PiezoMEMS Workshop Aachen_180510 Oerlikon

download PiezoMEMS Workshop Aachen_180510 Oerlikon

of 20

Transcript of PiezoMEMS Workshop Aachen_180510 Oerlikon

  • Oerlikon PVD production solutions for piezoelectric materials

    Workshop PiezoMEMSAachen,18. /19.05.2010

    M. KratzerOerlikon Systems R&D

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Oerlikon company and products

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Thin films used for SAW, BAW, MEMS, etc.

    Dielectric Thin FilmsAlN, ZnO, SiO2,Ta2O5, TiO2,(PZT) ...

    SMR Acoustic Reflectors, Temperature Compensation Layer for SAW or BAW, Ultra-thin Passivation for SAW, Passivation, RF-MEMS switches, SMR & FBAR Shunting &Trimming Layers, embedded passivesinkjet printing...

    Metal Thin FilmsAl, AlCu, AlSi,W, Ti, Pt, Mo, Ir,

    ...

    SMR Acoustic Reflectors, Bottom and Top SMR & FBAR electrodes, SAW Electrodes, MEMS Metallizations, ...

    p-AlN, p-ZnO, p-PZTPiezoelectric Thin Films

    Solidly Mounted Resonator, Film Bulk Acoustic Resonator, Thin Film Surface Acoustic Wave, p-MEMS sensing and actuating, RF-MEMS, bio-sensing, etc...

    Resistor filmsTiW-N, TaAl-NIntegrated Resistors, Heater Elements (ink-jet)

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    AlN application - Bulk Acoustic Wave Filter

    Figure of merit (FOM) of BAW resonator

    Excellent thickness uniformity Excellent AlN texture and c-axis orientation Low stress of single film and film stack Smooth film surfaces to avoid acoustic scattering Precise temperature control during deposition Low oxygen incorporation (high base vacuum,

    low leak rate)

    Requirements for high AlN electro-mechanical coupling and quality factor

    FOM = kt2*Q

    AlN film quality

    At mechanical resonance:dAlN = l /2fR = v / l = v / 2dAlN

    for fR = 2.1GHz and v = 11300m/s=> dAlN ~ 2mm

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    n Vacuum performancen Design of gas inletn Magnetron designn Heater designn RF bias capabilityn Flexible sputter configurations (Formats, TS)n Advanced features (e.g. Flexicat)

    Oerlikon production solution for AlN

    n Deposition temperaturen DC powern RF biasn N2 and Ar flowsn Target-to-substrate distancen Pulse frequencyn Pulse duty cycle

    n Thickness uniformityn Film stressn Texture / c-axis orientationn Surface roughness

    Film properties

    Process parameter

    AlN deposited by DC pulsed reactive PVD process High quality of film achieved with advanced features of sputter equipment

    => High throughput and yield with constant quality

    Sputter equipment

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Radialcontribution

    Thickness uniformity

    Flexible solution neededn Target erosion over life timen Process settings (e.g. gas pressure)n Sputter geometry (TS)

    Analytical decomposition into

    Tiltcontribution

    Measured thicknessnon-uniformity

    nTarget homogeneityn Pumping geometryn Design of gas inletn Mechanics

    Oerlikon FlexiCat

    n Synchronized power modulationwith magnet rotation

    n Movable positions of inner magnets

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Target Erosion compensation with FlexiCat

    FlexiCat optimisation

    950.0

    960.0

    970.0

    980.0

    990.0

    1000.0

    1010.0

    1020.0

    1030.0

    1040.0

    1050.0

    -75 -65 -55 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75

    Wafer diameter [mm]

    Thic

    knes

    s [n

    m]

    Pos 9

    Pos 6

    Pos 3

    Pos 6.2

    Thickness uniformity increases over target life with fixed magnetic system effect of target erosion

    Effect can be compensated by FlexiCat radial adjustment of inner magnets

    410

    420

    430

    440

    450

    460

    470

    480

    -75 -45 -15 15 45 75

    Wafer diameter [mm]

