Plain Strainn

download Plain Strainn

of 73

Transcript of Plain Strainn

  • 8/17/2019 Plain Strainn

    1/73

     Plain Strain

    We will derive the transformation equations that relate the strains in

    inclined directions to the strain in the reference directions.

    State of plain strain - the only deformations are those in the xy plane,

    i.e. it has only three strain components ε x , ε y and γ xy.

    Plain stress is analogous to plane stress, but under ordinary conditions

    they do not occur simultaneously, except when σ x = -σ y and when ν = 0

    Strain components ε x , εy, and γxy in the xy plane (plane strain).

  • 8/17/2019 Plain Strainn

    2/73

    Comparison of plane stress and plane strain.

  • 8/17/2019 Plain Strainn

    3/73

    Transformation Equations for Plain Strain

    Assume that the strain ε x , ε y and γ xy associated with the xy plane areknown. We need to determine the normal and shear strains (ε x1 and

    γ x1y1) associated with the x 1 y1 axis. ε y1 can be obtained from the

    equation of ε x1 by substituting θ + 90 for θ.

  • 8/17/2019 Plain Strainn

    4/73

    For an element of size δ x  δ y

    In the x direction, the strain ε x 

     produces an elongation ε x  δ x .The diagonal increases in length by

    ε x  δ x cos θ.

    In the y direction, the strain ε y produces an

    elongation ε y δ y. The diagonal increases in

    length by ε y δ y sin θ.

    The shear strain γ xy produces a distortion.

    The upper face moves γ xy δ y. This

    deformation results in an increase of the

    diagonal equal to: γ xy δ y cos θ

  • 8/17/2019 Plain Strainn

    5/73

    The total increaseΔd

    of the diagonal is the sum of the preceding three

    expressions, thus:

    Δ

    d =

    ε

    x

    δ

    x cos

    θ

     

    ε

    y

    δ

    y sin

    θ γ

    xy

    δ

    y cos

    θ

    The normal strainε

    x1

    in thex

    1

    direction is equal to the increase in

    length divided by the initial length δs of the diagonal.

    ε

    x1

    = Δd / ds = ε

    x

    cos θ δx/δs ε

    y

    sin θ δy/δs   γ

    xy

    cos θ δy/δs

    Observing thatδx/δs = cos θ

    andδy/δs = sin θ

    θ θ γ 

    θ ε θ ε ε 

    θ θ γ θ ε θ ε ε 

    cossin22

    sincos

    cossinsincos

    22

    1

    22

    1

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ ++=++=

     XY Y  X  X 

     XY Y  X  X 

  • 8/17/2019 Plain Strainn

    6/73

    γ

    Shear Strain γ x1y1 associated with x 1 y1 axes.

    This strain is equal to the decrease in angle between lines in the material

    that were initially along the x 1 and y1 axes. Oa and Ob were the linesinitially along the x 1 and y1 axis respectively. The deformation caused

     by the strains ε x , ε y and γ xy caused the Oa and Ob lines to rotate and

    angle α and β from the x 1 and y1 axis respectively. The shear strain γ x1y1is the decrease in angle between the two lines that originally were at

    right angles, therefore, γ x1y1 = α β.

  • 8/17/2019 Plain Strainn

    7/73

    The angle can be found from

    the deformations produced by

    the strains ε x  , ε y and γ xy . Thestrains ε x and  γ xy produce a cw-

    rotation, while the strain ε y

     produces a ccw-rotation.

    Let us denote the angle of rotation produced by ε x  , ε y and γ xy as α1 ,

    α2 and α3 respectively. The angle α1 is equal to the distance ε x  δ x 

    sinθ divided by the length δs of the diagonal:α1 = ε x sinθ dx/ds   α2 = ε y cosθ dy/ds   α3 = γ xy sinθ dy/ds

    Observing that dx/ds = cos θ and dy/ds = sin θ. The resulting ccw-

    rotation of the diagonal is

    α

    = - α1 + α2 - α3 = - ( ε x  –  ε y ) sinθ cosθ - γ xy sin

  • 8/17/2019 Plain Strainn

    8/73

    The rotation of line Ob which initially was at at 90o to the line Oa can

     be found by substituting θ +90 for θ in the expression for α.

    Because βis positive when clockwise. Thus

    β = ( ε x  –  ε y ) sin( θ + 90) cos( θ + 90) + γ xy sin2( θ +90)

    β = - ( ε x  –  ε y ) sinθ cosθ + γ xy cos2

    θ

    Adding α and β gives the shear strain γ x1y1

    γ

    x1y1 = + β = - 2(εx – εy) sinθ cosθ + γxy (cos2

    θ - sin2

    θ)To put the equation in a more useful form:

    ( )θ θ γ 

    θ θ ε θ θ ε 

    γ  2211sincos2cossincossin2 −++−=

      XY Y  X 

    Y  X 

    θ θ γ 

    θ ε θ ε ε  cossin22

    sincos 221   ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ ++=   XY Y  X  X 

    θ θ γ θ ε θ ε ε  cossin22

    cossin 221   ⎟ ⎠ ⎞⎜

    ⎝ ⎛ −+=   XY Y  X Y 

  • 8/17/2019 Plain Strainn

    9/73

    ( )⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    ⎥⎥

    ⎢⎢

    −−−=

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    2sincoscossincossincossin2cossin

    cossin2sincos

    2

    22

    22

    22

    11

    1

    1

     XY 

     X 

    Y  X 

     X 

    γ ε 

    ε 

    θ θ θ θ θ θ θ θ θ θ 

    θ θ θ θ 

    γ ε 

    ε 

    [ ]

    [ ]

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ×=

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    ×=

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    22

    22

    11

    1

    1

    1

    11

    1

    1

    Y  X 

     X 

     XY 

     X 

     XY 

     X 

    Y  X 

     X 

    γ 

    ε 

    ε 

    γ 

    ε 

    ε 

    γ 

    ε 

    ε 

    γ 

    ε 

    ε [ ]

    ( )⎥⎥⎥

    ⎢⎢⎢

    −−

    −=

    θ θ θ θ θ θ 

    θ θ θ θ 

    θ θ θ θ 

    22

    22

    22

    sincoscossincossin

    cossin2cossin

    cossin2sincos

    [ ]   Tensor Strain

     zz  yz  xz 

     zy yy xy

     zx yx xx

     _ 

    21

    21

    2

    1

    2

    12

    1

    2

    1

    =

    ⎥⎥

    ⎥⎥⎥⎥

    ⎢⎢

    ⎢⎢⎢⎢

    =

    ε γ γ 

    γ ε γ 

    γ γ ε 

    ε 

  • 8/17/2019 Plain Strainn

    10/73

    Transformation Equations for Plain Strain

    Using known trigonometric identities, the transformation equations

    for plain strain becomes:

    These equations are counterpart of the equations for plane stresswhere ε x1 , ε x  , γ x1y1 and γ xy correspond to σ x1 , σ x  , τ x1y1 and τ xyrespectively. There are also counterparts for principal stress and

    Mohr’s circle.ε

     x1 + ε y1 = ε x + ε y

    ( ) ( )

    ( )θ 

    γ θ 

    ε ε γ 

    θ γ 

    θ ε ε ε ε 

    ε 

    2cos2

    2sin22

    2sin

    2

    2cos

    2211

    1

     XY Y  X Y  X 

     XY Y  X Y  X  X 

    +−

    −=

    +−

    ++

    =

  • 8/17/2019 Plain Strainn

    11/73

    Principal Strains

    The angle for the principalstrains is

    The value for the principalstrains are

    Y  X 

     XY  P 

    ε ε 

    γ θ 

    =2tan

    ( )

