecaterpillarindividuals,wedonotexpectmuchgenetic variability among individuals in this population raised forindustrialpurposes.Furthermore,we randomlyselected10 larvaefromthereceivedbatch,whichallowaccountingforgeneticvariabil-ityincaterpillarperformance,somethingthatcouldnotbedetectedvisuallyonfreshlyhatchedlarvae.

2.4 | Measurements of plant physical traits

Ondifferentindividualsofthesame135speciesusedinthepalatabil-itybioassay,wenextmeasuredasetofphysicalandchemicaltraits.Individualsfromplantspeciesoccurringonseveralsitesweremeas-uredateachsite.Foreachspecies,plantheightwasassessedateachsitein2014usingavegetationheightsurveyperformedwiththepoint-intersect method (Jonasson, 1988; Mueller-Dombois & Ellenberg,1974)in32plots50cm×50cminarea(seeNoteS1forfurtherdetails).

Leafarea(LA),specificleafarea(SLA)andleafdrymattercontent(LDMC)weremeasured following standard protocols (Cornelissenetal.,2003;Pérez-Harguindeguyetal.,2013)inAugust2015onatleast10well-developedandundamaged leavescollectedfromdif-ferentplantindividualsrandomlysampledinthegrasslandsoutsideoftheexperimentalplots.Whenbothbasalandcaulineleaveswereavailable,wecollectedcaulineleaves.Leaveswerecollectedinthemorning,placedinmoistbagsandstoredinacoolbox(~8°C)until

Page 5: Plant physical and chemical traits associated with ...

     |  737Journal of EcologyDESCOMBES Et al.

performing themeasurements in the laboratory in the afternoon.Leaveswere scannedandweighed, thendried for4daysat50°Candweighed.LA (mm2)wasestimated fromthescanned leaves inr version3.4.1 (RDevelopmentCoreTeam, 2014). SLA (mm2/mg)wasmeasuredasLAdividedbyleafdrymass,andLDMC(mg/g)wascalculatedastheratiooftheleafdrymasstoitsfreshmass.

Wemixedalldryleafsamplesintoonesinglesampleperspeciesandsite for leafsilicaandchemicalmeasurements.Wemixedandgroundthe leavesusingamixermill (RETSCHMM400MixerMillfromRetsch),whichprovidesagoodhomogenizationofthedryplanttissue.Pooledsamplesprovideanindicationofaveragedifferencesamongspecies,aswewerenotinterestedinthevariationwithinspe-cies.Leafsilicacontent(%drymass)wasmeasuredusinganalkalineextractionofbiogenicsilicawithasodiumcarbonatesolution(Callis-Duehletal.,2017;Hallmark,Wilding,&Smeck,1982).

Leaf toughnesswasmeasuredon10 individualsper species inAugust2016,usingapunchingtestmachine(ImadaInc.),astheforcerequiredtopierceaholethroughthelaminaoftheleaf(Aranwela,Sanson,&Read,1999;Sanson,Read,Aranwela,Clissold,&Peeters,2001).Thedeviceconsistsofaflat-endedcylindricalsteelrod(2mmin diameter) mounted onto a moving head, which can be passedthrough a sharp-edgedholewith a0.15mmclearance locatedona stationarybase (Aranwelaet al., 1999;Sansonet al., 2001).Wecollected 10 well-developed and undamaged leaves from differ-entplantindividualsrandomlysampledinthegrasslandsoutsideoftheexperimentalplots.Leaveswerecollectedinthemorning,placedinmoistbagsandstoredinacoolbox(~8°C)untilmeasurementinthelaboratoryintheafternoon.Onepunchtestmeasurementwasperformed near the centre of the leaf (on the left or right side),avoiding primary and secondary veins whenever possible. Beforeconductingthepunchtest,wemeasuredleafthicknesswithadigitalcallipergauge (0.01mmprecision).Fromthesemeasurements,wecalculatedthespecificpunchstrengthrepresentingthestrengthperunitleafthicknessatthetestingpointandexpressedinGNm−2 m−1. Afewspecieshadaleafwidthsmallerthanthediameterofthecylin-dricalsteelrod(<2mm).Inthosecases,becausethepunchstrengthisappliedoverasmallercontactarea,weestimatedthecontactarea(seeNoteS2 for furtherdetails)andcalculated the force requiredtopierceaholethroughthe laminaofthe leafbasedonthisarea.Weusedtheaveragetraitvalueforeachspeciesandsiteamongallsampledindividualsforfurtheranalyses.

2.5 | Measurements of plant chemical traits

Wemeasuredtheelementalcontentandchemicalprofileofthe135plantspeciesrecordedinthethreegrasslandsbyusingthesamemixsampleasforleafsilicacontentanalysis,asdescribedabove.Leafni-trogen(%)andcarbon(%)concentrationsweremeasuredusinganel-ementalanalyser(NC-2500fromCEInstruments).Wecalculatedthecarbontonitrogenratio(C:N),whichindicatesplantnitrogenavail-abilitytoherbivores(i.e.plantswithlowC:Naremorenitrogenrich).

Weperformeduntargetedmetabolomicsanalysesforestimatingchemicalrichness,chemicaldiversity,andtotalchemicalabundance.

We extracted 20mg of dry ground tissuewith 0.5ml extractionsolution(MeOH:MilliQwater:formicacid;80:19.5:0.5)andanalysedthesampleviaultra-high-pressureliquidchromatography—quadru-pole time-of-flightmass spectrometry (UHPLC-QTOFMS)usinganAcquityUPLCTMcoupledtoaSynaptG2MS(Waters).Avolumeof2.5μlofextractwasinjectedintoanAcquityUPLCTM C18 column (50mm×2.1mm,1.7μm).Weusedabinarysolventsystemconsist-ingofH2Oandacetonitrile,bothsupplementedwith0.05%formicacid.Thechromatographicseparationwascarriedoutataflowrateof0.6ml/minunderatemperatureof40°Cusinga lineargradientof2%–100%acetonitrilein6.0min.MSdetectionwasdoneinpos-itiveelectrosprayionizationoveramassrangeof85–1,200Da.TheMS sourcewas cleanedbeforeeachof the threebatches runningover three consecutive days, and peak picking was performed inMarkerlynxXS(Waters;Gaillard,Glauser,Robert,&Turlings,2018).Weusedthefullchemicalprofiletoassessthenumberofindividualchemical compounds per species (chemical richness), the summedabundance of chemical compounds per species (chemical abun-dance),andtheinverseSimpsonchemicaldiversityindex(chemicaldiversity),basedontheabundanceofindividualchemicalcompoundsperspecies,usingthepackageveganinR(Oksanenetal.,2007).Todetectfamilypatternsinplantchemicalprofiles,weappliedthebi-narizedchemicalprofiletoacorrespondenceanalysis(CA)usingtheade4packageinr(Dray&Dufour,2007).WeusedaCAtoreducethechemicalprofileintoorthogonalcomponents,asrecommendedbyBagnèresandHossaert-McKey(2016).Webinarizedthechemicalprofiletogivemoreweighttocompoundsthatareproducedinsmallamountsinplantsandwhichmightbespecifictosomeplantfamilies.NotethatthisCAalsoincludedafewadditionalplantspecies(n=19)that occurred at the field sites but not in theplots thatwerenotusedinfurtheranalyses.Becauseofthenatureofthemetabolom-icsapproach,with15,668peaksofchemicalcompoundsrecoveredin154plant species (248sampleswhenconsideringplant speciesoccurringonseveralsites),eachaxisoftheCAexplainsonlyasmallpercentageofthetotalvariationinchemicalcompounds.Toexploreasufficientfractionofthevariation,weretainedthefirstnineaxes(CAAxes1–9),representing10.4%ofthetotalvariability(seeFigureS1),asdescriptorsoftheplants'chemicalprofiles.Wecalculatedthenumberofchemicalcompoundsassociatedwiththenineaxeswithexplaineddeviance(D2)higherthan0.5and0.2byusingabinomialgeneralizedlinearmodelandthe‘ecospat.adj.D2.glm’functionfromtheecospatpackageinR(DiColaetal.,2017).

2.6 | Phylogenetic signal of plant physical and chemical traits and herbivory

Thephylogenetic signal of plant physical and chemical traits, aswell asnaturalherbivoryandplantpalatability,wasassessedbyBlomberg'sKstatisticwiththephylosignalpackageinR(Blomberg,Garland,Ives,&Crespi,2003;Kembeletal.,2010).Phylogeneticrelationships between plants were retrieved from a well-re-solvedanddatedphylogenyofEuropeanplant species (Durka&Michalski,2012).WeestimatedKfortheaverageplanttraitvalues

Page 6: Plant physical and chemical traits associated with ...

738  |    Journal of Ecology DESCOMBES Et al.

calculatedacrosssitesontheprunedtreethat includedonlytheplantspeciesoccurringinthegrasslands(n=132).K-valuesclosetozero indicatethattraitvaluesarerandomlydistributedwithinthe phylogeny,whileK-values close to one indicate that closelyrelated species share more similar trait values than random asexpected under Brownian Motion, and K-values greater than 1indicate stronger similarities among closely related species thanexpectedunderBrownianMotion(Blombergetal.,2003).Thesta-tisticalsignificanceoftheobservedK-valueswastestedwithanulldistribution(Kembeletal.,2010).

2.7 | Statistical analyses of natural herbivory and plant palatability

Wetestedtheassociationbetweennaturalherbivoryandplantpal-atability with a spearman rank correlation test.We tested familydifferencesinplantnaturalherbivoryandplantpalatabilitywithananalysisofvariancebyaveragingpalatabilityandnaturalherbivoryvaluesforeachspeciesacrosssites.

Weinvestigatedtherelationshipbetweentheplantsuscepti-bilitytonaturalherbivoryandplantphysicalandchemical traitsusingaMonteCarloMarkovChaingeneralizedlinearmixedmodel(MCMCglmm)implementedintheMCMCglmmpackage(Hadfield,2010) in r version3.4.1 (RDevelopmentCoreTeam, 2014).Weused a Bayesian approach, which makes it possible to accountforphylogeneticrelatednessbetweenplantspeciesasarandomfactor in themodel, and becausemore traditional models suchaslinearmixedeffectmodels(Pinheiro,Bates,DebRoy,&Sarkar,2014)werenotconverging.Werelatednaturalherbivory to thephysicalandchemicaltraits,dryplantbiomassandtheelevationofthesite.Vegetationplotandsiteidentitywerealsoincludedasrandomeffectsinthemodelwithuninformativepriors(V=1andnu=0.002).Weusedthe‘vifstep’functionintheRpackageusdm (Naimi,2015)tocalculateavariance inflationfactor (VIF;Quinn&Keough,2002), to identifyhighlycorrelatedpredictors.AVIFvaluethatexceeds10isindicativeofmulticollinearityofapredic-torvariable(Montgomery&Peck,1992;Quinn&Keough,2002),while VIF values less than 6 are considered acceptable (Zuur,Ieno,&Elphick,2010).Weremovedchemicalabundancefromthepredictorsbecauseithadahighlevelofcollinearity(VIF=8.02).AllremainingpredictorshadVIF<6.2.Thenaturalherbivoryre-sponse variable was square-root transformed and all variableswererescaledaroundtheirmeanusingthe‘scale’functioninthebase package inr.Because the responsevariableof thenaturalherbivory model was zero-inflated, we rounded it to the near-est integer and used aMCMCglmmwith a zero-inflated hurdlePoisson distribution, following the recommendation ofHadfield(2010,2015).Themodelwasrunwith500,000iterationswithathinningfactorsetto200toreduceautocorrelationofconsecu-tivesamples.Wevisuallycheckedforconvergenceofposteriorsand autocorrelation of consecutive samples in themodels withthe‘xyplot’and‘autocorr.plot’functionsintherpackageslattice and coda,respectively.

