Piezoelectric Shunt Damping

76
Damping with Piezoelectric Materials Mohammad Tawfik # WikiCourses http://WikiCourses.WikiSpaces.com Damping with Piezoelectric Material Mohammad Tawfik

description

Piezoelectric Materials. Passive damping using shunt circuits Finite Element Modeling #WikiCourses http://wikicourses.wikispaces.com/Topic02+Piezoelectric+Shunt+Damping

Transcript of Piezoelectric Shunt Damping

Page 1: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Damping with Piezoelectric Material

Mohammad Tawfik

Page 2: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Objectives

• General Introduction to smart materials and structures

• Recognize the nature of piezoelectric material

• Understand the use of passive shunt circuits

• Dynamics of structures with shunt piezoelectric materials

Page 3: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Smart Structures

Page 4: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Smart Structures: What?

• Controlled change in properties– Change in mechanical properties– Change in geometry

• Energy Converters!

– Mechanical Electrical (Piezoelectric)

– Heat Mechanical (SMA)– Mechanical Heat (Viscoelastic)– Etc…

Page 5: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Smart Structure: Why?

• Vibration Damping

• Shape Control

• Noise Reduction

• Vibration/Damage Sensing

• Heat Sensing

Page 6: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Smart Structures: Classification

Wada, Fanson, and Crawly

Page 7: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Piezoelectric Materials

Page 8: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

What is Piezoelectric Material?

• Piezoelectric Material is one that possesses the property of converting mechanical energy into electrical energy and vice versa.

Page 9: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Piezoelectric Materials

• Mechanical Stresses Electrical Potential Field : Sensor (Direct Effect)

• Electric Field Mechanical Strain : Actuator (Converse Effect)

Clark, Sounders, Gibbs, 1998

Page 10: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Conventional Setting

Conductive Pole

Page 11: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Piezoelectric Sensor

• When mechanical stresses are applied on the surface, electric charges are generated (sensor, direct effect).

• If those charges are collected on a conductor that is connected to a circuit, current is generated

Page 12: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Piezoelectric Actuator

• When electric potential (voltage) is applied to the surface of the piezoelectric material, mechanical strain is generated (actuator).

• If the piezoelectric material is bonded to a surface of a structure, it forces the structure to move with it.

Page 13: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Other types of Piezo!

Page 14: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

1-3 Piezocomposites

T 3=cE

33S 3+e33E 3

D3=e33S 3+εS

33E3

Page 15: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Active Fiber Composites (AFC)

ceff

11=c

E11

+v pe31

2

(vC ε 33+vp ε

S33)

eeff

31=ε33e31

vC ε33+vpε

S33

εeff

33=ε33 ε

S33

(vC ε33+vp ε

S33)

Page 16: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Applications of Piezoelectric Materials in Vibration Control

Page 17: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Collocated Sensor/Actuator

Page 18: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Self-Sensing Actuator

Page 19: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Hybrid Control

Page 20: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Passive Damping / Shunted Piezoelectric Patches

Page 21: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Passively Shunted Networks

Resonant

Capacitive Switched

Resistive

Page 22: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Adaptive Structures

Wada, Fanson, and Crawly

Passive Networks

Page 23: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

How does it work?

Page 24: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Shunted Piezoelectric Material (Physical)

Page 25: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Shunted Piezoelectric Material (Physical)

•Mechanical energy is converted to electrical energy through piezoelectric effect•Electric charge is driven by potential difference through the circuit•Energy is dissipated in the resistance

Page 26: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Shunted Piezoelectric Material (Electric)

Page 27: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Shunted Piezoelectric Material (Energy)

Page 28: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Mechanical Impedance / Viscoelastic Analogy

Z11RES

=1−k31

2

1+iρ3

Z11RSP=1−k 31

2 δ2

γ 2+δ 2rγ+δ2

Resistor Shunt

R-L Shunt

r=RC ωn (dissipation tuning parameter )

γ=sωn

( complex non-dimensional frequency )

δ=ωe

ωn

( resonant shunted piezoelectric frequency tuning parameter )

Page 29: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Viscoelastic analogy

• The model of the shunted piezoelectric patches, in many researches, is reduced to an equivalent of a viscoelastic patch.

• But Piezoelectric patches are elements that respond to the total strain rather than the local strain!

Page 30: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Problem With Viscoelastic Analogy!

