Plankton & Pelagic Food Webs

47
The Marine Food Webs The Marine Food Webs 1) What regulates a planktonic food web? I) Light II) Nutrients III)Importance of the Type of Nutrient IV) Size and Export V) Food Web Structure 2) Examples of what controls a food web I) El Nino II) Iron Ex r Schofield ([email protected])

Transcript of Plankton & Pelagic Food Webs

Page 1: Plankton & Pelagic Food Webs

The Marine Food WebsThe Marine Food Webs1) What regulates a planktonic food web?

I) LightII) NutrientsIII) Importance of the Type of NutrientIV) Size and ExportV) Food Web Structure

2) Examples of what controls a food webI) El NinoII) Iron Ex

Oscar Schofield ([email protected])

Page 2: Plankton & Pelagic Food Webs

autotrophsautotrophs

omnivores omnivores

carnivorescarnivores

Page 3: Plankton & Pelagic Food Webs

Pyramimonas parkeae

Dunaliella tertiolecta

Gephyrocapsa oceanica

Ceratium sp.

Thoracosphaera heimii

Ditylum brightwellii Diatom sp.

Page 4: Plankton & Pelagic Food Webs

I) Light

Z (meters)

Irradiance Intensity

Lambert Beers LawEd2 = Ed1e-z*Kd

Ed2

Ed1z1

z2

z

1) Because of Lambert Beers Lawthe ocean is dim

2) Plant life is dependent on light

3) The 1% light levelfor the majority of the is 100 m or less?

Page 5: Plankton & Pelagic Food Webs

202 204 206 208 210 212 214

02468

1012

Julian Day

Dep

th (m

)

0 633 1267 1900

202 204 206 208 210 212 214

02468

1012

Julian Day

Dep

th (m

)

0 633 1267 1900

μmol

pho

tons

(m-2 s

-1)

Dep

th (m

)

Calendar Day

μmol photons m-2 s-1

202 204 206 208 210 212 214

02468

1012

Julian Day

Dep

th (m

)

0 500 1000 1500

500

1000

1500

2000

0

Calendar Day

202 204 206 208 210 212 214

02468

1012

Julian Day

Dep

th (m

)

0 633 1267 1900 Oliver et al.JGR 2004

Page 6: Plankton & Pelagic Food Webs

0

2

4

6

8

10

0.1 1 10 100 1000

Irradiance (mol photons m-2 s-1)

Prod

uctiv

ity (m

g C

mg

Chl

a-2 h

-1)

Pmax

Ik = Pmax/Respiration

Page 7: Plankton & Pelagic Food Webs

Irradiance IntensityTemperature

time

PP Ed

Irradiance IntensityTemperature

Z (meters)

Page 8: Plankton & Pelagic Food Webs

Z(meters)

net primaryproduction

net photosynthesis

phytoplanktonrespiration

communityrespiration

euphotic zone

Critical depth NPP = Rc

Note these are integratedover the water column.

Page 9: Plankton & Pelagic Food Webs

CHL a

>3

0

mg m-3

UML

Low wind High wind

Page 10: Plankton & Pelagic Food Webs

IrradianceIrradiance

PhytoplanktonPhytoplankton

Physical mixing processes

Nutrients

Page 11: Plankton & Pelagic Food Webs

1993 1994Dec JanSept Oct Nov

0

50

100

Dep

th (m

)

0

50

100

Dep

th (m

)

0

50

100

Dep

th (m

)

0

50

100D

epth

(m)

NO3- (

M)

Chl a

(mg

m-2)

PO43-

(M

) Si

(OH)

4 (M

)

0

3

10

45

0.8

2.5

15

80

Biomass and NutrientsSta E (1993-1994)

Page 12: Plankton & Pelagic Food Webs

Nutrient concentration (can be nitrogen, phosphorus)

Nut

rient

Upt

ake Vmax

Ks

NO3 NO3

NO3

NO3

NO3

NO3

Austin Powers Fat Bastard Model System, eats fast when a lot available, but sloppy & alot ends on his shirt not in his belly