    AlN

    Film

    Thi

    ckne

    ss [n

    m] new target

    1/4 target life

    1/2 target life

    end of target life

    min/max: 0.33%

    min/max: 0.22%

    min/max: 0.70%

    min/max: 2.05%

    Example for radial compensation

    Thickness uniformity over target life

    Movable position of inner magnets

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Tilt compensation with FlexiCat

    Calculation of compensation parameters from thickness measurement at 3 different settings

    Control of magnet position and power synchronization with CL200 recipe software

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Stress Distribution / RF Bias Power

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    0 50 100 150

    Radius (mm)

    Stre

    ss (M

    pa)

    40 W

    40 W

    60 W

    60 W

    20 W

    20 W

    40 W

    40 W

    Applying RF bias to substrate lead to adjustable negative bias voltage Adjustable flux of ions with variable energy Deposition rate, thickness uniformity remains unchanged by RF Bias adjustment

    Stress control through substrate RF bias

    60 W

    40 W

    20 WTensile

    Compressive

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    20 30 40 50 60 70 80 90 1001

    Si 40

    0

    Si 20

    0

    AlN

    004

    AlN

    002

    inten

    sity (

    coun

    ts/s)

    2 Theta

    A1761BAW814B-14th2th-scanMRD Cu-Ka

    Crystal orientation (c-axis)

    10 15 20 25 300

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    40000

    45000Model: GaussEquation: y=y0 + (A/(w*sqrt(PI/2)))*exp(-2*((x-xc)/w)^2) Chi^2/DoF = 29686264.57363R^2 = 0.99662 y0 1993.46717 592.85177xc 17.97655 0.00465w 1.16882 0.00958A 623291.46 4673.78FWHM 1.38 0.01

    rocking curveA1761BAW814B-14AlN 00022Th=36.04

    inte

    nsity

    (cou

    nts/

    s)

    omega

    Result for wafer BAW814-14Pure AlN 002 on q-2q1.38 AlN 002 rocking curve FWHM

    Electrode surface microstructure and roughness key to high c-axis textured AlN Optimization of highly textured Mo(110), Al(111), W(110), Pt(111) and Ti(002) Ti or AlN seed layer beneficial for improving electrode texture and smoothness

    q-2q scan AlN on Si substrateRocking curve - AlN (002)

    Si (2

    00)

    AlN

    (002

    )

    Si (4

    00)

    AlN

    (004

    )

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Piezoelectric performance

    d33,f [pm/V] XRD RCAlN 002

    Wafer #1 (sw01)Institute A 5.2 0.2 (s)Institute B 5.8 0.5 () 1.32

    Wafer #2 (sw08)Institute A 5.2 0.6 (s)Institute B 5.2 0.5 () 1.23

    d33,f on Mo electrodes > 5.10 pm/V @ 2mm AlN film thickness d33,f results comparable to best values published for AlN on Pt electrodes (*) showing

    the very high quality of the AlN films Electro-mechanical coupling coefficient BAW: k2>6.2%

    Inverse Piezoelectric Coefficient d33,f of 2mm AlN Measured by Double Beam Interferometry at external institutes

    (*) Is there a better material for thin film BAW applications than AlN?, P. Muralt et al., IEEE Ultrason. Symp. 2005

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Sputtered PZT - Potential Applications Map

    Comparison AlN - ZnO - PZT

    main driver for growing interest in perovskitetextured PZT films

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    In-situ sputtering from single target- Higher quality possible compared to post anneal process- Wafer temperatures > 550C needed during deposition- RF sputtering from ceramic target- Oerlikon approach since 2008

    Sputter process with post anneal step- Additional process step compared to in-situ growth- Danger of inhomogeneous phase transformation during RTP with the risk of pore

    formation and irregular grain shape- Oerlikon: PZT deposition followed by RTP process at customer (2003)