Base structure

Page 31: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Modeling of Piezoelectric Structures

Page 32: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Constitutive Relations

• The piezoelectric effect appears in the stress strain relations of the piezoelectric material in the form of an extra electric term

• Similarly, the mechanical effect appears in the electric relations

S=s11T +d 31E

D=d 31T 1+¿33E

Page 33: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Constitutive Relations

• ‘S’ (capital s) is the strain• ‘T’ is the stress (N/m2)• ‘E’ is the electric field (Volt/m)• ‘s’ (small s) is the compliance; 1/stiffness

(m2/N)• ‘D’ is the electric displacement, charge per

unit area (Coulomb/m)• Electric permittivity (Farade/m)¿

Page 34: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Electromechanical Coupling

• d31 is called the electromechanical coupling factor (m/Volt)

Page 35: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Manipulating the Equations

D=QA

D=1A∫ Idt=

IAs

• The electric displacement is the charge per unit area:

• The rate of change of the charge is the current:

• The electric field is the electric potential per unit length: E=

Vt

Page 36: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Using those relations:

• Using the relations:

• Introducing the capacitance:

• Or the electrical admittance:

S=s11T +d 31

tV

I=Ad 31 sT 1+A∈33 s

tV

I=Ad 31 sT 1+CsV

I=Ad 31 sT 1+YV

Page 37: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

For open circuit (I=0)

• We get:

• Using that into the strain relation:

• Using the expression for the electric admittance:

V=−Ad 31 s

YT 1

S=s11T−Asd 31

2

tYT 1

S=s11(1−d 31

2

¿33 s11)T 1

Page 38: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The electromechanical coupling factor

• Introducing the factor ‘k’:

• ‘k’ is called the electromechanical coupling factor (coefficient)

• ‘k’ presents the ratio between the mechanical energy and the electrical energy stored in the piezoelectric material.

• For the k13, the best conditions will give a value of 0.4

S=s11(1−k312 )T 1

Page 39: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Different Conditions

• With open circuit conditions, the stiffness of the piezoelectric material appears to be higher (less compliance)

• While for short circuit conditions, the stiffness appears to be lower (more compliance)

S=s11(1−k312 )T 1 == sDT 1

S=s11T=sET

Page 40: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Different Conditions

• Similar results could be obtained for the electric properties; electric properties are affected by the mechanical boundary conditions.

Page 41: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Damping of Structural Vibration with Piezoelectric Materials and

Passive Electrical NetworksN. W. HAGOOD AND A. VON

FLOTOWJournal of Sound and Vibration (1991)

146(2), 243-268

Page 42: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Constitutive Relations for Piezoelectric Materials

• The constitutive relation is:

• Where:

Page 43: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Constitutive relation (cont’d)

• The electric permiativity:

• Electromechanicalcoupling:

• Mechanicalcompliance:

Page 44: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Electrical relation

• Into constitutive relations:

• Where the capacitance is:

Page 45: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Electric admittance

• Introducing the electric admittance:

• Generally; with a shunt circuit:

Page 46: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Electromechanical Model

Page 47: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Remember

• The electric admittance is the reciprocal of the electric impedance.

• Also, you may have up to three circuits:

Z EL=1

Y EL

Page 48: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

From Constitutive Relations

• The voltage may be written as:

• Into the strain equation

Page 49: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Electromechanical Compliance

• The Electromechanical Compliance

• Or

• Where

• Generally:

Page 50: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Mi matrices

Page 51: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Uniaxial Loading Cases

• The compliance:• Introducing the

electromechanical coupling coefficient:

• The compliance becomes:

• For open circuit conditions

Page 52: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Uniaxial Loading Cases

• For open circuit, the compliance becomes:

• A similar expressions for capacitance in case of zero stress is:

Page 53: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Uniaxial Loading Cases

• Introducing the mechanical impedance:(Which is the reciprocal of the compliance)

• We may write the non-dimensional mechanical impedance:

Page 54: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Complex Modulus

• Now, let’s reintroduce the complex modulus of the viscoelastic material:

• Where:

Page 55: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Resistive Shunt Example

• For the case or resistive shunting, the resistance and the capacitance are in parallel 1

Z EL=

1

ZD+

1

Z SU=Cs+

1R

=RCs+1

R

Page 56: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Resistive Shunt Example

• Recall:

• Using the previous results:

• Simplifying:

Z jjME

=Z jjRES

=1−k ij

2

1−k ij2( RCs

1+RCs )

Z jjRES

=1−k ij

2

1+(1−k ij2 )RCs

Page 57: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Resistive Shunt Example

• Substituting s=iω and

• Introducing the non-dimensional parameter ρ=RCω, we get:

• Finally:

Z jjRES=1−

k ij2

1+(1−k ij2 ) ρi

=1−k ij

2

1+(1−k ij2 )

2ρ2

+k ij

2 (1−k ij2) ρi

1+(1−k ij2 )

2ρ2

Z jjRES

=(1−k ij

2

1+(1−k ij2)

2ρ2 )(1+

k ij2 ρ

1+(1−k ij2 ) ρ2

i)

Page 58: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Resistive Shunt Example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10