    ( ) 222

    22

    1

    222

    222

     ⎠

     ⎞⎜

    ⎝ 

    ⎛ +⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛    −−

    +=

     ⎠

     ⎞⎜

    ⎝ 

    ⎛ +⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛    −+

    +=

     XY Y  X Y  X 

     XY Y  X Y  X 

    γ ε ε ε ε ε 

    γ ε ε ε ε ε 

    Maximum Shear

    The maximum shear

    strains in the xy planeare associated with

    axes at 45o to the

    directions of the principal strains:

    ( )

    ( )22

    or222

    21

    21

    22

    ε ε γ 

    ε ε γ γ ε ε γ 

    =

    −=⎟ ⎠ ⎞⎜

    ⎝ ⎛ +⎟

     ⎠ ⎞⎜

    ⎝ ⎛    −+=

     MAX 

     MAX  XY Y  X  MAX 

  • 8/17/2019 Plain Strainn

    12/73

    Mohr’s Circle

    for Plane Strain

  • 8/17/2019 Plain Strainn

    13/73

    Example

    An element of material in plane

    strain undergoes the followingstrains: ε x =340x10

    -6 

    ε y=110x10-6 

    γ

     xy=180x10-6 

    Determine the following: (a)

    the strains of an element

    oriented at an angle θ = 30o

    ;(b) the principal strains and (c)

    the maximum shear strains.

    ( ) ( )

    ( )θ 

    γ θ 

    ε ε γ 

    θ γ 

    θ ε ε ε ε 

    ε 

    2cos2

    2sin22

    2sin22cos22

    11

    1

     XY Y  X Y  X 

     XY Y  X Y  X  X 

    +−

    −=

    +−

    ++

    =Solution

  • 8/17/2019 Plain Strainn

    14/73

    Then

    εx1 = 225x10-6 + (115x10-6) cos 60o + (90x10-6) sin 60o = 360x10-6

    ½ γx1y1 = - (115x10-6) (sin 60o ) + ( 90x10-6)(cos 60o) = - 55x10-6

    Therefore γx1y1 = - 110x10-6

    The strain εy1 can be obtained from the equation εx1 + εy1 = εx+ εyεy1 = (340 + 110 -360)10-6 = 90x10-6

    ( )

    ( )22

    2

    22

    1

    222

    222

    ⎟ ⎠ ⎞⎜

    ⎝ ⎛ +⎟

     ⎠ ⎞⎜

    ⎝ ⎛    −−+=

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ +⎟

     ⎠

     ⎞⎜⎝ 

    ⎛    −+

    +=

     XY Y  X Y  X 

     XY Y  X Y  X 

    γ ε ε ε ε ε 

    γ ε ε ε ε ε 

    (b) Principal Strains

    The principal strains are readily

    determine from the following equations:

    ε1 = 370x10-6

    ε2 = 80x10-6

  • 8/17/2019 Plain Strainn

    15/73

    (c) Maximum Shear Strain

    The maximum shear strain is calculated from the equation:

    ½ γmax = SQR[((εx –  εy)/2)2 + ( ½ γxy)2] or    γmax = (ε1 –  ε2 )Then γmax = 290x10-6

    The normal strains of this element is εaver = ½ (εx + εy) = 225x10-6

  • 8/17/2019 Plain Strainn

    16/73

    For 3-D problems

    [ ]

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    =

     z  zy zx

     yz  y yx

     xz  xy x

    ε γ γ 

    γ ε γ 

    γ γ ε 

    ε 

    2

    1

    2

    12

    1

    2

    12

    1

    2

    1Which is a symmetrical matrix. As in the

    case of stresses:

    0

    21

    21

    2

    1

    2

    12

    1

    2

    1

    0

    0

    0

    2

    1

    2

    121

    21

    2

    1

    2

    1

    =

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    ε ε γ γ 

    γ ε ε γ 

    γ γ ε ε 

    ε ε γ γ 

    γ ε ε γ 

    γ γ ε ε 

     z  zy zx

     yz  y yx

     xz  xy x

     z  zy zx

     yz  y yx

     xz  xy x

    m

    321   ε ε ε    〉〉

  • 8/17/2019 Plain Strainn

    17/73

  • 8/17/2019 Plain Strainn

    18/73

    Dilatation (Volume strain)

    Under pressure: the volume will change

     p

     p p

     p

    V-ΔV z  y x

    V ε ε ε    ++=

    Δ=Δ

    222

    3

    222

    2

    1

    32

    2

    1

    3

    2222222

    222

    0

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ ⋅−⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ ⋅−⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ ⋅−⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ ⋅⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ ⋅⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ ⋅+⋅⋅=

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ −⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ −⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ −⋅+⋅+⋅=

    ++=

    =−⋅+⋅−

     xy

     z  xz 

     y

     yz 

     x

     yz  xz  xy

     z  y x

     yz  xz  xy

     z  x z  y y x

     z  y x

     I  I  I 

    γ ε 

    γ ε 

    γ ε 

    γ γ γ ε ε ε 

    γ γ γ ε ε ε ε ε ε 

    ε ε ε 

    ε ε ε 

    S i D i εεε ++Δ

  • 8/17/2019 Plain Strainn

    19/73

    Strain Deviator

    33

     z  y x   ε ε ε    ++=Δ

    Mean strain

    It produces a volume change (not a shape change)

    [ ]

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    Δ−

    Δ−

    Δ−

    =

    3

    1

    2

    1

    2

    12

    1

    3

    1

    2

    12

    1

    2

    1

    3

    1

     z  zy zx

     yz  y yx

     xz  xy x

     D

    ε γ γ 

    γ ε γ 

    γ γ ε 

    ε 

    [ ]

    Strain Deviator Matrix

    ⎥⎥

    ⎥⎥⎥⎥

    ⎢⎢

    ⎢⎢⎢⎢

    Δ−

    Δ−

    Δ−

    =

    3100

    03

    10

    003

    1

    3

    2

    1

    ε 

    ε 

    ε 

    ε  D

  • 8/17/2019 Plain Strainn

    20/73

    Application : Strain Gauge and Strain Rosette

  • 8/17/2019 Plain Strainn

    21/73

    (Hooke’s Law)When strains are small, most of materials are

    linear elastic.Tensile:

      σ Ε ε

    Shear:   τ= G γ

    Poisson’s ratio

    Nominal lateral strain(transverse strain) z 

     z  z 

    0

    Δ=

     x

     x x

    0

    Δ−=

    Poisson’s ratio: z 

     x

     straintensile

     strainlateral 

    ε

    ε

    ν −=−=

    Relationships between Stress and Strain

  • 8/17/2019 Plain Strainn

    22/73

    Relationships between Stress and Strain

    For isotropic materials

     Elastic Stress-Strain Relationships

    0

    0

    3

    2

    11

    =

    ==

    σ 

    σ 

    ε σ    E 

    Principal Stresses Principal Strains

     E 

     E 

     E 

    13

    12

    11

    σ ν ε 

    σ ν ε 

    σ ε 

    −=

    −=

    =Uniaxial 

    An isotropic material has a stress-strain relationships that areindependent of the orientation of the coordinate system at a point.