We related plant palatability to S. littoralis to the physical andchemical traits and the elevation of the site with a MCMCglmm(Hadfield, 2010). We removed chemical abundance from the pre-dictorsbecauseithadahighlevelofcollinearity(VIF=7.12).Allre-mainingpredictorshadVIF<4.3.Plantpalatabilitywassquare-roottransformedtoreachanormaldistributionandallvariableswereres-caledaroundtheirmean.TheplantpalatabilitymodelwasrunwithaGaussiandistribution,with500,000iterationsandathinningfactorof200,andphylogeneticrelatednessbetweentheplantspeciesandsiteidentitywasaccountedforbyincludingthemasrandomeffectswithuninformativepriors.Wevisually checked for convergenceofposteriorsandautocorrelationofconsecutivesamplesinthemodels.

2.8 | Plant traits and plant palatability under the warming treatment

ThewarmingtreatmentconsistedofhexagonalOTCfollowingtheInternationalTundraExperimentstandards (Henry&Molau,1997;Marionetal.,1997).OTCsprovideaneffectiveandsimplemethodofclimatechangesimulationandconsistofahexagonalenclosurebuiltof clear transparent 2-mm-thick polymethylmethacrylate material(PMMA-XTtransparentclear,Angst+PfisterSA).ThewallsoftheOTChavea60°inclinationrelativetotheground,agrounddiameterof111cm,atopopeningof60cmindiameterandaheightof38cm.Theexperimentlastedfromspring2014toautumn2017.OTCsweresetupovertheplotsassoonaspossibleafterspringsnowmeltandremovedbeforethefirstsnowfallinautumn.WecharacterizedtheeffectoftheOTCsonairtemperaturebyusinghigh-resolutiontem-peratureloggers(DS1922L-F5;HomechipLtd)placedinthemiddleandjustoutsideofeachOTCfromthebeginningofJulytotheendofAugustin2017.Loggerswereplaced20cmabovethegroundandfixedunderasmallwhitecuptoavoiddirectsolarradiationheatingeffects,andtheywereparameterizedathighresolution(0.0625°C)withasamplingrateof30min.Weaverageddaily(00:00–24:00hr),diurnal (11.00–17.00hr) andnocturnal (23.00–05.00hr) tempera-tureoverthesamplingperiodforeachlogger.Weassessedtheef-fectoftheOTCsontemperaturewithalinearmixed-effectsmodelfittedbymaximumlikelihood,includingsiteidentityandplotasran-domfactors,withthe‘lme’function(Pinheiroetal.,2014)inthenlme packageinR.Thewarmingtreatment increasedthemeandailyairtemperature(20cmaboveground)by1.1°C(p<.001)andstrength-enedmeandiurnal(+3.8°C)andnocturnaltemperature(−0.6°C)dur-ingthesummerseason.TheOTCgreenhousesdecreasemixingwithambientair,which in turn favoursheataccumulation in thecham-berduringdaytimewarmingandenhancescoolingatnightbytrap-ping cold, dense air duringnight-time inversions (Dabros, Fyles,&Strachan,2010;Marionetal.,1997).

Wefocusedthetraitanalysesonasubsetof16plantspeciesoutofthe135speciescollectedinAugust2016(TableS1).The16specieswereasubsetofthemostfrequentspeciesobservedineachsiteandwereselectedtorepresentagoodphylogeneticcoverageandphysi-caltraitvariability.Wecollectedeachspeciesfromonlyonesite,withtheexceptionofSesleria cearulea,whichwecollectedfrommorethan

Page 7: Plant physical and chemical traits associated with ...

     |  739Journal of EcologyDESCOMBES Et al.

onesite.Foreachspecies,werandomlyselectedfourtofivewarmedplots insidetheOTCsandfour to fiveambientcontrolplotswheremorethanfiveindividualswerepresent.Intheseplots,wecollectedthreetofivewell-developed leavesfromdifferentundamaged indi-viduals,withapreferenceforcauline leaves.Leaveswerecollectedinthemorning,placedinmoistbagsandstoredinacoolbox(~8°C)untilmeasurementinthelaboratoryintheafternoon.Leaftoughnesswasmeasuredindividuallyforeachcollectedleaf(onemeasurementperleaf),andvalueswereaveragedperspeciesandperplot.Wemea-suredLA,SLAandLDMConallleavesatthesametimetoobtainanaveragevalueper speciesperplot.Wemixed the leaf samplesperspeciesandperplot,dried(4daysat50°C)andgroundthem,andper-formednutrientcontent(C:N)andchemicalcontentanalyses(chemi-calrichness,chemicaldiversityandtotalchemicalabundance).Alltraitmeasurementsfollowedtheprotocolsdescribedabove.

Onasubsetofsevenplantspecies(TableS1),weevaluatedpal-atabilityunderthewarmingtreatmentandambientcontrolusingS. littoralis caterpillars.Foreachof thesespecies,wecollected threetofivewell-developedleavesfromdifferentundamagedindividuals,wheneverpossible,onthesamefourtofivewarmedplotsinsidetheOTCsandfourtofiveambientcontrolplotsasdescribedabove.Theleafsamplingprocedureandthebioassayexperimentfollowedthesameprotocolasdescribedabove.

2.9 | Statistical analyses of the warming treatment

We analysed the change in chemical profile between the ambientcontrolandthewarmingtreatmentforthe16plantspeciescollectedinwarmedOTCsplotsandinambientcontrolplotsusingthe‘adonis’functionintherpackagevegan (Oksanenetal.,2007).ThisfunctionperformsananalysisofvariancebasedonEuclideandistancematricesandapermutationtestbysettingtreatment,siteidentityandspecies(andtheirinteractions)asfixedfactorsandsettingspeciesandsiteiden-tityasstrataforwithin-speciesrandomizations(1,000permutations).Foreachspecies,wecalculatedthenumberofchemicalcompoundswithsignificantlyincreasedordecreasedexpressionbycomparingex-pressionprofilesbetweentheambientcontrolandwarmingtreatmentwithatwo-samplet-test.Weselectedthefourchemicalcompoundsthat showed the greatest increase or decrease in their expression.Compoundsofinterestweretentativelyidentifiedonthebasisoftheirmolecularformulae(determinedfrommeasurementsofbothmass-to-charge ratios and isotopic abundances), fragmentation patterns, andcomparisonwithavailabledatabasessuchastheDictionaryofNaturalProducts(CRCPress),ReSpectforPhytochemicalsandMassbank.

Weinvestigatedtheeffectofthewarmingtreatmentonsingletraits(LA,SLA,LDMC,toughness,chemicalrichness,chemicaldiversityandchemicalabundance)withalinearmixed-effectsmodelfittedbymax-imumlikelihood,includingsiteandspeciesidentityasrandomfactors,withthe‘lme’function(Pinheiroetal.,2014).Foreachspecies,wecal-culated theaverage traitchange (%)acrossplots,andwecalculatedtheaverageandstandarddeviationoftraitchanges(%)acrossspecies.Weusedabinomialmodelasadiscriminantanalysis(Kuhn&Johnson,2013) to discriminate between the two treatments regarding the

physicalandchemicaltraitsexpressed,withaMCMCglmm(Hadfield,2010). This analysis detects associationsbetween trait changes andthewarmingtreatment.Weremovedchemicalabundance,as in theabovementionedanalyses.All remainingpredictorshadVIF<6.Werescaledall selectedvariablesaround theirmean.Traitsweresetasfixed effects and the phylogenetic relatedness of the plant speciesandsite identityweresetasrandomeffectswithuninformativepri-ors(V=1andnu=0.002)andstrongpriorsfortheresiduals(V=1,fix=1;Hadfield,2015).Weranthemodelwith1,500,000iterationsandathinningfactorof200.Wevisuallycheckedforconvergenceofposteriorsandautocorrelationofconsecutivesamplesinthemodels.

Werelatedplantpalatability,measuredasdry larvalweight,totheambientcontrolandwarmingtreatment,additionallyconsideringaninteractionwiththespeciesleaftraits,usingaMCMCglmmwithaGaussian distribution (Hadfield, 2010). The treatment and traitswere set as fixed effects. The phylogenetic relatedness betweenplant species and site identity were set as random effects withuninformative priors.We removed chemical abundance as in theabovementionedanalyses.AllremainingpredictorshadVIF<4.Werescaledallselectedvariablesaroundtheirmean.Weranthemodelwith500,000iterationsandathinningfactorof200,andwevisuallycheckedforconvergenceofposteriorsandautocorrelationofcon-secutive samples in themodels.A significant interactionbetweenthewarmingtreatmentandthetraitswouldindicatethatthetreat-mentchangedthetraits,withconsequencesforplantpalatability.

3  | RESULTS

3.1 | Metabolomics ordination

TheUHPLC-QTOFMS profiling detected 15,668 peaks of chemicalcompounds across the 154 plant species and 248 samples. Whenapplying a CA on the plant chemical profiles, we could observethat speciesweregroupedby families along theseaxes (FigureS1).In particular, the first axis (CAAxis 1; 1.81%of total variance) dis-criminated Gentianaceae, Caprifoliaceae, Orobanchaceae andPlantaginaceae (high scores) from other plant families (low scores;FigureS1).Thesecondaxis(CAAxis2;1.66%oftotalvariance)dis-criminatedGentianaceae,Brassicaceae,Euphorbiaceae,Primulaceaeand Violaceae species (low scores) from Geraniaceae, Asteraceae,EricaceaeandPlantaginaceaespecies(highscores;FigureS1).Thethirdaxis(CAAxis3;1.22%oftotalvariance)discriminatedOrobanchaceaeandPlantaginaceae(highscores)fromotherplantfamilies(lowscores;FigureS1).Thefourthaxis(CAAxis4;1.14%oftotalvariance)setthetaxonomicgroupofPoales(highscores;i.e.Poaceae,CyperaceaeandJuncaceae)apartfromRosaceae,Cistaceae,EricaceaeandFabaceaespecies(lowscores;FigureS1).Thefifthaxis(CAAxis5;1.03%oftotalvariance) discriminated Poales, Ericaceae, Cistaceae and Rosaceae(low scores) from other plant families (high scores; Figure S1). Thesixthaxis(CAAxis6;0.97%oftotalvariance)stronglydiscriminatedOrchidaceae(lowscores)fromotherplantfamilies(highscores;FigureS1).Theseventhaxis(CAAxis7;0.88%oftotalvariance)discriminatedFabaceae (lowscores) fromotherplant families (high scores;Figure

Page 8: Plant physical and chemical traits associated with ...