Miss Manner Model System, eats slow and efficiently, everything ends up in her belly

Page 13: Plankton & Pelagic Food Webs

0

2

4

6

8

10

12

diatoms coccos dinos greens

KsNO3-

KsN

O3-

(uM

)

0

0.2

0.4

0.6

0.8

1

diatoms coccos dinos greens

Vmax NO3/C

m

ol N

/m

olC

/day

Nutrient Uptake Varies with Phytoplankton SpeciesNutrient Uptake Varies with Phytoplankton Species

Page 14: Plankton & Pelagic Food Webs

Different Strategies of Nutrient UtilizationDifferent Strategies of Nutrient Utilization

Diatoms

•High Vm •High Ks

Coccolithophores

•Low Vm •Low Ks

High or fluctuating nutrientsHigh mixing, upwellingLow average irradiance, light fluctuationsHigh turbulence

Chronically oligotrophicStratified conditionsHigh average irradiance Low turbulence

Page 15: Plankton & Pelagic Food Webs
Page 16: Plankton & Pelagic Food Webs

Cullen et al. 2003Cullen et al. 2003

Page 17: Plankton & Pelagic Food Webs

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5

Total Chlorophyll (ug/L)

Size

Nutrients are low Nutrients are high

n = 6695

Remember small cells, higher surface to volume ratioRemember small cells, higher surface to volume ratio

Page 18: Plankton & Pelagic Food Webs

Various phytoplankton concentrations of earth's oceans.Various phytoplankton concentrations of earth's oceans.

• Purple and blue areas - unproductive regions (open ocean areas)

• Red and orange areas - productive regions (coastal areas, small basin)

Page 19: Plankton & Pelagic Food Webs

180oW 135oW 90oW 45oW 0 45oE 90oE 135oE 180oE90oN

60oN

30oN

0o

30oS

60oS

90oS

More recently satellite algorithms have been developed More recently satellite algorithms have been developed for some phytoplankton taxa detectionfor some phytoplankton taxa detection

Iglesias-Rodriguez et al. 2000

Page 20: Plankton & Pelagic Food Webs

Surface chlorophyll from CZCS

Vertical distribution of Chl from 21,000 profiles

Mixed layer depth from NOAA-NODC archive

Surface nutrients

Brunt-Vaisala

57 provinces on the basis of:

Longhurst 1995

Page 21: Plankton & Pelagic Food Webs

IrradianceIrradiance

ZooplanktonZooplankton

Higher Trophic LevelsHigher Trophic Levels

PhytoplanktonPhytoplankton

Physical mixing processes

Nutrients

Page 22: Plankton & Pelagic Food Webs

GRAZERS in the plankton sea

soft-bodies, asexual, consumessoft-bodies, asexual, consumesall particle sizes, bloom & bust all particle sizes, bloom & bust

hard-bodies, sexual, consume hard-bodies, sexual, consume specific particle size ranges, specific particle size ranges, roving bandsroving bands

Page 23: Plankton & Pelagic Food Webs
Page 24: Plankton & Pelagic Food Webs

phytoplankton

zooplankton

fish

1000

100

10

0.1

0.1 This assumes atrophic transfer

efficiency of 10%

Page 25: Plankton & Pelagic Food Webs

Upwelling zones (2 trophic levels)Phytoplankton Anchovies (20 % transfer efficiency)

Coastal Regions (4 trophic levels)Phytoplankton herbivorous zooplank.carnivorous zooplank.fish

(15% efficiency)

Open ocean (5 trophic levels)Phytoplanktonherb. Zooplank.carniv. Zooplank.carniv. Fishtuna(10% efficiency)

Page 26: Plankton & Pelagic Food Webs

Area Plant prod. Efficiency Trophic levels Est. fish

Open 39*109 10% 5 4*106

Ocean

Coastal 8.6*109 15% 4 29*106

Ocean

upwelling 0.23*109 20% 2 46*106

(metric tonsper year)