    A material is said to be homogenous if the material properties are

    the same at all points in the body

    Uniaxial Stresses

  • 8/17/2019 Plain Strainn

    23/73

    [ ]

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    =

     xy

     zx

     yz 

     z 

     y

     x

    τ 

    τ 

    τ 

    σ σ 

    σ 

    σ 

    [ ]

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    =

     xy

     zx

     yz 

     z 

     y

     x

    γ 

    γ 

    γ ε 

    ε 

    ε 

    ε 

    [ ]

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    =

    0

    0

    0

    0

    0

     xσ 

    σ 

     x x   E ε σ    =

     E  E  E 

     x z 

     x y

     x x

    σ ν ε 

    σ ν ε 

    σ ε    −=−==  

    [ ]

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    =

    0

    0

    0

     z 

     y

     x

    ε 

    ε 

    ε 

    ε  ⎪

    ⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪

    ⎪⎪⎪⎪

    ⎥⎥⎥

    ⎥⎥⎥⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢

    ⎢⎢⎢⎢⎢⎢⎢⎢⎢

    −−

    −−

    −−

    =

    ⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪

    ⎪⎪⎪⎪

    0

    0

    0

    0

    0

    100000

    01

    0000

    001

    000

    0001

    0001

    0001

    0

    0

    0

     x

     z 

     y

     x

    G

    G

    G

     E  E  E 

     E  E  E 

     E  E  E 

    σ 

    υ υ 

    υ υ 

    υ υ 

    ε 

    ε 

    ε 

    Uniaxial Stresses

    Principal Stresses Principal Strains

  • 8/17/2019 Plain Strainn

    24/73

    ( )

    ( )

    0

    1

    1

    3

    2

    122

    2

    211

    =

    ++

    =+

    +=

    σ 

    ν 

    νε ε σ 

    ν 

    νε ε σ 

     E 

     E 

    Principal Stresses Principal Strains

     E  E 

     E  E 

    21

    3

    122

    211

    σ 

    ν 

    σ 

    ν ε 

    σ ν 

    σ ε 

    σ ν 

    σ ε 

    −−=

    −=

    −= Biaxial 

    ( ) ( )

    ( ) ( )

    ( ) ( )2

    2133

    2312

    2

    2

    3211

    21

    1

    211

    21

    1

    ν ν 

    ε ε ν ν ε σ 

    ν ν ε ε ν ν ε σ 

    ν ν 

    ε ε ν ν ε σ 

    −−

    ++−=

    −− ++−=

    −−++−

    =

     E 

     E 

     E 

    Principal Stresses Principal Strains

     E  E  E 

     E  E  E 

     E  E  E 

    213

    3

    3122

    3211

    σ 

    ν 

    σ 

    ν 

    σ 

    ε 

    σ ν σ ν σ ε 

    σ ν 

    σ ν 

    σ ε 

    −−=

    −−=

    −−=

    Triaxial 

    1 ννTriaxial Stresses

  • 8/17/2019 Plain Strainn

    25/73

    [ ]

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    =

     xy

     zx

     yz 

     z 

     y

     x

    τ 

    τ 

    τ 

    σ σ 

    σ 

    σ 

    [ ]

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    =

     xy

     zx

     yz 

     z 

     y

     x

    γ 

    γ 

    γ ε 

    ε 

    ε 

    ε 

     1

     1

     1

     z  y x z 

     z  y x y

     z  y x x

     E  E  E 

     E  E  E 

     E  E  E 

    σ σ ν 

    σ ν 

    ε 

    σ ν 

    σ σ ν 

    ε 

    σ ν 

    σ ν 

    σ ε 

    +−−=

    −+−=

    −−=

    [ ]

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    =

    0

    0

    0

     z 

     y

     x

    ε 

    ε 

    ε 

    ε 

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎥⎥⎥⎥⎥⎥⎥

    ⎥⎥⎥⎥

    ⎥⎥

    ⎢⎢⎢⎢⎢⎢⎢

    ⎢⎢⎢⎢

    ⎢⎢

    −−

    −−

    −−

    =

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    0

    00

    100000

    01

    0000

    001000

    0001

    000

    1

    0001

    0

    00

     z 

     y

     x

     z 

     y

     x

    G

    G

    G

     E  E  E 

     E  E  E 

     E  E  E 

    σ 

    σ 

    σ 

    υ υ 

    υ υ 

    υ υ 

    ε 

    ε 

    ε 

    [ ]

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    =

    0

    0

    0

     z 

     y

     x

    σ 

    σ 

    σ 

    σ 

    Triaxial Stresses

  • 8/17/2019 Plain Strainn

    26/73

     For an isotropic material, the principal axes for stress and the

     principal axes for strain coincide.

    Y  X 

     XY 

    ε ε 

    γ θ ε  −

    =2tan( )( )

    G

     E 

     xy

     xy

     y x y x

    τ γ 

    σ σ ν ε ε 

    =

    −−=− 1

    1

    ( )( )  ( )   ( )   σ ε 

      θ σ σ 

    τ 

    ν 

    σ σ ν 

    τ 

    ε ε 

    γ θ  2tan

    2

    12

    1

    12tan   =

    −⋅

    −=

    −−

    =−

    = y x

     xy

     y x

     xy

    Y  X 

     XY 

    G

     E 

     E 

    G

  • 8/17/2019 Plain Strainn

    27/73

    Plane Stress   ( )

    ( )

    G

     E 

     E 

     xy

     xy

     x y y

     y x x

    τ γ 

    νσ σ ε 

    νσ σ ε 

    =

    −=

    −=

    1

    1 ( )

    0

    0

    ==

    +−=

     zx

     yz 

     y x z  E 

    γ 

    γ 

    σ σ ν 

    ε 

    Plane Strain

    ( )( ) ( )[ ]

    ( )( ) ( )[ ] xy xy

     x y y

     y x x

    G

     E 

     E 

    γ τ 

    νε ε ν ν ν 

    σ 

    νε ε ν ν ν 

    σ 

    =

    +−−+

    =

    +−−+

    =

    1211

    1211   ( )( ) ( )

    0

    0

    211

    =

    =

    +−+=

     xz 

     yz 

     y x z   E 

    τ 

    τ 

    ε ε ν ν 

    ν σ 

    Tensors and Elasticity

  • 8/17/2019 Plain Strainn

    28/73

    Tensors 

    and  

    Elasticity Common misconception  Cubic materials are isotropic, i.e. they have 

    the same

     properties

     in

     every

     direction.

     Many

     properties

     are

     isotropic

     

    in cubic crystal, but elasticity,  electrostriction and magnetostriction

    are anisotropic even in cubic crystals.

    Example turbine blade 

    (single crystal). Ni 

    based with

     cuboidal

    Ni3Ti intermetallic. It 

    shows variation in the 

    elastic constant with 

    the directions in the 

    material. 

    Some polycrystalline materials

  • 8/17/2019 Plain Strainn

    29/73

    Some polycrystalline materials 

    develop preferred orientations 

    during 

    processing. 

    They 

    will 

    show 

    degree of  anisotropy that is 

    dependent on the degree of  

    preferred orientation or texture.

    Tensor: A specific

     type

     of 

     matrix

     representation

     that

     can

     relate

     the

     

    directionality of  either a material property (property tensors  –

    conductivity, elasticity) or a condition/state (condition tensors  – stress, 

    strain).

    Tensor of  zero‐rank: scalar quantity (density, temperature).

    Tensor of  first‐rank: vector quantity (force, electric field, flux of  atoms).

    Tensor of 

     second

    ‐rank: relates

     two

     vector

     quantities

     (flux

     of 

     atoms

     with

     

    concentration gradient).