740  |    Journal of Ecology DESCOMBES Et al.

S1).Theeighthaxis(CAAxis8;0.84%oftotalvariance)discriminatedCaprifoliaceae (high scores) from other plant families (low scores;FigureS1).Theninthaxis(CAAxis8;0.82%oftotalvariance)showednoclearpatternoffamilydiscrimination(FigureS1).Together,retain-ingthefirstnineaxesoftheordinationmeant10.4%ofthevariationinsecondarymetaboliteswasexplained.Theselectednineaxeswereas-sociatedwith86peaksofchemicalcompoundswithanexplainedde-viance(D2)>0.5(34.7%ofthetotalnumberofpeakscorrelatedtothe247axeswiththisexplaineddeviance)and1,217chemicalpeakswithanexplaineddeviance(D2)>0.2(43.2%ofthetotalnumberofpeakscorrelatedwiththe247axeswiththisexplaineddeviance)amongthe15,668peaks(TableS2).

3.2 | Phylogenetic signal in leaf traits and herbivory

We found a weak but significant phylogenetic signal for most ofthe plant traits (K < 0.700,n = 132,p < .050; Figure 2 andTableS3), indicating that they are relatively labile across the plant phy-logeny.Incontrast,thefourthaxisofthemetabolomicsordinationshowedastrongphylogeneticsignal(CAAxis4:K = 0.893,n=132,

Z-score = −5.381,p =.001),while the sixth axis showed aK-valuehigher than 1 (CA Axis 6: K = 1.651, n = 132, Z-score = −1.874,p=.001;Figure2andTableS3).Thephylogeneticsignalwasonav-erage2.75timeshigherforchemicaltraits(meanK=0.54)thanfortraits relating to competition, leaf structure and nutritional value(meanK=0.20).MagnoliopsidaandLiliopsidaplantspeciesshoweddistinctpatterns inbothphysical andchemical traits (e.g. tougherleaves,highersilicacontentandhighscoresonthefourthaxisofthemetabolomicsordinationforLiliospida;Figure2).WefoundaweakandsignificantphylogeneticsignalintheperformanceofS. littoralis (K=0.156,n=132,Z-score=−2.425,p=.001),andaweakandmar-ginallysignificantphylogeneticsignalinnaturalherbivory(K=0.159,n=101,Z-score=−1.101,p=.067;TableS3),justifyingtheneedtoconsiderphylogeneticrelationshipsinfurtheranalysis.

3.3 | Natural herbivory and plant palatability in relation to traits

Wefoundnocorrelationbetweennaturalherbivoryandplantpal-atability assessedwithS. littoralis (spearman rank correlation test:

F I G U R E 2  PhylogeneticsignalinplantfunctionaltraitsassessedwithBlomberg'sKstatisticfor132plantspecies.Traitvalueswereaveragedacrossthethreesites.Thecolourscalerepresentsthestrengthofthetraitvalue.Forvisualease,traitsrepresentedinthefigurewerelog+1transformed(exceptCAAxes1–9)andnormalized.LA=leafarea,SLA=leafmassperarea,LDMC=leafdrymattercontent,Toughness=leafpenetrationforce,Silica=amountofsilicapermgdryleaftissue,C:N=leafcarbontonitrogenratio,Height=plantheight,ChemRich=chemicalrichnessrepresentingnumberofindividualchemicalcompoundsobtainedfromtheuntargetedmetabolomicsanalyses,ChemDiv=chemicaldiversitybasedontheabundanceofindividualchemicalcompoundsperspecies,ChemSum=totalchemicalabundancebasedontheabundanceofindividualchemicalcompoundsperspecies,CAAxes1–9=firstnineaxesofthemetabolomicsordination,Api=Apiaceae,Or=Orobanchaceae,La=Lamiaceae,Ge=Gentianaceae,Ros=Rosaceae,Fab=Fabaceae,Ran=Ranunculaceae,Cy=Cyperaceae.**p <.01,*p<.05[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 9: Plant physical and chemical traits associated with ...

     |  741Journal of EcologyDESCOMBES Et al.

rho=−0.047,p=.267),suggestingdifferentfeedingpreferencesforthe twoherbivorymeasurements.We found familydifferences inplantpalatability(ANOVA:p< .001)andnosignificantdifferencesfornaturalherbivory(ANOVA:p=.968;FigureS2).

Wefoundthatherbivory ingrasslands isgreater for tallplants(MCMCglmm95%credibleinterval[CrI]:0.123,0.427),withalargeamount of available biomass in the vegetation plots (CrI: 0.139,0.299), lowC:N ratio (CrI: −0.609,−0.179), low silica content (CrI:−0.338,−0.059), lowSLA(CrI:−0.359,−0.035),highscoresonthethird axis of themetabolomicsordination (CrI: 0.056, 0.415), highscores on the sixth axis (CrI: 0.126, 0.455) and decreasing overallwithincreasingelevation(CrI:−0.581,−0.070;Table1a).Basedonthemetabolomicsordinationaxes,herbivorywasgenerallylowerforOphioglossaceae(CAAxis6)andGentianaceae(CAAxis3;Table1a,FiguresS2andS3). Incontrast,herbivorywasgenerallyhigherforCistaceae, Carpifoliaceae, Asteraceae and Fabaceae species (CAAxis6)andforOrobanchaceaeandPlantaginaceaespecies(CAAxis3;Table1a,FiguresS2andS3).

WefoundthatS. littoraliscaterpillarshadahigherweightwhenfedwithplantswithahighSLA(MCMCglmm95%credibleinterval(CrI):0.011,0.061),highscoresonthesecondaxisofthemetabo-lomicsordination (CrI:0.003,0.093)and lowscoresonthefourthaxisofthemetabolomicsordination(CrI:−0.130,−0.019;Table1b).Spodoptera littoralis caterpillars performed marginally better onplantswithahigherchemicalrichness(CrI:−0.001,0.074;Table1b).Basedonthemetabolomicsordinationaxes,theperformanceofS. littoraliswasgenerally lowerwhen theywere fedCyperaceaeandPoaceaespecies(CAAxis4)andonGentianaceaespecies(CAAxis2;Table1b,FiguresS2andS4).Incontrast,performancewasgen-erallyhigheronEricaceae,Cistaceae,Geraniaceae,Plantaginaceae,RosaceaeandFabaceaespecies (CAAxes2and4,FiguresS2andS4).

3.4 | Effect of warming on plant functional traits and plant palatability

Theleafchemistryofthe16plantspecieswassignificantlyaffectedbythewarmingtreatment (Adonis test:R2= .004,p= .001;TableS4).Onaverage,97.6±1.2% (mean±1SD)of thechemical com-pounds remained unchanged under thewarming treatment,while1.4 ± 0.9% decreased and 1.0 ± 0.4% increased their expressionsignificantly(numberofchemicalcompoundsperspecies:mean±1SD=4,588±127;TableS5andFigureS5).Changesweredrivenbyalimitednumberofchemicalcompounds,includingflavonoids,terpe-noidsandphospholipiddiesters(TableS6).

Analysesofchangesinindividualtraitsrevealedthatthewarm-ingtreatmentsignificantlyincreasedLA(linearmixed-effectsmodel:estimate=0.34,p<.001)andSLA(estimate=0.33,p<.001),butsignificantlydecreasedLDMC(estimate=−0.12,p<.001)andchem-ical abundance (estimate=−0.17,p = .029) andmarginally signifi-cantlydecreasedchemicalrichness(estimate=−0.11,p=.089).Leaftoughness,C:Nandchemicaldiversitydidnotchangeunderwarm-ing (p > .100). Thewarming treatment tended to increase the LA

ofallspecies,byanaverageof19.6±13.3%(mean±1SD;FigureS6).Onaverage,SLAincreasedby9.3±8.0%,LDMCdecreasedby3.6±4.0%,leaftoughnessdecreasedby0.6±9.9%,C:Nincreasedby1.9±8.1%,chemical richnessdecreasedby1.1±3.6%,chemi-caldiversityincreasedby4.5±11.7%,andchemicalabundancede-creasedby1.9±3.6%(FigureS6).

Thediscriminantanalysesconsideringphylogeneticrelationshipsbetween species revealed that the warming treatment decreasedchemicalrichness(MCMCglmm95%credibleinterval(CrI):−2.466,−0.038) and marginally increased SLA (CrI: −0.063, 2.648), inde-pendently from other leaf traits (Table 2). No significant changesinotherleaftraits,suchasLA,LDMC,toughness,C:Norchemicaldiversity, were observed despite a marginal increase in C:N (CrI:−0.196,2.167;Table2).

Thewarmingtreatmentdidnotsignificantlyaffectlarvalweightandwasnotsignificantlyassociatedwithchanges in leaftraits (noMCMCglmm95%credible intervalsforthe interactiontermsweredifferentfrom0;TableS7).

4  | DISCUSSION

Using untargeted metabolomics applied to 135 plant species incombinationwithmeasurementsofleafphysicaltraits,weprovidedevidence for the relationshipbetweenthecompositephysicalandchemicalmultivariateplantphenotypesandherbivoryinsubalpineand alpine grasslands.Our results usingmetabolomics expand ontraditional measures of physical and chemical traits in herbivorystudiesandunderlinetheimportantroleoftheplantsecondaryme-tabolites inmediatingherbivorepreferencesandperformances. Incontrast,ourinvestigationoftheeffectofexperimentalwarmingonplantphysicalandchemicaltraitsandonpalatabilitytoageneralistherbivoredidnothighlight a linkbetweenchanges inplantphysi-cal and chemical traits and changes in susceptibility to herbivory.Whilewarmingmodified physical and chemical plant phenotypes,trait changes did not result in a consistent effect on plant resist-anceagainstS. littoralis.Thedevelopmentofmetabolomicsanalysespromises new understanding in plant–herbivore interactions, butconsideringabroaderrangeofherbivoresinwarmingexperimentscouldprovideamoregeneralunderstandingoffuture interactionsunderclimatechange.