(metric tonscarbon per year)

Page 27: Plankton & Pelagic Food Webs

IrradianceIrradiance

SinkageSinkage & & SenescenceSenescence

Particle DynamicsParticle Dynamics

Particle Flux (Carbon flux)Particle Flux (Carbon flux)

ZooplanktonZooplankton

Higher Trophic LevelsHigher Trophic Levels

PhytoplanktonPhytoplankton

Physical mixing processes

Nutrients

Page 28: Plankton & Pelagic Food Webs

Sequestration of Atmospheric CarbonSequestration of Atmospheric Carbon

Chisholm, 2000

Page 29: Plankton & Pelagic Food Webs

MARINE SNOW

What is it?What is it?

How is formed? (particle-particle, sticky, virus)How is formed? (particle-particle, sticky, virus)

Why is it important?Why is it important?

Page 30: Plankton & Pelagic Food Webs

What is Marine Snow?

Page 31: Plankton & Pelagic Food Webs

Hey look!Here comes a

Diatom!Diatom

Snow FormationWhile photosynthesizing DOM is exuded These molecules encounter one

another in the aqueous environment

Through cation binding the molecules come together forming larger particles

The particles are extremely “sticky” and easily adhere to each other as well as other particles in the water

Page 32: Plankton & Pelagic Food Webs

Marine snow particles fromMarine snow particles fromoff New Jerseyoff New Jersey

Page 33: Plankton & Pelagic Food Webs
Page 34: Plankton & Pelagic Food Webs

Irradiance

Elemental Flux

CO2N2

Fe

CarbonN2Fe

rivers

Wind

Continental shelf

Cont

inen

tal s

lope

S

Mixing processes

New Nutrients

Phytoplankton

Sinkage & Senescence

Particle Dynamics

Zooplankton

Higher Trophic LevelsM

ixed

Lay

er D

epth Regenerated

Nutrients

Water column depthM

ixed

Lay

er

Dep

th

Page 35: Plankton & Pelagic Food Webs

A Natural Experiment: Are nutrients from the deepocean driving the primary productivity?

El Nino

Page 36: Plankton & Pelagic Food Webs

Top: “normal” forcing condition

Bottom: El Niño forcing condition

Open University, 1998

Normal

El Nino

Page 37: Plankton & Pelagic Food Webs

Top: normal Bottom: El Niño condition

Open University, 1998

Normal

El Nino

Page 38: Plankton & Pelagic Food Webs

JPL

El Nino

La Nina

Notecoastal effect

Page 39: Plankton & Pelagic Food Webs
Page 40: Plankton & Pelagic Food Webs

HNLC

Page 41: Plankton & Pelagic Food Webs

So lets do an experiment: What limits productivity in a high So lets do an experiment: What limits productivity in a high nitrogen/phosphorus ocean? Is it iron limited?nitrogen/phosphorus ocean? Is it iron limited?

Go to a HNLC Ocean (Antarctic), going means sending a graduate Go to a HNLC Ocean (Antarctic), going means sending a graduate student, dump iron in the ocean and watch the phytoplankton respond.student, dump iron in the ocean and watch the phytoplankton respond.

Page 42: Plankton & Pelagic Food Webs

Iron Patch Health

Red = HealthyRed = HealthyBlue = Not happyBlue = Not happy

Page 43: Plankton & Pelagic Food Webs

GLOBALGLOBAL

Page 44: Plankton & Pelagic Food Webs
Page 45: Plankton & Pelagic Food Webs

Cell size effects the trophic transfer of matter Cell size effects the trophic transfer of matter and energy in the food weband energy in the food web

• Cullen et al.

(Cullen et al., 2002)

Page 46: Plankton & Pelagic Food Webs

(from N.Gruber)

(Takahashi et al 1995)

Net CO2 flux

Example: variability in carbon uptake

Page 47: Plankton & Pelagic Food Webs

MARTIN GLACIAL & INTERGLACIAL