    Tensor third‐rank: relates vector with a second rank tensor (electric

  • 8/17/2019 Plain Strainn

    30/73

    Tensor third‐rank: relates vector with a second rank tensor (electric 

    field with strain in a piezoelectric material)

    Tensor Fourth

    ‐rank: relates

     two

     second

     rank

     tensors

     (relates

     strain

     

    and stress  – Elasticity) 

    The key

     to

     understanding

     property

     or

     condition

     tensors

     is

     to

     recognize

     

    that tensors can be specified with reference to some coordinate system 

    which is usually defined in 3‐D space by orthogonal axes that obey a 

    right‐hand

     rule.

    Rotation Matrix and Euler Angles:Rotation Matrix and Euler Angles: Several schemes can be used to 

    produce a rotation matrix. The three Euler angles are given as three 

    counterclockwise rotations:

     

    (a)A rotation about a z‐axis, defined as φ1 (b)A rotation about the new x‐axis, defined as Φ

    (c)A rotation

     about

     the

     second

     z‐position, defined

     as

     φ2

    The rotation matrix a is given by the matrix multiplication of  the 

  • 8/17/2019 Plain Strainn

    31/73

    g y p

    rotation matrices of  each individual rotations:

    [ ]

    [ ]⎥⎥⎥

    ⎢⎢⎢

    ΦΦ−Φ

    ΦΦ+−Φ−−ΦΦ+Φ−

    =

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡−×

    ⎥⎥⎥

    ⎢⎢⎢

    ΦΦ−

    ΦΦ×

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡−=⋅⋅=   Φ

    coscossinsinsin

    cossincoscoscossinsincossincoscossinsinsinsincoscossincossinsincoscoscos

    100

    0cossin0sincos

    cossin0

    sincos0001

    100

    0cossin0sincos

    11

    221122112

    221122112

    11

    11

    22

    22

    12

    φ φ 

    φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ 

    φ φ φ φ 

    φ φ φ φ 

    φ φ 

    a

    aaaa

    S hi P j i

  • 8/17/2019 Plain Strainn

    32/73

    Stereographic  

    Projection

    Crystallographic directions, plane normals and 

    planes can be all represented in the stereographic 

    projection.

    Locating a pole in a stereographic projection: 132001

    132

    ⎤⎡

  • 8/17/2019 Plain Strainn

    33/73

    Locating a pole in a stereographic projection:

    o

    o

    o

    5.74141

    132100cos

    7.36141

    132010cos

    6.57141

    132001cos

    1-

    1-

    1-

    =⎥⎦

    ⎢⎣

    ⎡   ⋅

    =⎥⎦

    ⎤⎢⎣

    ⎡   ⋅

    =⎥⎦

    ⎤⎢⎣

    ⎡   ⋅

    Find the angle of  the pole with the three 

    axes:

    ExampleTh l ti hi b t i t ti d li d t i i t t

  • 8/17/2019 Plain Strainn

    34/73

    The relationship between orientation and applied stress is important 

    in describing the mechanical performance of  many crystalline metals 

    and composites.

    The relationship between applied stress and crystal direction is

    essential in interpreting the microscopic deformation mechanisms

    operating in

     deforming

     crystals.

    [ ]

    ⎥⎥

    ⎢⎢

    =

    100

    030

    002

    T Consider a property‐tensor or a condition tensor T in the original {x y z} axes given by: 

    Find the tensor T’  , for the rotation 

    shown 

    below 

    from 

    the 

    initial 

    [100], 

    [010], [001] axes of  a cubic crystal

    o451 =φ    [ ] ⎥⎥⎤

    ⎢⎢⎡

    ΦΦ+−Φ−−ΦΦ+Φ−

    = cossincoscoscossinsincossincoscossinsinsinsincoscossincossinsincoscoscos

    221122112

    221122112

    a φ φ φ φ φ φ φ φ φ 

    φ φ φ φ φ φ φ φ φ 

  • 8/17/2019 Plain Strainn

    35/73

    o

    o

    0

    7.54

    2 =

    φ 

    [ ]

    ⎥⎥⎥

    ⎢⎢⎢

    −+−=

    ⎥⎥⎥

    ⎢⎢⎢

    +−−−

    +−

    =

    ⎥⎥⎦⎢

    ⎢⎣ ΦΦ−Φ

    7.54cos45cos7.54sin45sin7.54sin7.54sin45cos7.54cos45sin7.54cos

    045sin45cos

    ][

    7.54cos45cos7.54sin45sin7.54sin

    0cos7.54sin0cos45cos7.54cos45sin0sin0cos45sin7.54cos45cos0sin

    0sin7.54sin0sin45cos7.54cos45sin0cos0sin45sin7.54cos45cos0cos

    ][

    coscossinsinsin 11

    221122112

    a

    a

    φ φ 

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    −=

    3

    1

    3

    1

    3

    16

    2

    6

    1

    6

    1

    02

    1

    2

    1

    ][a

    [ ] [ ]T 

    aT aT    ××='

    ⎥⎥⎥

    ⎢⎢⎢

    −−

    =

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    ×

    ⎥⎥⎥

    ⎢⎢⎢

    ×

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    −=

    33.165.1408.0

    65.1167.0289.0

    408.0289.05.2

    3

    1

    6

    2

    0

    3

    1

    6

    1

    2

    13

    1

    6

    1

    2

    1

    100

    030

    002

    3

    1

    3

    1

    3

    16

    2

    6

    1

    6

    1

    02

    1

    2

    1

    ]'[T 

     z  y x σ νσ 

    νσ 

    ε =Isotropic Materials

  • 8/17/2019 Plain Strainn

    36/73

     E  E  E 

     E  E  E 

     E  E  E 

     z  y x z 

     z  y x y

     x

    σ σ ν 

    σ ν ε 

    σ ν 

    σ σ ν ε 

    ν ν ε 

    +−−=

    −+−=

    −−=

     1

    1

     1

     

     xy xy

     zx zx

     yz  yz 

    G

    G

    G

    τ γ 

    τ γ 

    τ γ 

    =

    =

    =

     Isotropic Materials

     xy zx yz  z  y x x   S S S S S S    τ τ τ σ σ σ ε  161514131211   +++++=

  • 8/17/2019 Plain Strainn

    37/73

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎥⎥

    ⎥⎥⎥⎥

    ⎥⎥

    ⎢⎢

    ⎢⎢⎢⎢

    ⎢⎢

    =

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z 

     y

     x

    S S S S S S 

    S S S S S S 

    S S S S S S S S S S S S 

    S S S S S S 

    S S S S S S 

    τ 

    τ 

    τ σ 

    σ 

    σ 

    γ 

    γ 

    γ ε 

    ε 

    ε 

    666564636261

    565554535251

    464544434241

    363534333231

    262524232221

    161514131211

     xy zx yz  z  y x y   S S S S S S    τ τ τ σ σ σ ε  262524232221   +++++=

     xy zx yz  z  y x z    S S S S S S    τ τ τ σ σ σ ε  363534333231   +++++=

     xy zx yz  z  y x yz    S S S S S S    τ τ τ σ σ σ γ  464544434241   +++++=

     xy zx yz  z  y x zx   S S S S S S    τ τ τ σ σ σ γ  565554535251   +++++= xy zx yz  z  y x xy   S S S S S S    τ τ τ σ σ σ γ  666564636261   +++++=

    [ ] [ ][ ]σ ε    S =

     S is the

    compliance matrix 

     Isotropic Materials

  • 8/17/2019 Plain Strainn

    38/73

    An isotropic material has stress-strain relationships that are

    independent of the orientation of the coordinate system at a point.The isotropic material requires only two independent material

    constants, namely the Elastic Modulus and the Poisson’s Ratio.