4.1 | Plant traits, palatability and natural herbivory

Natural herbivory andS. littoralis performance responded tophy-logenetically conserved plant chemical profiles. Beyond the ef-fectsofphysicalandnutritionaltraitsdocumentedinmanystudies(Descombes,Marchon,etal.,2017;Hanleyetal.,2007;Masseyetal.,2006;Peeters,Sanson,&Read,2007;Pérez-Harguindeguyetal.,2003),wefoundthatbothnaturalherbivoryandtheperformanceofS. littoraliswereassociatedwiththeplantchemicalprofilesumma-rizedinordinationaxes.Supportingthegeneralassumptionofphy-logeneticconservatismofchemicalprofiles(Ehrlich&Raven,1964;

Page 10: Plant physical and chemical traits associated with ...

742  |    Journal of Ecology DESCOMBES Et al.

TA B L E 1   (a)Relationshipbetweennaturalherbivoryandplantfunctionaltraits,elevationandplantavailablebiomass,estimatedwithaMCMCglmmwithazero-inflatedhurdlePoissondistribution.Thehurdlezero-inflatedmodelisassociatedwithtwolatentvariables(intercept=meanparameterofazero-truncatedPoissondistribution;hurdle=probabilityonthelogitscalethattheresponsevariableiszero).(b)Relationshipbetweenplantpalatabilityandplantfunctionaltraitsandelevation,estimatedwithaMCMCglmmwithaGaussiandistribution.Estimatesfortherandomeffects(site,plotandspecies)areprovidedinitalicsatthebottomof(a)and(b)

Mean posterior distribution Lower 95% CrI Upper 95% CrI Effective sample size p

(a)

(Intercept) 5.603 2.609 8.306 2,232 <.001*** 

Hurdle −4.841 −5.091 −4.636 1,590 <.001*** 

Available plant biomass 0.221 0.139 0.299 2,313 <.001*** 

LDMC 0.241 −0.043 0.516 2,238 .098. 

Toughness 0.194 −0.041 0.435 2,181 .123

SLA −0.192 −0.359 −0.035 2,485 .021* 

Height 0.269 0.123 0.427 2,485 <.001*** 

Silica −0.189 −0.338 −0.059 2,485 .006** 

C:N −0.399 −0.609 −0.179 2,485 <.001*** 

ChemRich 0.050 −0.178 0.269 2,485 .689

ChemDiv 0.012 −0.163 0.175 2,485 .895

CAAxis1 0.146 −0.036 0.342 2,485 .126

CAAxis2 0.211 −0.046 0.451 2,174 .094. 

CA Axis 3 0.248 0.056 0.415 2,485 .006** 

CAAxis4 −0.131 −0.385 0.109 2,485 .288

CAAxis5 −0.239 −0.503 0.051 2,484 .076. 

CA Axis 6 0.283 0.126 0.455 2,485 <.001*** 

CAAxis7 −0.099 −0.290 0.067 2,210 .280

CAAxis8 0.007 −0.163 0.167 2,485 .942

CAAxis9 0.114 −0.071 0.323 2,187 .246

Elevation −0.321 −0.581 −0.070 1,637 .009** 

Site 3.685 0.000 3.508 2,485

Plot 0.016 0.001 0.038 2,485

Species 3.446 1.480 5.734 1,983

(b)

(Intercept) 0.454 −0.195 1.071 2,485 .103

LDMC −0.015 −0.055 0.026 2,485 .472

Toughness −0.006 −0.045 0.035 2,739 .785

SLA 0.035 0.011 0.061 2,485 .006** 

Height 0.018 −0.005 0.039 2,558 .096. 

Silica −0.018 −0.043 0.007 2,485 .146

C:N −0.011 −0.040 0.020 2,485 .477

ChemRich 0.037 −0.001 0.074 2,485 .061. 

ChemDiv 0.011 −0.013 0.035 2,485 .365

CAAxis1 −0.035 −0.081 0.007 2,485 .126

CA Axis 2 0.047 0.003 0.093 2,485 .043* 

CAAxis3 0.007 −0.033 0.043 2,485 .698

CA Axis 4 −0.075 −0.130 −0.019 2,485 .007** 

CAAxis5 0.025 −0.025 0.078 2,485 .357

CAAxis6 −0.028 −0.067 0.011 2,485 .163

(Continues)

Page 11: Plant physical and chemical traits associated with ...

     |  743Journal of EcologyDESCOMBES Et al.

Wink,2003),thephylogeneticsignalofchemicaltraitswas,onaver-age,2.75timesstrongerthanthatoftraitsrelatingtocompetition,leafstructureandnutritionalvalue.Thissuggests thatuntargetedplant metabolomics analyses enable the discrimination of plantfamilies in theirchemicalprofilesand thatplantchemistrycarriesstrongerphylogeneticinertiathantheotherplantfunctionaltraits.Nevertheless,the interpretationofthechemicalprofile isdifficultgiventhehighdimensionalityofthedata (15,668peaksofchemi-calcompoundsfrom248samplesand154plantspecies),wherethenineaxesused inouranalysisexplainonly10.4%ofthevariation.Presently,onlyapproximatively1.8%ofanuntargetedmetabolomicsspectrumanalysiscanbeannotated(DaSilva,Dorrestein,&Quinn,2015).Hence,amajorityofthechemicalsignaturesremainsunchar-acterized,which limits theunderstandingof the functionsbehindtheordinationpatterns(DaSilvaetal.,2015).Whileourstudysug-gestsanassociationbetweenmetabolomicsignatureandherbivory,the development of novelmachine learning approaches basedonmetabolomicsreferencedatabasescouldenabletheclassificationof

individualmoleculesandbemoreinformativeregardingtheunder-lyingphysiologicalmechanisms(Blaženović,Kind,Ji,&Fiehn,2018;Zhou,Huang,Guo,&dos-Santos,andVivanco,2018).

Bothphysical traitsandchemicalprofileswereassociatedwithnaturalherbivoryandpalatabilityinabioassay,butrelationshipsdif-feredamongherbivorymeasures(Table1).Regardingthechemicalprofile, the performance ofS. littoraliswas associatedwith axes 2and4,whichmainlydiscriminatedPoalesandGentianaceaespeciesfrom other plant families. Lower palatability of these plant fami-liescouldbeexplainedbytheirdistinctchemicalprofiles,withthepresenceof toxicor repellentchemicalcompounds (e.g.bitternessinGentianaceae,whicharerichinbothalkaloidsandtannins;Callis-Duehletal.,2017)orotherfamily-specificleafcharacteristicswhichwerenotcapturedbyourselectionofphysicalandchemical traits(e.g. leaf texture, presence of volatile compounds) but indirectlydetectedwith the ordination axis.Natural herbivory in grasslandswas also associatedwithmetabolomics axes, but in this casewithaxes 3 and 6, which mainly discriminated Ophioglossaceae and

Mean posterior distribution Lower 95% CrI Upper 95% CrI Effective sample size p

CAAxis7 0.001 −0.034 0.039 2,485 .965

CAAxis8 0.006 −0.025 0.036 2,240 .719

CAAxis9 0.019 −0.014 0.049 2,485 .231

Elevation −0.113 −0.555 0.446 2,485 .666

Site 19.610 0.000 1.312 2,485

Species 0.073 0.036 0.117 2,179

Significantvariablesbasedonposteriordistributionsand95%credibleintervals(CrI)arehighlightedinbold.p‐valuesbasedonrandomizationsarealsoprovided.Estimatesfortherandomeffectsareprovidedinitalics.AbbreviationsareexplainedinthecaptionofFigure2.***p<.001,**p<.01,*p<.05,.p<.1

TA B L E 1   (Continued)

Mean posterior distribution Lower 95% CrI Upper 95% CrI

Effective sample size p‐value

(Intercept) 0.232 −4.383 5.890 7,246 .892

LA 0.821 −0.546 3.004 2,408 .316

SLA 1.167 −0.063 2.648 3,576 .038* 

LDMC −1.234 −3.708 0.727 4,697 .185

Toughness 0.060 −1.290 1.668 7,776 .972

C:N 0.892 −0.196 2.167 3,593 .079. 

ChemRich −1.148 −2.466 −0.038 7,136 .049* 

ChemDiv 0.230 −0.631 1.079 6,135 .586

Site 13.370 0.000 30.920 7,189

Species 12.18 0.000 61.92 2,755

Estimatesfortherandomeffects(siteandspecies)areprovidedinitalicsatthebottomofthetable.Significantvariablesbasedonposteriordistributionsand95%credibleintervals(CrI)arehighlightedinbold.p‐valuesbasedonrandomizationsarealsoprovided.Abbreviationsareex-plainedinthecaptionofFigure2.*p<.05,. p<.1

TA B L E 2  Effectofwarmingwithopen-topchambers(OTCs)onplantfunctionaltraitsfor16plantspeciescollectedinwarmedplotsandinambientcontrolplots,asestimatedwithdiscriminantanalysisusingaMCMCglmmwithabinomialdistribution

Page 12: Plant physical and chemical traits associated with ...

744  |    Journal of Ecology DESCOMBES Et al.

Gentianaceaespeciesfromotherplantfamilies.Hence,asforS. litto‐ralispalatabilitymeasures,naturalherbivorestendedtoavoidfeed-ing onGentianaceae species. This finding suggests that this plantfamily harbours specific chemical compounds which are repellentfor herbivores, independently of their leaf physical traits and theavailabilityofplantbiomassinthegrasslands.Despitethiscongruentresult, thedifference in theaxesof thechemicalordinationwhichbetterexplainbothherbivorymeasuresmightbe the resultof thedifferentsensitivitytosecondarymetabolitesinS. littoralisandtheherbivoresoccurringnaturallyinthegrasslands,suchasorthopter-ans,whichareamongthetoparthropodgrazersinalpinegrasslandecosystems(Blumer&Diemer,1996).