E Current

Eta Current

E von Flotto

Eta von Flotto

Page 59: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Homework #11

1. Derive the equations for the RL shunt circuit.

2. Plot the frequency response of piezoelectric bar with a shunt circuit (R & RL)

Page 60: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

RL Shunt Example

• For the case or RL shunting, the resistance and the inductance are in series and are in parallel with the capacitance

1

Z EL=

1

ZD+

1

Z SU=Cs+

1Ls+R

=LCs2+RCs+1

Ls+R

Z EL=LCs2+RCs

LCs2+RCs+1

Page 61: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

RL Shunt Example

• Recall:

• Using the previous results:

• Simplifying:

Z jjME

=Z jjRSP

=1−k ij

2

1−k ij2( LCs2+RCs

LCs2+RCs+1)

Z jjRSP=

(1−k ij2 )(LCs2+RCs+1)

1+(1−k ij2 )(LCs2+RCs )

Page 62: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

RL Shunt Example

• Ignoring (1-k2) in the denominator:

Z jjRSP=1−k ij

2

ωe2

ωn2

s2

ωn2+ωe

2

ωn2RC ωn

sωn

+ωe

2

ωn2

Z jjRSP=1−k ij

2 δ 2

γ2+δ2 rγ+δ 2

Page 63: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

RL Shunt Example

Z jjRSP=

(1−k ij2 )( s

2

ωe2+RC

ωn

ωn

s+1)1+(1−k ij

2 )( s2

ωe2+RC

ωn

ωn

s)• Using the full

term:

Z jjRSP=

(1−k ij2 )( s

2

ωn2+ωe

2

ωn2RC

ωn

ωn

s+ωe

2

ωn2 )

ωe2

ωn2+(1−k ij

2)( s2

ωn2+ωe

2

ωn2RC

ωn

ωn

s)Z jjRSP=

(1−k ij2 )(γ 2+δ2rγ+δ2 )

δ2+(1−k ij

2 )(γ2+δ2 rγ )

Page 64: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

RL Shunt Example: Hagood results

Page 65: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Comparing results

Page 66: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Modulus of Elasticity

• Recall that:

• And:

• Where:

Page 67: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Modulus of Elasticity

• Substituting:

• Getting the stiffness:

• Simplifying:

s jjSU=

A j

Z jjSU L j s

E jjSU

=Z jjSU L j s

A j

=Z jj

DZ jjME L j s

A j

E jjSU

=Z jj

ME

s jjD

=Z jj

ME

s jjE (1−k ij

2 )

Page 68: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Finite Element Model

Page 69: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Recall

• Recall the constitutive relations of Piezoelectric materials:

• Rearranging the terms:

S1=s11T 1+d 31 E3

D3=d 31T 1+¿33E3

T 1=1

s11

D S1−h31 D3

E3=−h31S 1+1

¿33SD3

Page 70: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Where:

h31=d 31

s11 ∈33(1−k312 )

¿33s =¿33(1−k 31

2 )s11D=s11(1−k 31

2 )

Page 71: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Potential Energy

• Writing the expression for the potential energy of the shunted piezoelectric material:

U=12∫0

l

S 1T 1 Adx+12∫0

l

D3E 3Adx

U=12∫0

l

S 1( S1

s11D−h31D3)Adx+ 1

2∫0

l

D3(−h31 D3+D3

¿33S )Adx

Page 72: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The interpolation functions

u ( x )=(1− xl )u1+( xl )u2=⌊N ( x ) ⌋{ue}

d ( x)=(1−xl )d 1+( xl )d 2=⌊N (x) ⌋ {d e}

S1 (x )=du ( x)dx

=(−1l )u1+(1

l )u2=⌊N x ( x)⌋ {ue }

Page 73: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

The Stiffness Matrices

k e=1

s11D∫

0

l

{N x}⌊ N x ⌋ Adx

k D=1

¿33S ∫

0

l

{N }⌊N ⌋Adx

k eD=−h31∫0

l

{N x}⌊N ⌋Adx

Page 74: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Kinetic Energy

T=12∫0

l

ρ u2Adx

me= ρA∫0

l

{N }⌊N ⌋dx

Page 75: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

External Work

W=∫0

l

VDbdx=∫0

l

(L I+RI )Dbdx=∫0

l

(LQ+RQ )Dbdx

¿∫0

l

A ( L D+R D )Dbdx

mD=AbL∫0

l

{N }⌊N ⌋dx cD=AbR∫0

l

{N }⌊N ⌋dx

Page 76: Piezoelectric Shunt Damping

Damping with Piezoelectric MaterialsMohammad Tawfik

#WikiCourseshttp://WikiCourses.WikiSpaces.com

Element Equation

[me 0

0 mD ]{ueD e

}+[0 00 cD ]{

ueDe

}+[ k e k eDkDe kD ]{ueDe

}={ f0 }