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎥⎥

    ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

    ⎢⎢

    ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

    −−

    −−

    −−

    =

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z 

     y

     x

    G

    G

    G

     E  E  E 

     E  E  E 

     E  E  E 

    τ 

    τ τ 

    σ 

    σ 

    σ 

    ν ν 

    ν ν 

    ν ν 

    γ 

    γ γ 

    ε 

    ε 

    ε 

    100000

    01

    0000

    001

    000

    0001

    0001

    0001

    ( ) ⎤⎡ −  E  E  E  ν ν ν 000

    1

  • 8/17/2019 Plain Strainn

    39/73

    ( )( )( ) ( )( ) ( )( )

    ( )( )( )

    ( )( ) ( )( )

    ( )( ) ( )( )

    ( )

    ( )( )

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

    −+

    −+−+

    −+−+−

    −+

    −+−+−+

    =

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z 

     y

     x

    G

    G

    G

     E  E  E 

     E  E  E 

    γ 

    γ γ 

    ε 

    ε 

    ε 

    ν ν 

    ν 

    ν ν 

    ν 

    ν ν 

    ν ν ν 

    ν ν ν 

    ν ν ν 

    ν 

    ν ν ν ν ν ν 

    τ 

    τ τ 

    σ 

    σ 

    σ 

    00000

    00000

    00000

    000

    211

    1

    211211

    000211211

    1211

    000211211211

    [ ] [ ][ ]ε σ    C =

    C is the elastic or stiffness matrix 

    The isotropic material requires

    only two independent materialconstants, namely the Elastic

    Modulus and the Poisson’s

    Ratio.

     Anisotropic Materials

  • 8/17/2019 Plain Strainn

    40/73

    pUp to this point we have limited the study of the properties of materials

    to isotropic materials. For the most general linearly elastic anisotropicmaterials, a particular component of stress is assumed to depend of all

    six components of strain.

     xy zx yz  z  y x x   C C C C C C    γ γ γ ε ε ε σ  161514131211   +++++=Where Cij are constants if the material is homogeneous

    ⎪⎪

    ⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪⎪⎪

    ⎥⎥

    ⎥⎥⎥⎥⎥⎥

    ⎢⎢

    ⎢⎢⎢⎢⎢⎢

    =

    ⎪⎪

    ⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z 

     y

     x

    C C C C C C 

    C C C C C C 

    C C C C C C C C C C C C 

    C C C C C C C C C C C C 

    γ 

    γ 

    γ 

    ε 

    ε ε 

    τ 

    τ 

    τ 

    σ 

    σ σ 

    666564636261

    565554535251

    464544434241

    363534333231

    262524232221

    161514131211

    Taking energy considerations the coefficients of this matrix are

  • 8/17/2019 Plain Strainn

    41/73

    ⎪⎪⎪

    ⎪⎪⎪

    ⎪⎪⎪

    ⎪⎪⎪

    ⎥⎥⎥

    ⎥⎥⎥⎥

    ⎢⎢⎢

    ⎢⎢⎢⎢

    =

    ⎪⎪⎪

    ⎪⎪⎪

    ⎪⎪⎪

    ⎪⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z 

     y

     x

    C C C C C C C C C C C C 

    C C C C C C 

    C C C C C C 

    C C C C C C 

    C C C C C C 

    γ γ 

    γ 

    ε 

    ε 

    ε 

    τ τ 

    τ 

    σ 

    σ 

    σ 

    665646362616

    565545352515

    464544342414

    363534332313

    262524232212

    161514131211

    g gy

    symmetric. Hence, instead of 36 independent constant, we have

    21 independent constants

    [ ]

    ⎥⎥⎥

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢

    ⎢⎢⎢⎢⎢

    =

    665646362616

    565545352515

    464544342414

    363534332313

    262524232212

    161514131211

    C C C C C C C C C C C C 

    C C C C C C 

    C C C C C C 

    C C C C C C 

    C C C C C C 

    C is referred to as the elastic matrix

    or stiffness matrix.

    Hence, we can also write

  • 8/17/2019 Plain Strainn

    42/73

    [ ] [ ][ ]

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎥⎥⎥⎥

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ⎢⎢⎢⎢

    =

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎧=

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z 

     y

     x

    S S S S S S 

    S S S S S S 

    S S S S S S 

    S S S S S S S S S S S S 

    S S S S S S 

    τ 

    τ 

    τ 

    σ σ 

    σ 

    γ 

    γ 

    γ 

    ε ε 

    ε 

    σ ε 

    665646362616

    565545352515

    464544342414

    363534332313

    262524232212

    161514131211

    The matrix S is referred to as the compliance matrix and the

    elements of S are the compliances.

    21 elastic constants are required to describe the most general

  • 8/17/2019 Plain Strainn

    43/73

    21 elastic constants are required to describe the most general

    anisotropic material (fully anisotropic). This is in contrast to an

    isotropic material for which there are only two independent elasticconstants (typically the Young Modulus and the Poisson’s ratio).

    ( )( )( ) ( )( )

    ( )( ) ( )[ ] )εε E 

     )εε E  E 

     z  y x x

     z  y x x

    ++−−+=

    +−+

    +−+

    −=

    (1211

    (211211

    1

    ν ε ν ν ν 

    σ 

    ν ν ν ε 

    ν ν ν σ 

    Many materials of practical interest contain certain material

  • 8/17/2019 Plain Strainn

    44/73

    symmetries with respect to their elastic properties (elastic symmetries).

    Other type of symmetries are possible optical, electrical and thermal properties.

    Let us determine the structure of the elastic matrix for a material

    with a single plane of elastic symmetry. Crystals whose crystalline

    structure is monoclinic as examples of materials possessing a single

     plane of elastic symmetry. Example Iron aluminide, gypsum, talc,

    ice, selenium

    Materials with one plane of symmetry are referred to as Monoclinic

    materials.

  • 8/17/2019 Plain Strainn

    45/73

    Crystal Systems

  • 8/17/2019 Plain Strainn

    46/73

    y y

    Crystallographers have shown that only

    seven different types of unit cells arenecessary to create all point lattice

    Cubic a= b = c ; α = β = γ = 90

    Tetragonal a= b ≠ c ; α = β = γ = 90Rhombohedral a= b = c ; α = β = γ ≠ 90

    Hexagonal a= b ≠ c ; α = β = 90, γ =120

    Orthorhombica≠ b ≠ c ; α = β = γ = 90

    Monoclinic a≠ b ≠ c ; α = γ = 90 ≠ β

    Triclinic a≠ b ≠ c ; α ≠ γ ≠ β ≠ 90

     Monoclinic Materials

  • 8/17/2019 Plain Strainn

    47/73

    Let us assume that the z-plane is the plane of elastic symmetry.

    For such a material the elastic coefficients in the stress-strain law

    must remain unchanged when subjected to a transformation that

    represents a reflection in the symmetry plane.

    For monoclinic materials (due to one plane of elastic symmetry) thenumber of independent elastic constants is reduced from 21 to 13.

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎥⎥

    ⎥⎥⎥⎥

    ⎥⎥

    ⎢⎢

    ⎢⎢⎢⎢

    ⎢⎢

    =

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z 

     y

     x

    C C C C 

    C C 

    C C C C C C 

    C C C C 

    C C C C 

    γ 

    γ 

    γ ε 

    ε 

    ε 

    τ 

    τ 

    τ σ 

    σ 

    σ 

    66362616

    5545

    4544

    36332313

    26232212

    16131211

    00

    0000

    000000

    00

    00

    KEY TO

    NOTATION

  • 8/17/2019 Plain Strainn

    48/73

    TRICLINIC (21)

    MONOCLINIC (13)

    ORTHORHOMBIC (9)

    CUBIC (3)

  • 8/17/2019 Plain Strainn

    49/73

    (7) TETRAGONAL (6)

    HEXAGONAL (5) ISOTROPIC (2)

  • 8/17/2019 Plain Strainn

    50/73

    (7) TRIGONAL (6)

    Orthotropic Materials

    L t id t i l ith d l f l ti t

  • 8/17/2019 Plain Strainn

    51/73

    Let us consider a material with a second plane of elastic symmetry.