Inagreementwiththeliterature(Descombes,Marchon,etal.,2017;Hanleyetal.,2007;Masseyetal.,2006;Peetersetal.,2007;Pérez-Harguindeguy et al., 2003), plant physical and nutritionaltraits were also associated with natural herbivory and the per-formanceofS. littoralis(Table1).WefoundnegativerelationshipsbetweenfoliarC:N,aswellassilicacontent,andnaturalherbivoryin grasslands (Table 1a), suggesting a preference for plantswithahighnutritionalvalueand lowsilicacontent innaturalsystems(Mattson,1980;Pérez-Harguindeguyetal.,2003),butnotintheS. littoralisbioassay.Hence,herbivoresdisplayapreferencefortenderleaveswithhighernitrogencontent(Lorangeretal.,2012;Pérez-Harguindeguyetal.,2003),becausenitrogenisgenerallyscarceinplantsandalimitingnutrientformanyherbivores(Mattson,1980).Silicacontentreflectsthecontentofphytoliths(rigid,microscopicstructuresmade of silica) stored in leaf tissue andmainly pres-entinPoalesand,inloweramounts,inOrobanchaceae(Figure2).Silicahasbeenshowntohaveanabrasiveimpactonthemandib-ulaof insectherbivoresand toaffectherbivoreperformancebydecreasing leaf palatability anddigestibility (Awmack& Leather,2002; Brizuela et al., 1986; Hanley et al., 2007; Massey et al.,2006;Massey&Hartley,2009).Thelackofarelationshipbetweenplant palatability for S. littoralis and silica content might be ex-plainedbythegenerallowabilityofS. littoralisyoungcaterpillarstofeedontough,silica-richplantsinthePoales.Surprisingly,whilewe found that S. littoralis performed better on plantswith highSLAvalues(Table1b),naturalherbivorywashigherinplantswithlowSLA(Table1a).PlantswithahighSLAaretypicallyfast-grow-ingandmorepalatablespecies(Pérez-Harguindeguyetal.,2013,2003;Villar&Merino,2001),whicharemoreeasilyprocessedbyS. littoralis.Onnaturalsubalpineandalpinegrasslands,herbivoryismainly dominated by orthoptera herbivore species (Blumer &Diemer,1996),andtheirhighmandibularstrengthenablesthemtofeedontougherplants,suchasPoaceaeandCyperaceaespecies(Ibanez,Lavorel,Puijalon,&Moretti,2013).Toughplantstendtohavethickerleaves,ahighLDMCandalowSLA(Cornelissenetal.,2003).Hence, the feedingpreference for tougher leaves for themajorityofnaturallyoccurringherbivoresmightpartlyexplainwhywefoundapreferenceforplantswithalowSLA,incontrastwiththepatternforS. littoralis.Finally,Poalesspeciesdominateplantcommunities (up to 60%of relative cover by a few species) andstructure vegetation communities in natural grasslands (Delarze

etal.,1998;Descombes,Vittoz,Guisan,&Pellissier,2017).Hence,dominantplantsmaybemoreattractivetoherbivoresbecauseoftheirhighernaturalabundance,whichissupportedbythesignif-icantpositiverelationshipbetweenherbivoryandavailableplantbiomass in our analysis (Table 1a).Whilewe found associationsbetweenthebioassayandnaturalherbivoryandplantphysicalandchemicaltraits,divergentpatternssuggestthatpredictingthere-sponsesofplantsinanaturalcommunitycontextiscomplexanddependsonboththeplanttraitsinquestionandthetypeofherbi-voresinthecommunity.

4.2 | Effect of experimental warming on plant–herbivore interactions

Amongthephysicaltraitsinvestigated,wefoundthatwarmingwithOTCsmarginallyincreasedSLA,andthisincreasewasindependentfrom the response of other leaf traits (Table 2).While LA tendedto increase across all plant species (+19.6% on average), this shiftlikelyresultedfromamodificationofresourceallocationdrivenbychangesinSLA,suchasanexpansionofthefoliarlaminaassociatedwithadecreaseinleafthickness.Hence,highertemperaturelikelyenhancesplantmetabolism,favouringhigherratesofcellexpansionandfacilitatingfasterproductionofsoftertissues(Atkin,Botman,&Lambers,1996;Körner,1999); temperature is thusgenerallyposi-tivelyrelatedtoSLAattheintra-andinterspecific level(Bjorkmanetal.,2018;Woodward,1983).Hudsonetal.(2011)foundthatmostspeciesshowedincreasedleafsizeandplantheightunderawarmingtreatmentandthattraitsrelatedtogrowthweremoreaffectedbywarmingthanleafnitrogencontent.Similarly,Bjorkmanetal.(2018)found comparable intraspecific responses of plant traits, such asplantheight,LAandSLA,totemperaturegradients.

We found that the warming treatment significantly decreasedplantchemical richnessandsignificantlychanged thechemicalpro-fileoftheplants.Changesinthechemicalprofileweremainlydrivenbyan increaseordecrease intheexpressionofa limitednumberofchemicalcompounds,includingflavonoids,terpenoidsandphospho-lipiddiesters.Phospholipiddiestersareinvolvedinmembraneremod-elling(i.e.glycerophosphocholine;vanderRest,Boisson,Gout,Bligny,&Douce,2002),whileterpenoidsandflavonoidsareinvolvedinmanybasic functions in plant development and protection against stress(Tholl,2015;Urquiaga&Leighton,2000),includingUVprotection,pig-mentationandfreezingtolerance(Close&McArthur,2002).Similarly,phenolic and terpenoid concentrations were previously shown tochange in response towarming (Veteli,Kuokkanen, Julkunen-Tiitto,Roininen,&Tahvanainen,2002;Zvereva&Kozlov,2006),but it re-mainsunclearwhetherthismodifiesplantpalatabilitytoherbivores.

ShiftsinchemicalrichnessandchangeinSLAmightbeexpectedtoaffectplantresistancetoherbivory,yetweobservednochangeinplantpalatabilitytoS. littoralisasaresultofchangesinphysicalandchemical traitsunder thewarming treatment (TableS7).However,an increase in SLA, as observed with our warming treatment(Table2),mightbeassociatedwith increasednutrientcontentandlower toughness (Cornelissenet al., 2003;Villar&Merino,2001),

Page 13: Plant physical and chemical traits associated with ...

     |  745Journal of EcologyDESCOMBES Et al.

therebyincreasingplantpalatabilitytochewingherbivores.Incon-trast,adecreaseinplantchemicalrichness(Table2)mightbeeitherbeneficialordetrimentaltoherbivores,dependingonthenatureofthecompoundsaffectedbythewarmingtreatment.Herbivoresper-formedbetter, thoughonlymarginally so, on plantswith a higherchemicalrichnessinourbioassayexperiment(Table1b).Adecreaseinchemicalrichnessunderwarmingshould,byextension,negativelyaffectherbivoreperformanceifbeneficialchemicalcompoundsarelessexpressedoraltered.Nonetheless, it remainsunclear towhatextentinterspecifictrendsbetweentraitsandherbivorycanbegen-eralizedandextendedtointraspecificvariationunderclimatewarm-ing.OurbioassayanalysisrevealednosignificantchangeinS. littoralis performanceassociatedwithchangesinSLAorleafchemicalrich-nessacrosstheplantspeciesinvestigated.Contrastingresponsesofherbivorestowarmingwhenfeedingondifferentplantspecieshavebeen reported previously (Bidart-Bouzat& Imeh-Nathaniel, 2008;Gutbrodt et al., 2011). Thus, warming might enhance or diminishinsectherbivoreperformancebyalteringplantpalatability,andre-sponses towarming are likely to be plant–species andherbivore–species specific (Bidart-Bouzat& Imeh-Nathaniel, 2008;Gutbrodtetal.,2011;Lemoineetal.,2014).

4.3 | Limitations

While comprehensive, our studyhad limitations associatedwith:(a)theexploratorypowerofthemetabolomicsanalyses,(b)thein-situmeasurementoftraitsandherbivory,and(c)thequantificationof palatability usingS. littoralis in a bioassay. First,while theCAis an effective approach for reducing high-dimensional data, thefirstaxisonlyexplained1.81%oftotalvariance,andeventhefirstnineaxesonlycollectivelyexplained10.4%ofthetotalvariation.The documented association between these axes and herbivorysupportstheneedtoconsiderplantsecondarymetabolitesinher-bivory studies.Nevertheless, themethodsused toprocessplantmetabolomicsprofiles shouldbe furtherdeveloped in the futureto improvethe levelof informationgatheredfromsuchdatasets,especiallyforgaininginformationontheunderlyingphysiologicalmechanisms (Blaženović et al., 2018; Zhou et al., 2018). Second,because most of the studied subalpine and alpine species areperennial, measuring traits in the field made it possible to tar-getmature individualplantsundernaturalconditions,asdone inprevious herbivory association studies (Descombes,Marchon, etal.,2017;Pellissieretal.,2013).Thisapproachdoesnotallowtoentirelyteaseapartindividualgenotypesfromtheirlocalenviron-ments in producing the observed phenotypes, possibly generat-ingnoisefromtheexperimentdesign(Bakhtiari,Formenti,Caggìa,Glauser, & Rasmann, 2019; Woods, Hastings, Turley, Heard, &Agrawal,2012). In the future,physical traitsandchemicalanaly-sescouldbecomparedinmorecontrolledsettingssuchasclimatechambers(Pellissieretal.,2014).Becauseplantsgrownundercon-trolledclimateconditions tendtogrowfasterandhavedifferentmorphologiesthanplantsgrowinginnaturalconditions,itmaystillbechallengingtotranslatetheresultsfromcontrolledconditions

back to natural settings (Poorter et al., 2016). Third,while Petridish feeding-experiments using detached leaves provide a fastand holistic assessment of plant resistance, this analysis has themajor limitation of not allowing plants to respond to herbivorythrough induction of defences, which generally modifies plantoverallchemotypes,aswellasphysicaldefencestoacertainde-gree(Karban&Baldwin,1997).Thatsaid,whiledefenceinductioncan modify individual phenotypes intraspecifically, species-levelvariationisgenerallymaintained(Defossez,Pellissier,&Rasmann,2018),whichwasthefocusofourstudy.Hence,whilewecannotexclude that intraspecific trait variability also impactsplant–her-bivore interactions, the comparisonofmultiplemeasuresofher-bivoryweperformedenabledevaluationoftheconsistencyofthesignalsofphysicaltraitsandchemicalprofilesacrossspecies.

5  | CONCLUSIONS

Ourstudyprovidesevidenceofassociationsbetweenplantphysi-calandchemicalphenotypesandherbivory,eitherbasedonnatu-ral herbivory surveys, or based on S. littoralis larval performance.Despitealteredphysicalandchemicalpropertiesunderawarmingtreatment, we found no consistent directional response of plantpalatability.Hence,theresponseofplant–herbivoreinteractionstoclimatechangemightbespeciesspecificandcannotbeeasilygen-eralized.Sofar,studiesinvestigatingtherelationshipbetweenplantchemicaltraitsandherbivoreperformancehavetypicallymeasuredoneorafewgroupsofchemicalcompounds,suchasflavonoids,phe-nolics,cardenolidesorglucosinolates(e.g.Callis-Duehletal.,2017;Defossez et al., 2018; Pellissier et al., 2016; Rasmann&Agrawal,2011).Becauseplantshaveevolvedamyriadof chemical second-arymetabolitestocounteractherbivory(Mithöfer&Boland,2012;Rhoades,1979),theoverallchemicalarsenalinplantsisunlikelytoberestrictedtoonesinglecompoundclass.Ourresultsprovideevi-dencethatuntargetedmetabolomicsanalysesarepowerfulforiden-tifyingfamilypatternsinplantdefencesforalargerangeofspeciesgrowingundernaturalconditions.However,amajorchallengeofthisapproachistodealwiththehighdimensionalityoftheplantchemi-cal profile, which can contain thousands of chemical compounds(15,668 in this study), and toexplain ameaningful fractionof thetotal variance when summarizing chemical profiles along ordina-tion axes. Future studies should develop pipelines to better iden-tify metabolites based on untargeted metabolomics analyses anduseadequatetoolstoreducethedimensionalityofthedata(Barker&Rayens,2003;Kuhl,Tautenhahn,Böttcher,Larson,&Neumann,2012;Salazaretal.,2018;Tibshirani,1996)inordertodecoupleher-bivoreresponsestochemicalandphysicalphenotypes.