    Chemical Solution Deposition (CSD)- Competing technology, similar to photo resist application

    Competing Deposition Methods for PZT

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    0.930.80100500.01599526.519.0

    Composition Zr/Ti

    Uniformity [%]

    Thickness []tan k

    Ec(kV/cm)

    Pr(C/cm2)

    Piezoelectriccoefficient d33,f

    [pm/V]> 60

    Achieved film properties

    1. Strong (111) perovskite texture

    2. Remanent polarization ~ 28 C/cm2

    3. Coercive Field ~ 80 kV/cm

    4. Typical rel. dielectric constant ~1000

    5. Deposition rate: 2.5A/Sec

    The below table illustrates a set of values from a similar PZT film with a different process

    Ferroelectric / Dielectric Data for PZT with 450C Process & Post Anneal

    Guideline for development of the in situ process :

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Hardware Development for PZT sputtering

    Wafer temperatures in a range of 600 - 650C achieved with a chuck temperature setpoint of 800C

    Excellent temperature uniformity Chuck is capable for wafer sizes

    up to 200mm

    Very high temperature chuck for in-situ growth of PZT

    Wafer temperature - SenseArray measurement (8" chuck)

    550

    555

    560

    565

    570

    575

    580

    585

    590

    595

    600

    -100 -80 -60 -40 -20 0 20 40 60 80 100

    Radius [mm]

    Tem

    pera

    ture

    [C

    ]x- axisy-axisMean = 581C

    Uniformity (3s) = 2.75%

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Enlarged process window with stacked anode concept

    Large range for sputtering process 2 10 mtorr

    Adjustment of substrate / chuck bias with passive and / or active components

    To avoid stray protection of materials with low melting point (e.g. Pb) in chamber additional shielding is used

    RF-Source

    optional

    Hardware Development for PZT sputteringRF sputtering

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Variation substrate bias / target voltage by RF Bias capacitor settings (substrate tuning)

    => Radial uniformity changed

    Radial uniformity vs. chuck bias voltage

    Uniformity PZT vs. DC Bias voltage(MB300 HA, 3kW, 20sccm Ar only, Std. anode stack, TS80, ISIT P6)

    0.90

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    1.04

    1.06

    1.08

    1.10

    -75 -50 -25 0 25 50 75radius [mm]

    norm

    aliz

    ed th

    ickn

    ess

    (Y-a

    xis)

    DC Bias +20V (PZT_001)

    DC Bias -68V (PZT_013)DC Bias -65V (PZT_014)

    DC Bias +81V (PZT_015)

    Dirk Kaden, Michael Kern Fraunhofer Institut ISIT April 2009

    Bias and Target voltage vs. RF Bias capacitor settings

    -40

    -20

    0

    20

    40

    60

    80

    100

    120

    0 100 200 300 400 500 600 700 800 900 1000

    RF Bias series capacitor (steps)

    DC

    Bia

    s vo

    ltage

    [V]

    -40

    -20

    0

    20

    40

    60

    80

    100

    120

    Targ

    et D

    C vo

    ltage

    [V]

    Bias Voltage - Bias Shunt Cap 900Bias Voltage - Bias Shunt Cap 100Target Voltage - Bias Shunt Cap 900Target Voltage - Bias Shunt Cap 100

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    In situ growth of PZT

    Compositional analysis (EDX) of in-situ sputtered PZT films at different power settings

    Process Result

    Dirk Kaden, Michael Kern Fraunhofer Institut ISIT / Oct. 2009

    RF sputter power

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Target Composition Pb1.22(Zr0.52Ti0.48)O1.22 / Growth Temperature 550C

    The XRD shows almost 100% of (100) oriented perovskite Phase

    Scott Harada, Paul Muralt, EPFL April 2010 The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2010-2013) under grant agreement n 229196

    In situ growth of PZTProcess Result

  • Oerlikon Systems, 17.05.2010, M. Kratzer, R&D, e-mail: [email protected]

    Thank you