    The y-plane and the z-plane are the planes of elastic symmetry and are perpendicular to each other. Again, for such a material the elastic

    coefficients in the stress-strain law must remain unchanged when

    subjected to a transformation that represents a reflection in the

    symmetry plane. For orthotropic materials (due to the two planes of

    elastic symmetry) the number of independent elastic constants is

    reduced from 21 to 9.

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎥⎥

    ⎥⎥⎥⎥

    ⎥⎥

    ⎢⎢

    ⎢⎢⎢⎢

    ⎢⎢

    =

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z 

     y

     x

    C C C 

    C C C 

    C C C 

    γ 

    γ 

    γ ε 

    ε 

    ε 

    τ 

    τ 

    τ σ 

    σ 

    σ 

    66

    55

    44

    332313

    232212

    131211

    00000

    00000

    00000

    000

    000

    000

    Materials possessing two perpendicular planes of elastic symmetry

    must also possess a third mutually perpendicular plane of elastic

  • 8/17/2019 Plain Strainn

    52/73

    must also possess a third mutually perpendicular plane of elastic

    symmetry. Materials having three mutually perpendicular planes of elastic

     symmetry are referred to as orthotropic (orthogonally anisotropic)

    materials.

     Long Fiber Composite

    Transversely Isotropic MaterialsM i l h i i i l

  • 8/17/2019 Plain Strainn

    53/73

    Materials that are isotropic in a plane.

    Transversely isotropic materials require five independent materialconstants.

    ( )⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎥⎥⎥⎥

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ⎢⎢⎢⎢

    =

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z 

     y

     x

    C C 

    C C C 

    C C C 

    C C C 

    γ 

    γ γ 

    ε 

    ε 

    ε 

    τ 

    τ τ 

    σ 

    σ 

    σ 

    2

    00000

    00000

    00000

    000

    000

    000

    1211

    44

    44

    331313

    131112

    131211

     Isotropic MaterialsThe isotropic material requires only two independent material

  • 8/17/2019 Plain Strainn

    54/73

    The isotropic material requires only two independent material

    constants, namely the Elastic Modulus and the Poisson’s Ratio.

    ( )

    ( )( )   ⎪

    ⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪

    ⎪⎪⎪⎪

    ⎥⎥⎥⎥

    ⎥⎥⎥⎥

    ⎥⎥

    ⎢⎢⎢⎢

    ⎢⎢⎢⎢

    ⎢⎢

    −−

    −=

    ⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪

    ⎪⎪⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z 

     y

     x

    C C 

    C C 

    C C C C C 

    C C C 

    C C C 

    γ 

    γ 

    γ 

    ε ε 

    ε 

    τ 

    τ 

    τ 

    σ σ 

    σ 

    200000

    02

    0000

    002

    000

    000

    000

    000

    1211

    1211

    1211

    111212

    121112

    121211

    ( )( )( ) ( )( )

    ( )( )

      G E C C  E 

    C  E 

    C    =+

    =−

    −+=

    −+−

    =ν ν ν 

    ν 

    ν ν 

    ν 

    122 

    211 

    211

    1 12111211

     Engineering Material Constants for Orthotropic Materials

  • 8/17/2019 Plain Strainn

    55/73

    The quantities appearing in the coefficient matrix can be writtenin terms of well understood engineering constants such as the

    Young Modulus and the Poisson’s ratio.

    For the x, y and z coordinate axes we can write:

     z  z  z 

     y y y

     x x x

     E 

     E 

     E 

    ε σ 

    ε σ 

    ε σ 

    ==

    =

    Where the Young Modulus in the x-, y- and z-

    directions are not necessarily equal.

    Any extension in the x-axis is accompanied by acontraction in the y- and z- axis. However, this

    quantities are not necessarily equal in orthotropic

    materials.Where

    ν xy is the contraction in the y-direction

    due to the stress in the x-direction

     x xz  z 

     x xy y

    ε ν ε 

    ε ν ε 

    −=

    −=

    If all three stresses are applied

    simultaneously then:

    [ ] [ ][ ]

    ⎪⎫

    ⎪⎧

    ⎥⎤

    ⎢⎡

    ⎪⎫

    ⎪⎧

    =

     x x S S S 

    σ ε 

    σ ε 

    131211 000

  • 8/17/2019 Plain Strainn

    56/73

    simultaneously, then:

     z 

     z 

     y

     y

     yz 

     x

     x

     xz  y

     z  z 

     zy

     y y

     x x

     xy

     y

     z 

     z 

     zx y

     y

     yx

     x

     x

     x

     E  E  E 

     E  E  E 

     E  E  E 

    σ σ ν 

    σ ν 

    ε 

    σ 

    ν 

    σ σ 

    ν 

    ε 

    σ ν σ ν σ ε 

    1

    1

    1

    +−−=

    −+−=

    −−=

    ⎪⎪

    ⎪⎪

    ⎪⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪⎪

    ⎥⎥

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢

    ⎢⎢⎢⎢⎢

    =

    ⎪⎪

    ⎪⎪

    ⎪⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪⎪

     xy

     zx

     yz 

     z 

     y

     xy

     zx

     yz 

     z 

     y

    S S S 

    S S S 

    τ 

    τ 

    τ 

    σ 

    σ 

    γ 

    γ 

    γ 

    ε 

    ε 

    66

    55

    44

    332313

    232212

    131211

    00000

    00000

    00000

    000

    000

    Comparing with the compliance matrix

    for orthotropic materials:

     

    1

    231312

    332211

     y

     yz 

     z 

     zy

     x

     xz 

     z 

     zx

     x

     xy

     y

     yx

     z  y x

     E  E S 

     E  E S 

     E  E S 

     E S 

     E S 

     E S 

    ν ν ν ν ν ν −=−=−=−=−=−=

    ===

    Whereν

     xy is the contraction in the y-direction due to the stress inthe x-direction

    Whereas with

    isotropic materials 

    1 zx zx yz  yz  xy xy

    GGG===   τ γ τ γ τ γ 

  • 8/17/2019 Plain Strainn

    57/73

    p

    the relationship

     between shear

    stress and shear

    strain is the same in

    any coordinate planes, for

    orthotropic

    materials theserelationships are not

    the same.