ACKNOWLEDG EMENTS

We are grateful to the peoplewho helpedwith fieldwork and toOliver Kindler and Roland Reist (Syngenta, Stein, Switzerland)for providing S. littoralis eggs.We thank Hélène Blauenstein and

Page 14: Plant physical and chemical traits associated with ...

746  |    Journal of Ecology DESCOMBES Et al.

AndreasZurlindenfortechnicalsupportduringthepalatabilitybio-assayexperimentswithS. littoralis, andEmilien Jolidon forhelp inthe lab.WethankMelissaDawesforprovidingsuggestionsto im-provethemanuscriptandAntoineGuisanforlendingequipmentforplanttraitsmeasurements.ThisstudywassupportedbytheSwissNationalScienceFoundation(SNSF)Project‘‘Lif3web''(grantnum-ber162604) toL.P. andby theUniversityofFribourg, andby theSNSFgrant179481toS.R.

AUTHORS' CONTRIBUTIONS

P.D.andL.P.conceived the ideasanddesignedmethodology;P.D.andA.K.collectedthedata;P.D.andG.G.analysedthedata;P.D.,L.P.andS.R.ledthewritingofthemanuscript.Allauthorscontrib-utedcriticallytothedraftsandgavefinalapprovalforpublication.

DATA AVAIL ABILIT Y S TATEMENT

Data from this paper can be accessed through figshare http://doi.org/10.6084/m9.figshare.9699131 (Descombes, Kergunteuil,Glauser,Rasmann,&Pellissier,2019).

ORCID

Patrice Descombes https://orcid.org/0000-0002-3760-9907

Sergio Rasmann https://orcid.org/0000-0002-3120-6226

Loïc Pellissier https://orcid.org/0000-0002-2289-8259

R E FE R E N C E S

Agrawal,A.A.(1998).Inducedresponsestoherbivoryandincreasedplantperformance. Science, 279, 1201–1202. https://doi.org/10.1126/science.279.5354.1201

Agrawal,A.A.,&Fishbein,M.(2006).Plantdefensesyndromes.Ecology,87,S132–S149.https://doi.org/10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2

Aranwela,N.,Sanson,G.,&Read,J.(1999).Methodsofassessingleaf-frac-tureproperties.New Phytologist,144, 369–383. https://www.jstor.org/stable/2588781. https://doi.org/10.1046/j.1469-8137.1999. 00506.x

Atkin,O.K.,Botman,B.,&Lambers,H.(1996).Thecausesofinherentlyslowgrowth in alpine plants:An analysis basedon the underlyingcarbon economies of alpine and lowland Poa species. Functional Ecology,10,698–707.https://doi.org/10.2307/2390504

Awmack,C.S.,&Leather,S.R.(2002).Hostplantqualityandfecundityinherbivorousinsects.Annual Review of Entomology,47,817–844.https:// doi.org/10.1146/annurev.ento.47.091201.145300

Bagnères, A. G., & Hossaert-McKey, M. (2016). Chemical ecology. Hoboken,NJ:Wiley-ISTE.

Bakhtiari,M.,Formenti,L.,Caggìa,V.,Glauser,G.,&Rasmann,S.(2019).Variable effects on growth and defense traits for plant ecotypicdifferentiation and phenotypic plasticity along elevation gradi-ents.Ecology and Evolution,9,3740–3755.https://doi.org/10.1002/ece3.4999

Barker,M., & Rayens,W. (2003). Partial least squares for discrimina-tion.Journal of Chemometrics,17,166–173.https://doi.org/10.1002/cem.785

Baruah,G.,Molau,U.,Bai,Y.,&Alatalo, J.M. (2017).Community andspecies-specificresponsesofplanttraitsto23yearsofexperimen-tal warming across subarctic tundra plant communities. Scientific Reports,7,2571.https://doi.org/10.1038/s41598-017-02595-2

Bidart-Bouzat, M. G., & Imeh-Nathaniel, A. (2008). Global changeeffects on plant chemical defenses against insect herbivores.Journal of Integrative Plant Biology, 50, 1339–1354. https://doi.org/10.1111/j.1744-7909.2008.00751.x

Bjorkman,A.D.,Myers-Smith,I.H.,Elmendorf,S.C.,Normand,S.,Rüger,N.,Beck,P.S.A.,…Weiher,E.(2018).Plantfunctionaltraitchangeacross a warming tundra biome. Nature, 562, 57–62. https://doi.org/10.1038/s41586-018-0563-7

Blaženović,I.,Kind,T.,Ji,J.,&Fiehn,O.(2018).Softwaretoolsandap-proachesforcompoundidentificationofLC-MS/MSdatainmetabo-lomics. Metabolites,8,31.https://doi.org/10.3390/metabo8020031

Blomberg, S. P., Garland, T., Ives, A. R., & Crespi, B. (2003). Testingfor phylogenetic signal in comparative data: Behavioraltraits are more labile. Evolution, 57, 717–745. https://doi.org/10.1554/0014-3820(2003)057[0717:TFPSIC]2.0.CO;2

Blumer, P., & Diemer, M. (1996). The occurrence and consequencesof grasshopper herbivory in an alpine grassland, Swiss CentralAlps. Arctic and Alpine Research, 28, 435–440. https://doi.org/10.1080/00040851.1996.12003196

Bossdorf,O.,Schröder,S.,Prati,D.,&Auge,H.(2004).Palatabilityandtolerance to simulatedherbivory in native and introducedpopula-tionsofAlliaria petiolata (Brassicaceae).American Journal of Botany,91,856–862.https://doi.org/10.3732/ajb.91.6.856

Brizuela,M.A.,Detling,J.K.,&Cid,M.S.(1986).Siliconconcentrationofgrassesgrowinginsiteswithdifferentgrazinghistories.Ecology,67,1098–1101.https://doi.org/10.2307/1939834

Brown, E. S., & Dewhurst, C. F. (1975). The genus Spodoptera (Lepidoptera, Noctuidae) in Africa and the Near East. Bulletin of Entomological Research,65,221–262.https://doi.org/10.1017/S0007485300005939

Callis-Duehl, K., Vittoz, P., Defossez, E., & Rasmann, S. (2017).Community-levelrelaxationofplantdefensesagainstherbivoresathighelevation.Plant Ecology,218,291–304.https://doi.org/10.1007/s11258-016-0688-4

Close,D.C.,&McArthur,C. (2002).Rethinkingtheroleofmanyplantphenolics–Protectionfromphotodamagenotherbivores?Oikos,99,166–172.https://doi.org/10.1034/j.1600-0706.2002.990117.x

Coley, P.D., Bryant, J. P., &Chapin, F. S. (1985). Resource availabilityandplantantiherbivoredefense.Science,230,895–899.https://doi.org/10.1126/science.230.4728.895

Coley,P.D.,Endara,M.-J.,&Kursar,T.A. (2018).Consequencesof in-terspecificvariation indefensesandherbivorehost choice for theecologyandevolutionofInga,aspecioserainforesttree.Oecologia,187,361–376.https://doi.org/10.1007/s00442-018-4080-z

Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N.,Gurvich,D. E.,… Poorter,H. (2003). A handbook of protocols forstandardised and easy measurement of plant functional traitsworldwide. Australian Journal of Botany, 51, 335–380. https://doi.org/10.1071/BT02124

DaSilva,R.R.,Dorrestein,P.C.,&Quinn,R.A.(2015).Illuminatingthedarkmatter inmetabolomics.Proceedings of the National Academy of Sciences of the USA,112,12549–12550.https://doi.org/10.1073/pnas.1516878112

Dabros, A., Fyles, J.W., & Strachan, I. B. (2010). Effects of open-topchambersonphysicalpropertiesofairandsoilatpost-disturbancesitesinnorthwesternQuebec.Plant and Soil,333,203–218.https://doi.org/10.1007/s11104-010-0336-z

Dawes, M. A., Philipson, C. D., Fonti, P., Bebi, P., Hättenschwiler, S.,Hagedorn,F.,&Rixen,C.(2015).SoilwarmingandCO2enrichmentinduce biomass shifts in alpine treeline vegetation.Global Change Biology,21,2005–2021.https://doi.org/10.1111/gcb.12819

Page 15: Plant physical and chemical traits associated with ...

     |  747Journal of EcologyDESCOMBES Et al.

Defossez,E.,Pellissier,L.,&Rasmann,S.(2018).Theunfoldingofplantgrowthform-defencesyndromesalongelevationgradients.Ecology Letters,21,609–618.https://doi.org/10.1111/ele.12926

Delarze,R.,Gonseth,Y.,&Galland,P. (1998).Guide des milieux naturels de Suisse: écologie, menaces, espèces caractéristiques. Delachaux etniestléLausanne.

DeLucia,E.H.,Nabity,P.D.,Zavala,J.A.,&Berenbaum,M.R. (2012).Climatechange:Resettingplant-insectinteractions.Plant Physiology,160,1677–1685.https://doi.org/10.1104/pp.112.204750

Descombes,P.,Kergunteuil,A.,Glauser,G.,Rasmann,S.,&Pellissier,L.(2019).Data from:Plantphysical andchemical traits associated toherbivoryinsituandunderawarmingtreatment.Figshare,https://doi.org/10.6084/m9.figshare.9699131

Descombes, P., Marchon, J., Pradervand, J.-N., Bilat, J., Guisan, A.,Rasmann, S., & Pellissier, L. (2017). Community-level plant pal-atability increases with elevation as insect herbivore abun-dance declines. Journal of Ecology, 105, 142–151. https://doi.org/10.1111/1365-2745.12664

Descombes,P.,Vittoz,P.,Guisan,A.,&Pellissier,L.(2017).Unevenrateofplant turnover alongelevation ingrasslands.Alpine Botany,127,53–63.https://doi.org/10.1007/s00035-016-0173-7

DiCola,V.,Broennimann,O.,Petitpierre,B.,Breiner,F.T.,D'Amen,M.,Randin,C.,…Guisan,A. (2017).ecospat:AnRpackage tosupportspatial analyses andmodeling of species niches and distributions.Ecography,40,774–787.https://doi.org/10.1111/ecog.02671

Doiron,M.,Gauthier,G.,&Lévesque,E. (2014).Effectsofexperimen-talwarmingonnitrogenconcentrationandbiomassofforageplantsforanarcticherbivore.Journal of Ecology,102,508–517.https://doi.org/10.1111/1365-2745.12213

Dray,S.,&Dufour,A.-B.(2007).Theade4package:Implementingthedu-alitydiagramforecologists.Journal of Statistical Software,22,1–20.https://doi.org/10.18637/jss.v022.i04.

Durka,W.,&Michalski, S.G. (2012).Daphne:Adatedphylogenyof alargeEuropeanfloraforphylogeneticallyinformedecologicalanaly-ses. Ecology,93,2297–2297.https://doi.org/10.1890/12-0743.1

Edwards,P.J.,Wratten,S.D.,&Cox,H.(1985).Wound-inducedchangesin the acceptability of tomato to larvae of Spodoptera littoralis: Alaboratorybioassay.Ecological Entomology,10,155–158.https://doi.org/10.1111/j.1365-2311.1985.tb00544.x

Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: Astudy in coevolution. Evolution, 18, 586–608. https://doi.org/10.1111/j.1558-5646.1964.tb01674.x

Evans,S.E.,&Burke,I.C.(2013).Carbonandnitrogendecouplingunderan11-yeardroughtintheshortgrasssteppe.Ecosystems,16,20–33.https://doi.org/10.1007/s10021-012-9593-4

Farmer,E.E.(2014).Leafdefence.Oxford,UK:OUP.Farrell, B.D., &Mitter, C. (1998). The timing of insect/plant diversifi-

cation: Might Tetraopes (Coleoptera: Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved?Biological Journal of the Linnean Society, 63, 553–577. https://doi.org/10.1111/j.1095-8312.1998.tb00329.x

Futuyma,D.J.,&Agrawal,A.A. (2009).Evolutionaryhistoryandspe-cies interactions.Proceedings of the National Academy of Sciences of the USA, 106, 18043–18044. https://doi.org/10.1073/pnas.0910334106

Gaillard,M.D.P.,Glauser,G.,Robert,C.A.M.,&Turlings,T.C.J.(2018).Fine-tuning the ‘plant domestication-reduced defense’ hypothesis:Specialist vs generalist herbivores.New Phytologist,217, 355–366.https://doi.org/10.1111/nph.14757

Gutbrodt,B.,Mody,K.,&Dorn,S.(2011).Droughtchangesplantchemistryandcausescontrastingresponsesinlepidopteranherbivores.Oikos,120,1732–1740.https://doi.org/10.1111/j.1600-0706.2011.19558.x

Hadfield, J.D. (2010).MCMCmethods formulti-responsegeneralizedlinearmixedmodels:TheMCMCglmmRpackage.Journal of Statistical Software,33,1–22.https://doi.org/10.18637/jss.v033.i02

Hadfield,J.D.(2015).MCMCglmm:Coursenotes.Retrievedfromhttps://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf

Hallmark,C.T.,Wilding,L.P.,&Smeck,N.E.(1982).Silicon.InPage,A.L.,Miller,R.H.,&Keeney,D.R.(Eds.),Methods of soil analysis. Part 2. Chemical and microbiological properties (pp.263–273).AgronomyseriesNo9,2ed.Madison:AmericanSocietyofAgronomy.

Hanley,M.E.,Lamont,B.B.,Fairbanks,M.M.,&Rafferty,C.M.(2007).Plant structural traits and their role in anti-herbivore defence.Perspectives in Plant Ecology, Evolution and Systematics,8, 157–178.https://doi.org/10.1016/j.ppees.2007.01.001

Henry,G.H.R.,&Molau,U.(1997).Tundraplantsandclimatechange:TheInternationalTundraExperiment(ITEX).Global Change Biology,3,1–9.https://doi.org/10.1111/j.1365-2486.1997.gcb132.x

Hudson,J.M.G.,Henry,G.H.R.,&Cornwell,W.K. (2011).Tallerandlarger: Shifts in Arctic tundra leaf traits after 16 years of experi-mentalwarming.Global Change Biology,17,1013–1021.https://doi.org/10.1111/j.1365-2486.2010.02294.x

Ibanez, S., Lavorel, S., Puijalon, S., & Moretti, M. (2013). Herbivorymediated by coupling between biomechanical traits of plantsand grasshoppers. Functional Ecology, 27, 479–489. https://doi.org/10.1111/1365-2435.12058

Janz,N.,&Nylin,S.(1998).Butterfliesandplants:Aphylogeneticstudy.Evolution,52, 486–502. https://doi.org/10.1111/j.1558-5646.1998.tb01648.x

Jonasson,S.(1988).Evaluationofthepointinterceptmethodfortheesti-mationofplantbiomass.Oikos,52,101–106.https://www.jstor.org/stable/3565988.https://doi.org/10.2307/3565988

Karban,R.,&Baldwin,I.T.(1997).Induced responses to herbivory.Chicago,IL:TheUniversityofChicagoPress.

Kembel,S.W.,Cowan,P.D.,Helmus,M.R.,Cornwell,W.K.,Morlon,H.,Ackerly,D.D.,…Webb,C.O.(2010).Picante:Rtoolsforintegratingphylogeniesandecology.Bioinformatics,26,1463–1464.https://doi.org/10.1093/bioinformatics/btq166

Kergunteuil,A.,Descombes,P.,Glauser,G.,Pellissier,L.,&Rasmann,S.(2018).Plantphysicalandchemicaldefencevariationalongelevationgradients: A functional trait-based approach.Oecologia,187, 1–11.https://doi.org/10.1007/s00442-018-4162-y

Kessler,A.,&Baldwin,I.T. (2001).Defensivefunctionofherbivore-in-duced plant volatile emissions in nature. Science,291, 2141–2144.https://doi.org/10.1126/science.291.5511.2141

Körner,C.(1999).Alpine plant life: Functional plant ecology of high moun‐tain ecosystems.Berlin,Germany:Springer.

Kuhl,C.,Tautenhahn,R.,Böttcher,C.,Larson,T.R.,&Neumann,S.(2012).CAMERA:Anintegratedstrategyforcompoundspectraextractionand annotation of liquid chromatography/mass spectrometry datasets. Analytical Chemistry, 84, 283–289. https://doi.org/10.1021/ac202450g

Kuhn,M.,&Johnson,K. (2013).Discriminantanalysisandother linearclassificationmodels.InKuhn,M.,&Johnson,K.(Eds.),Applied pre‐dictive modeling(pp.275–328).NewYork,NY:Springer.

Kursar,T.A.,Dexter,K.G.,Lokvam,J.,Pennington,R.T.,Richardson,J.E.,Weber,M.G.,…Coley,P.D.(2009).TheevolutionofantiherbivoredefensesandtheircontributiontospeciescoexistenceinthetropicaltreegenusInga. Proceedings of the National Academy of Sciences of the USA,106,18073–18078.https://doi.org/10.1073/pnas.0904786106

Lemoine,N.P.,Burkepile,D.E.,&Parker,J.D. (2014).Variableeffectsof temperature on insect herbivory. PeerJ, 2, e376. https://doi.org/10.7717/peerj.376

Lemoine, N. P., Drews, W. A., Burkepile, D. E., & Parker, J. D.(2013). Increased temperature alters feeding behavior ofa generalist herbivore. Oikos, 122, 1669–1678. https://doi.org/10.1111/j.1600-0706.2013.00457.x

Loranger,J.,Meyer,S.T.,Shipley,B.,Kattge,J.,Loranger,H.,Roscher,C.,&Weisser,W.W.(2012).Predictinginvertebrateherbivoryfromplant

Page 16: Plant physical and chemical traits associated with ...

748  |    Journal of Ecology DESCOMBES Et al.

traits:Evidencefrom51grasslandspeciesinexperimentalmonocul-tures.Ecology,93,2674–2682.https://doi.org/10.1890/12-0328.1

Marion,G.M.,Henry,G.,Freckman,D.W.,Johnstone,J.,Jones,G.,Jones,M.H.,…Virginia,R.A. (1997).Open-topdesigns formanipulatingfieldtemperatureinhigh-latitudeecosystems.Global Change Biology,3,20–32.https://doi.org/10.1111/j.1365-2486.1997.gcb136.x

Massey,F.P.,Ennos,A.R.,&Hartley,S.E.(2006).Silicaingrassesasadefenceagainst insectherbivores:Contrastingeffectsonfolivoresandaphloemfeeder.Journal of Animal Ecology,75,595–603.https://doi.org/10.1111/j.1365-2656.2006.01082.x

Massey, F. P., & Hartley, S. E. (2009). Physical defences wear youdown: Progressive and irreversible impacts of silica on insectherbivores. Journal of Animal Ecology, 78, 281–291. https://doi.org/10.1111/j.1365-2656.2008.01472.x

Mattson,W.J. (1980).Herbivory in relation toplantnitrogencontent.Annual Review of Ecology and Systematics,11, 119–161. https://doi.org/10.1146/annurev.es.11.110180.001003

Melillo, J.M.,Steudler,P.A.,Aber, J.D.,Newkirk,K., Lux,H.,Bowles,F.P.,…Morrisseau,S. (2002).Soilwarmingandcarbon-cyclefeed-backs to the climate system.Science,298, 2173–2176. https://doi.org/10.1126/science.1074153

Mithöfer, A., & Boland, W. (2012). Plant defense against herbivores:Chemicalaspects.Annual Review of Plant Biology,63,431–450.https://doi.org/10.1146/annurev-arplant-042110-103854

Montgomery,D.C.,&Peck,E.A.(1992).Introduction to Linear Regression Analysis.NewYork,NY:Wiley.

Mueller-Dombois,D.,&Ellenberg,H.(1974).Aims and methods of vegeta‐tion ecology.NewYork,NY:Wiley.Retrievedfromhttp://www.worldcat.org/oclc/867959

Naimi, B. (2015).Uncertainty analysis for species distributionmodels.R package version 1.1-15.https://cran.r-project.org/web/packages/usdm/index

O’Connor,M.I.(2009).Warmingstrengthensanherbivore–plantinter-action.Ecology,90,388–398.https://doi.org/10.1890/08-0034.1

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M. H. H.,Oksanen, M. J., & Suggests, M. (2007). The vegan package.CommunityEcologyPackage,10,631–637.