     1 1 1 665544 xy zx yz 

     zx yz  xy

    GS 

    GS 

    GS 

    GGG

    ===

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎥⎥⎥

    ⎥⎥⎥⎥⎥

    ⎥⎥⎥⎥

    ⎥⎥⎥⎥

    ⎢⎢⎢

    ⎢⎢⎢⎢⎢

    ⎢⎢⎢⎢

    ⎢⎢⎢⎢

    −−

    −−

    −−

    =

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     z  y

     yz 

     x

     xz 

     z 

     zy

     y x

     xy

     z 

     zx

     y

     yx

     x

     xy

     zx

     yz 

     z 

     y

     x

    G

    G

    G

     E  E  E 

     E  E  E 

     E  E  E 

    τ 

    τ 

    τ 

    σ 

    σ 

    σ 

    ν ν 

    ν ν 

    ν ν 

    γ 

    γ 

    γ 

    ε 

    ε 

    ε 

    100000

    01

    0000

    001

    000

    0001

    0001

    0001

    ⎤⎡ ++− νννννννν1

  • 8/17/2019 Plain Strainn

    58/73

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

    Δ−

    Δ+

    Δ+

    Δ

    +

    Δ−

    Δ

    +

    Δ

    +

    Δ

    =

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

     xy

     zx

     yz 

     z 

     y

     x

     xy

     zx

     yz 

     y x

     yx xy

     y x

     yx xz  yz 

     y x

     yz  xy xz 

     z  x

     xy zx zy

     z  x

     xz  zx

     z  x

     zy xz  xy

     z  y

     zy yx zx

     z  y

     yz  zx yx

     z  y

     zy yz 

     xy

     zx

     yz 

     z 

     y

     x

    G

    G

    G

     E  E  E  E  E  E 

     E  E  E  E  E  E 

     E  E  E  E  E  E 

    γ 

    γ 

    γ 

    ε 

    ε 

    ε 

    ν ν ν ν ν ν ν ν 

    ν ν ν ν ν ν ν ν 

    ν ν ν ν ν ν ν ν 

    τ 

    τ 

    τ 

    σ 

    σ 

    σ 

    00000

    00000

    00000

    0001

    0001

    0001

     z  y x

     zx yz  xy xz  zx zy yz  yx xy

     E  E  E 

    ν ν ν ν ν ν ν ν ν  21   −−−−=Δ

    In 2-D

  • 8/17/2019 Plain Strainn

    59/73

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    ⎥⎥⎥

    ⎥⎥⎥⎥

    ⎢⎢⎢

    ⎢⎢⎢⎢

    =

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

     xy

     y

     x

     xy

     y x

     xy

     y

     yx

     x

     xy

     y

     x

    G

     E  E 

     E  E 

    τ 

    σ 

    σ ν 

    ν 

    γ 

    ε 

    ε 

    100

    01

    01

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    ⎥⎥

    ⎢⎢

    ⎡=

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

     xy

     y

     x

     xy

     y

     x

    C C 

    C C 

    γ 

    ε 

    ε 

    τ 

    σ 

    σ 

    33

    2212

    1211

    00

    0

    0

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    ⎥⎥⎥⎥⎥

    ⎥⎥

    ⎢⎢⎢⎢⎢

    ⎢⎢

    −−

    −−

    =⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

     xy

     y

     x

     xy

     yx xy

     y

     yx xy

     y xy

     yx xy

     x yx

     yx xy

     x

     xy

     y

     x

    G

     E  E 

     E  E 

    γ 

    ε 

    ε 

    ν ν ν ν ν 

    ν ν 

    ν 

    ν ν 

    τ 

    σ 

    σ 

    00

    011

    011

    Neumann’s Principle

    This is the most important concept in crystal physics It states;

  • 8/17/2019 Plain Strainn

    60/73

    This is the most important concept in crystal physics. It states; 

    ……………... the

     

    symmetry  

    of  

    any  

     physical  

     property  

    of  

    crystal  

    must  include the symmetry  elements of  the  point  group of  the crystal . This 

    means that measurements made in symmetry‐related directions will 

    give 

    the 

    same 

    property 

    coefficients.Example: NaCl belongs to the m3m group . The [100] and [010] 

    directions are equivalent.

    Since these

     directions

     are

     physically

     

    the same, it should be expected that 

    measurements of  permittivity, 

    elasticity or

     any

     other

     physical

     property

     

    will be the same in these two 

    directions.

    7 Crystal Systems

  • 8/17/2019 Plain Strainn

    61/73

    Crystal System External Minimum Symmetry Unit Cell Properties

    Triclinic None a, b, c, al, be, ga,

    Monoclinic One 2‐fold

     axis,

     ||

     to

     b

     (b

     unique)

     a,

     b,

     c,

     90,

     be,

     90

    Orthorhombic Three perpendicular 2‐folds a, b, c, 90, 90, 90

    Tetragonal One 4‐fold axis, parallel c a, a, c, 90, 90, 90

    Trigonal One 3‐fold axis a, a, c, 90, 90, 120

    Hexagonal One 6‐fold

     axis a,

     a,

     c,

     90,

     90,

     120

    Cubic Four 3‐folds along space diagonal a, a, ,a, 90, 90, 90

    triclinictrigonal

    hexagonal

    cubic tetragonal

    monoclinic  orthorhombic

    Anisotropy Factor

    Cubic Symmetry

  • 8/17/2019 Plain Strainn

    62/73

    Cubic Symmetry

    For cubic

     crystals,

     there

     are

     four

     three

    ‐fold

     symmetry

     

    axes (along the  body diagonals) such that: 

    665544

    312312

    332211

    S S S 

    S S S S S S 

    ==

    ====

    There 

    is 

    reduction 

    of  

    the 

    nine 

    constants 

    for 

    orthotropic symmetry to three. An anisotropic factor 

     A, can be defined for cubic crystals

    44

    1211 )(2

    S S  A

      −=

    Using 

    the 

    direction 

    cosines 

    l, 

    m, 

    n for 

    particular 

    direction, one can determine the elastic properties 

    of  a cubic single crystal  in a particular direction by 

    the relationship:

    222222

    44121111

    '

    112

    12

    1nl nmml S S S S S 

     E hkl ++⎥⎦

    ⎤⎢⎣

    ⎡ −−−==

    Isotropy

    When the anisotropy factor is equal to one, there are  just two 

  • 8/17/2019 Plain Strainn

    63/73

    independent components, e.g. C11

     and C12

    . In this instance, the 

    rigidity or shear modulus G is given by: ( )

    44

    121144

    1

    2

    1

    S C C C G   =−==

    And λ is given by: 12C =

    These 

    two 

    constants 

    are 

    known 

    as 

    the 

    Lame 

    constants 

    and  

    are 

    used 

    to 

    describe 

    all  

    the 

    elastic  

    constants 

    of  

    isotropic  

    materials

    Poisson’s 

    ratio can de expressed in terms of  Lame constants:   ⎟

     ⎠

     ⎞⎜⎝ 

    ⎛  +=

    +−=−=

    λ 

    υ GC C 

    12

    1

    1211

    12

    11

    12

    The compressibility 

     

    ( β ) 

    or  

    bulk  

    modulus 

    (K)relate hydrostatic or mean stress to volume 

    strain3

    21   G K    mean +=

    Δ==   λ σ 

     β 

    ⎟ ⎠ ⎞⎜

    ⎝ ⎛  +

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛  +

    =λ 

    λ 

    G

    GG

     E 1

    23

    Example

    An orthotropic material has the following properties E x=7,500ksi ,

  • 8/17/2019 Plain Strainn

    64/73

    Solution:

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    ⎥⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢⎢

    −−

    −−

    =⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

     xy

     y

     x

     xy

     yx xy

     y

     yx xy

     y xy

     yx xy

     x yx

     yx xy

     x

     xy

     y

     x

    G

     E  E 

     E  E 

    γ 

    ε 

    ε 

    ν ν ν ν 

    ν 

    ν ν 

    ν 

    ν ν 

    τ 

    σ 

    σ 

    00

    011

    011

     12 x

     xy

     y

     yx

     E  E S 

    ν ν 

    −=−=

    p g p p  x 

     E  y= 2,500ksi , G  xy = 1,250ksi andν xy= 0.25. Determine the principal

    stresses and strains at a point on a free surface where the following

    strains were measured: ε x =-400μ ; ε y=600μ ; γ xy=-500μ . Consider

     plane stress conditions

    083.07500

    250025.0  =

    ×===   y

     x

     xy

     yx

     x

     xy

     y

     yx E 

     E  E  E 

    ν ν 

    ν ν 

  • 8/17/2019 Plain Strainn

    65/73

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    ⎥⎥

    ⎢⎢

    ⎡=

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    6

    6

    6

    10500

    10600

    10400

    125000

    02.25533.638

    03.6387660

     x

     x

     x

     xy

     y

     x

    τ 

    σ 

    σ 

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    ⎥⎥⎥

    ⎥⎥⎥⎥

    ⎢⎢⎢

    ⎢⎢⎢⎢

    =⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

     xy

     y

     x

     xy

     y x

     xy

     y

     yx

     x

     xy

     y

     x

    G

     E  E 

     E  E 

    τ 

    σ 

    σ ν 

    ν 

    γ 

    ε 

    ε 

    100

    01

    01

    ⎪⎭

    ⎪⎩

    =⎪⎭

    ⎪⎩

     psi psi

     psi

     xy

     y

     x

    6256.1276

    2681

    τ σ 

    σ 

     psi psi

     psi

     Max 1.20754.2777

    9.1372

    2

    1

    =−=

    =

    τ σ 

    σ 

    μ γ μ ε 

    μ ε 

    1118459

    659

    2

    1

    =−=

    =

     Max

    5.0600400

    5002tan =

    −−−=

    −=

    Y  X 

     XY 

    ε ε 

    γ θ ε 

  • 8/17/2019 Plain Strainn

    66/73

    ( )316.0

    6.12762681

    )625(222tan =

    −−−⋅=

    −=

     y x

     xy

    σ σ 

    τ θ σ 

    Different angles to obtain the principal stresses and the principal

    strains.

    Example

    S ppose e start ith a state of strain (in strain) strain⎥⎤

    ⎢⎡

    μ3020050

    2050300

  • 8/17/2019 Plain Strainn

    67/73

    Suppose we start with a state of strain (in μ strain)   strain−

    ⎥⎥⎦⎢⎢⎣

    μ 

    1003020

    3020050

    Consider an orthotropic material where :

    GPa

    ⎥⎥⎥⎥

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ⎢⎢⎢⎢

    6.2700000

    0100000

    0045000

    000754025

    000405055

    0002555103

    We need to change the strain tensor for a strain vector 

    300⎥⎤

    ⎢⎡

  • 8/17/2019 Plain Strainn

    68/73

    610

    10040

    60

    100200

    1003020

    3020050

    2050300−×

    ⎥⎥⎥

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢

    ⎢⎢⎢⎢⎢

    =−

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡ strainμ 

    [ ]   GPa

    ⎥⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢⎢

    =

    6.2700000

    0100000

    0045000

    000754025

    000405055

    0002555103

    σ 6

    10

    100

    40

    60

    100

    200

    300

    ×

    ⎥⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢⎢

    ×

    ⎤⎡⎥⎥⎥⎤

    ⎢⎢⎢⎡

    4.076.24.4400023

    500.30

    400.44

  • 8/17/2019 Plain Strainn

    69/73

    [ ]   MPa MPa⎥⎥⎥⎦⎢

    ⎢⎢⎣

    =

    ⎥⎥

    ⎥⎥⎥⎥

    ⎦⎢⎢

    ⎢⎢⎢⎢

    =0.2370.24.0

    70.25.3076.2

    760.2

    400.0

    700.2

    000.23σ 

    Eigen‐values Eigen‐vector (cosines from x‐y‐z angles to the 

    principal axes)

     MPa

    ⎥⎥⎥

    ⎢⎢⎢

    9656.4400

    08154.300

    00119.22

    ⎥⎥⎥

    ⎢⎢⎢

    −−−−

    0418.03110.09495.0

    1948.09296.03130.0

    9800.01980.00217.0

    Example

    The orthotropic elastic constants for bovine (cow) femoral (leg) bone 

  • 8/17/2019 Plain Strainn

    70/73

    has been

     reported

     from

     measurements

     using

     ultrasound.

     The

     values

    vary on the basis of  the position around the bone and along its length. 

    The elastic constants can be determined using piezoelectric crystals to 

    propagate and

     measure

     the

     speed

     of 

     sound

     in

     the

     material.

     Two

     types

     

    of  elastic constants can be determined. Propagation of  dilatational 

    waves can be used to measure longitudinal stiffness (e.g. C11) and 

    propagation shear

     waves

     can

     be

     used

     to

     measure

     the

     shear

     moduli

    (e.g. C44) 

    wavestransverseof  speed waveV 

    wavesal dilatationof  speed waveV 

    density

    V C V C 

    trans

    dil 

    transdil 

     _  _  _  _ 

     _  _  _  _ 

      2442

    11

    =

    =

    =

    ==

     ρ 

     ρ  ρ 

    The approximately

     reported

     stiffness

     values

     are:

     

    ⎥⎤

    ⎢⎡ 0008.43.614

    Find the Young Modulus

  • 8/17/2019 Plain Strainn

    71/73

     MPa

    ⎥⎥⎥

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢

    ⎢⎢⎢⎢

    ⎣ 3.50000003.60000

    007000

    0002578.400074.183.6

    Find the Young Modulus 

    along the

     bone

     length

     (z

    direction)? And along the 

    radial direction (x and y 

    directions).

    Find the Poisson’s ratios? 

    Convert the

     stiffness

     matrix

     into

     a compliance

     matrix.

    1

    19.000000

    016.00000

    0014.0000

    000046.0014.0009.0

    000014.007.0026.0

    000009.0026.0086.0

    ⎥⎥

    ⎥⎥⎥⎥⎥⎥

    ⎢⎢

    ⎢⎢⎢⎢⎢⎢

    −−

    −−

    −−

     MPa

    11

    373.00260 7.21046.0

    11

    12

    21

    2

    21

    33

    3 =⇒−==== υ 

    υ

    . E 

    υ

    -GPaS 

     E 

  • 8/17/2019 Plain Strainn

    72/73

    1044.00090 28.1407.0

    11

    3016.00260 6.11086.0

    11

    13

    1

    13

    22

    2

    121

    12

    111

    =⇒−====

    =⇒−====

    υ 

    υ 

    . E 

    υ

    -GPaS 

     E 

    . E 

    υ

    -GPaS  E 

    Example

    Determine the modulus of  elasticity for iron 

    single crystals in the ,  and  muvw

    Cos

    l wvu

    uvwCos

    ==

    =++

    =222

    ))(010(

    1))(100(

     β 

    α 

  • 8/17/2019 Plain Strainn

    73/73

    g y ,

     directions.

    3

    1

    3

    1

    3

    1111

    02

    1

    2

    1110

    001100nml  Directions

    nwvu

    uvwCos

    wvu

    =++

    =++

    222

    222

    1

    ))(001(1

    γ 

    β

    60.88.20.8

    10 44121113

    −−

     Fe

    S S S GPa

    ( )

    GPaE 

     E 

    125

    0.8)0(2

    6.88.20.820.8

    1

    100

    100

    =

    =⎟ ⎠

     ⎞⎜⎝ 

    ⎛  −−−−=

    ( )

    GPa E  E 

    270

    7.3)

    9

    1

    9

    1

    9

    1(

    2

    6.88.20.820.8

    1

    111

    111

    =

    =++⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛  −−−−=

    ( )

    GPa

    210

    75.4)004

    1(

    2

    6.88.20.820.8

    1

    110

    110

    =

    =++⎟ ⎠

     ⎞⎜⎝ 

    ⎛  −−−−=