Peeters,P.J.,Sanson,G.,&Read,J.(2007).Leafbiomechanicalproper-tiesandthedensitiesofherbivorousinsectguilds.Functional Ecology,21,246–255.https://doi.org/10.1111/j.1365-2435.2006.01223.x

Pellissier, L., Descombes, P., Hagen, O., Chalmandrier, L., Glauser, G.,Kergunteuil, A., … Rasmann, S. (2018). Growth-competition-herbi-voreresistancetrade-offsandtheresponsesofalpineplantcommu-nitiestoclimatechange.Functional Ecology,32,1693–1703.https://doi.org/10.1111/1365-2435.13075

Pellissier,L.,Fiedler,K.,Ndribe,C.,Dubuis,A.,Pradervand,J.-N.,Guisan,A.,&Rasmann,S. (2012).Shifts inspeciesrichness,herbivorespe-cialization, and plant resistance along elevation gradients. Ecology and Evolution,2,1818–1825.https://doi.org/10.1002/ece3.296

Pellissier,L.,Moreira,X.,Danner,H.,Serrano,M.,Salamin,N.,vanDam,N.M.,&Rasmann,S.(2016).Thesimultaneousinducibilityofphyto-chemicalsrelatedtoplantdirectandindirectdefencesagainstherbi-voresisstrongeratlowelevation.Journal of Ecology,104,1116–1125.https://doi.org/10.1111/1365-2745.12580

Pellissier, L., Ndiribe, C., Dubuis, A., Pradervand, J.-N., Salamin, N.,Guisan,A.,&Rasmann,S.(2013).Turnoverofplantlineagesshapesherbivore phylogenetic beta diversity along ecological gradients.Ecology Letters,16,600–608.https://doi.org/10.1111/ele.12083

Pellissier,L.,&Rasmann,S.(2018).Thefunctionaldecouplingofprocessesinalpineecosystemsunderclimatechange.Current Opinion in Insect Science,29,126–132.https://doi.org/10.1016/j.cois.2018.07.005

Pellissier, L., Roger, A., Bilat, J., & Rasmann, S. (2014). High elevationPlantagolanceolataplantsarelessresistanttoherbivorythantheirlowelevationconspecifics:Isitjusttemperature?Ecography,37,950–959.https://doi.org/10.1111/ecog.00833

Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H.,Jaureguiberry,P.,…Cornelissen,J.H.C.(2013).Newhandbookforstandardised measurement of plant functional traits worldwide.Australian Journal of Botany, 61, 167–234. https://doi.org/10.1071/BT12225

Pérez-Harguindeguy,N.,Díaz, S.,Vendramini, F., Cornelissen, J.H.C.,Gurvich,D. E., & Cabido,M. (2003). Leaf traits and herbivore se-lectioninthefieldandincafeteriaexperiments.Austral Ecology,28,642–650.https://doi.org/10.1046/j.1442-9993.2003.01321.x

Pinheiro, J.,Bates,D.,DebRoy,S.,&Sarkar,D. (2014).nlme: linear and nonlinear mixed effects models.Rpackageversion3.1-117.Retrievedfromhttp://CRAN.R-project.org/package=nlme

Poorter,H.,Fiorani,F.,Pieruschka,R.,Wojciechowski,T.,vanderPutten,W.H., Kleyer,M.,…Postma, J. (2016). Pampered inside, pesteredoutside?Differencesandsimilaritiesbetweenplantsgrowingincon-trolled conditions and in the field.New Phytologist,212, 838–855.https://doi.org/10.1111/nph.14243

Quinn,G.P.,&Keough,M.J.(2002).Experimental designs and data analy‐sis for biologists.Cambridge,UK:CambridgeUniversityPress.

R Development Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for StatisticalComputing.

Rasmann,S.,&Agrawal,A.A.(2011).Evolutionofspecialization:Aphy-logeneticstudyofhostrangeintheredmilkweedbeetle(Tetraopes tetraophthalmus).The American Naturalist,177,728–737.https://doi.org/10.1086/659948

Rhoades,D.F.(1979).Evolutionofplantchemicaldefenceagainstherbi-vores. In Herbivores: their interaction with secondary plant metabolites (pp.3–54).NewYork,NY/London,UK:AcademicPress.

Richards,L.A.,Dyer,L.A.,Forister,M.L.,Smilanich,A.M.,Dodson,C.D.,Leonard,M.D.,&Jeffrey,C.S. (2015).Phytochemicaldiversitydrivesplant–insectcommunitydiversity.Proceedings of the National Academy of Sciences of the United States of America, 112, 10973–10978.https://doi.org/10.1073/pnas.1504977112

Richardson,S.J.,Press,M.C.,Parsons,A.N.,&Hartley,S.E.(2002).Howdonutrientsandwarmingimpactonplantcommunitiesandtheirinsectherbivores?A9-yearstudyfromasub-Arcticheath.Journal of Ecology,90,544–556.https://doi.org/10.1046/j.1365-2745.2002.00681.x

Rønsted,N.,Symonds,M.R.E.,Birkholm,T.,Christensen,S.,Meerow,A.W.,Molander,M.,… Jäger,A.K. (2012).Canphylogenypredictchemicaldiversityandpotentialmedicinalactivityofplants?Acasestudyofamaryllidaceae.BMC Evolutionary Biology,12,182.https://doi.org/10.1186/1471-2148-12-182

Ruhnke, H., Schädler,M., Klotz, S., Matthies, D., & Brandl, R. (2009).Variabilityinleaftraits,insectherbivoryandherbivoreperformancewithin and among individuals of four broad-leaved tree species.Basic and Applied Ecology, 10, 726–736. https://doi.org/10.1016/j.baae.2009.06.006

Salazar,D., Jaramillo,M.A.,&Marquis, R. J. (2016). Chemical similar-ityandlocalcommunityassemblyinthespeciesrichtropicalgenusPiper. Ecology,97,3176–3183.https://doi.org/10.1002/ecy.1536

Salazar,D.,Lokvam,J.,Mesones,I.,Vásquez,M.P.,Ayarza,J.Z.,De,P.V.,&Fine,P.V.A.(2018).Originandmaintenanceofchemicaldiversityinaspecies-richtropicaltreelineage.Nature Ecology & Evolution,2,983–990.https://doi.org/10.1038/s41559-018-0552-0

Sanson, G., Read, J., Aranwela, N., Clissold, F., & Peeters, P. (2001).Measurementofleafbiomechanicalpropertiesinstudiesofherbiv-ory: Opportunities, problems and procedures. Austral Ecology, 26,535–546.https://doi.org/10.1046/j.1442-9993.2001.01154.x

Schädler,M.,Roeder,M.,Brandl,R.,&Matthies,D. (2007). InteractingeffectsofelevatedCO2,nutrientavailabilityandplantspeciesonageneralist invertebrateherbivore.Global Change Biology,13,1005–1015.https://doi.org/10.1111/j.1365-2486.2007.01319.x

Schoonhoven,L.M.,vanLoon,J.J.A.,&Dicke,M.(2005). Insect‐plant biology.Oxford,UK:OxfordUniversityPressonDemand.

Page 17: Plant physical and chemical traits associated with ...

     |  749Journal of EcologyDESCOMBES Et al.

Stamp,N.E.,&Yang,Y.(1996).Responseofinsectherbivorestomultipleallelochemicalsunderdifferentthermalregimes.Ecology,77,1088–1102.https://doi.org/10.2307/2265578

Tholl, D. (2015). Biosynthesis and biological functions of terpenoidsin plants. In Schrader, J., & Bohlmann, J. (Eds.), Biotechnology of isoprenoids (pp. 63–106). Advances in Biochemical Engineering/Biotechnology,vol148.Cham,Switzerland:Springer.

Tibshirani, R. (1996).Regression shrinkage and selection via the lasso.Journal of the Royal Statistical Society: Series B (Methodological),58,267–288.https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Totland,Ø.(1999).Effectsoftemperatureonperformanceandpheno-typic selectiononplant traits inalpineRanunculus acris. Oecologia,120,242–251.https://doi.org/10.1007/s004420050854

Urquiaga,I.,&Leighton,F.(2000).Plantpolyphenolantioxidantsandoxi-dativestress.Biological Research,33,55–64.https://doi.org/10.4067/S0716-97602000000200004

vanderRest,B.,Boisson,A.-M.,Gout,E.,Bligny,R.,&Douce,R.(2002).Glycerophosphocholinemetabolisminhigherplantcells.Evidenceofanewglyceryl-phosphodiesterphosphodiesterase.Plant Physiology,130,244–255.https://doi.org/10.1104/pp.003392

Veteli, T. O., Kuokkanen, K., Julkunen-Tiitto, R., Roininen, H., &Tahvanainen,J.(2002).EffectsofelevatedCO2andtemperatureonplantgrowthandherbivoredefensivechemistry.Global Change Biology,8,1240–1252.https://doi.org/10.1046/j.1365-2486.2002.00553.x

Villar, R., & Merino, J. (2001). Comparison of leaf constructioncosts in woody species with differing leaf life-spans in contrast-ing ecosystems. New Phytologist, 151, 213–226. https://doi.org/10.1046/j.1469-8137.2001.00147.x

Wink,M.(2003).Evolutionofsecondarymetabolitesfromanecologicalandmolecular phylogenetic perspective. Phytochemistry, 64, 3–19.https://doi.org/10.1016/S0031-9422(03)00300-5

Woods,E.C.,Hastings,A.P.,Turley,N.E.,Heard,S.B.,&Agrawal,A.A. (2012).Adaptivegeographical clines in thegrowthanddefenseof a native plant. Ecological Monographs, 82, 149–168. https://doi.org/10.1890/11-1446.1

Woodward, F. I. (1983). The significance of interspecific differencesin specific leaf area to the growthof selectedherbaceous speciesfromdifferent altitudes.New Phytologist,95, 313–323. https://doi.org/10.1111/j.1469-8137.1983.tb03498.x

Zhou, D., Huang, X. F., Guo, J., dos-Santos, M. L., & Vivanco, J. M.(2018). Trichoderma gamsii affected herbivore feeding behaviouron Arabidopsis thalianabymodifyingtheleafmetabolomeandphy-tohormones. Microbial Biotechnology, 11, 1195–1206. https://doi.org/10.1111/1751-7915.13310

Zuur,A.F.,Ieno,E.N.,&Elphick,C.S.(2010).Aprotocolfordataexplorationtoavoidcommonstatisticalproblems.Methods in Ecology and Evolution,1,3–14.https://doi.org/10.1111/j.2041-210X.2009.00001.x

Zvereva, E. L.,&Kozlov,M.V. (2006). Consequences of simultaneouselevationofcarbondioxideandtemperatureforplant–herbivorein-teractions:Ametaanalysis.Global Change Biology,12,27–41.https://doi.org/10.1111/j.1365-2486.2005.01086.x

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:DescombesP,KergunteuilA,GlauserG,RasmannS,PellissierL.Plantphysicalandchemicaltraitsassociatedwithherbivoryinsituandunderawarmingtreatment.J Ecol. 2020;108:733–749. https://doi.org/10.1111/1365-2745.13286