PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory...

35
1 PI3Kδ hyperactivation promotes the development of B cells that exacerbate Streptococcus pneumoniae infection in an antibodyindependent manner AnneKatrien Stark 1,2* , Anita Chandra 1,2,3,4* , Krishnendu Chakraborty 1,3 , Rafeah Alam 1 , Valentina Carbonaro 1 , Jonathan Clark 5 , Srividya Sriskantharajah 6 , Glyn Bradley 7 , Alex G. Richter 8,9 , Edward BanhamHall 1,3,4 , Menna R. Clatworthy 10 , Sergey Nejentsev 3 , J. Nicole Hamblin 6 , Edith M. Hessel 6 , Alison M. Condliffe 11 , Klaus Okkenhaug 1,2,# 1. Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB21 3AT, UK. 2. Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK. 3. Department of Medicine, University of Cambridge, CB2 OQQ, UK. 4. Cambridge University Hospitals NHS Trust, Hills Road, Cambridge, CB2 0QQ 5. Biological Chemistry Laboratory, Babraham Institute, Cambridge CB21 3AT, UK. 6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage, SG1 2NY, UK. 7. Computational Biology and Statistics, Target Sciences, GlaxoSmithKline, Stevenage, SG1 2NY, UK. 8. Department of Immunology, Queen Elizabeth Hospital, Birmingham, UK. 9. Institute of Immunology and Immunotherapy, University of Birmingham, UK. 10. Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, CB2 OQQ, UK. 11. Department of Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield S10 2RX, UK. * Joint first authors. # Correspondence: [email protected] . CC-BY-ND 4.0 International license certified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was not this version posted March 18, 2018. . https://doi.org/10.1101/280651 doi: bioRxiv preprint

Transcript of PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory...

Page 1: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

1  

PI3Kδ hyper‐activation promotes the development of B cells that exacerbate Streptococcus pneumoniae infection in an antibody‐independent manner  Anne‐Katrien  Stark1,2*,  Anita  Chandra1,2,3,4*,  Krishnendu  Chakraborty1,3,  Rafeah  Alam1, Valentina  Carbonaro1,  Jonathan  Clark5,  Srividya  Sriskantharajah6,  Glyn  Bradley7,  Alex  G. Richter8,9,  Edward  Banham‐Hall1,3,4, Menna  R.  Clatworthy10,  Sergey  Nejentsev3,  J.  Nicole Hamblin6, Edith M. Hessel6, Alison M. Condliffe11, Klaus Okkenhaug1,2,#  

1. Laboratory  of  Lymphocyte  Signalling  and  Development,  Babraham  Institute, Cambridge CB21 3AT, UK. 

2. Division  of  Immunology,  Department  of  Pathology,  University  of  Cambridge, Cambridge CB2 1QP, UK. 

3. Department of Medicine, University of Cambridge, CB2 OQQ, UK. 4. Cambridge University Hospitals NHS Trust, Hills Road, Cambridge, CB2 0QQ 5. Biological Chemistry Laboratory, Babraham Institute, Cambridge CB21 3AT, UK. 6. Refractory  Respiratory  Inflammation  Discovery  Performance  Unit,  Respiratory 

Therapy Area, GlaxoSmithKline, Stevenage, SG1 2NY, UK. 7. Computational Biology and Statistics, Target Sciences, GlaxoSmithKline, Stevenage, 

SG1 2NY, UK. 8. Department of Immunology, Queen Elizabeth Hospital, Birmingham, UK. 9. Institute of Immunology and Immunotherapy, University of Birmingham, UK. 10. Molecular  Immunity Unit, University  of  Cambridge Department  of Medicine, MRC 

Laboratory of Molecular Biology, CB2 OQQ, UK. 11. Department  of  Department  of  Infection,  Immunity  and  Cardiovascular  Diseases, 

University of Sheffield, Sheffield S10 2RX, UK.  

* Joint first authors. # Correspondence: [email protected]   

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 2: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

2  

Abstract Streptococcus pneumoniae  is a major cause of pneumonia and a  leading cause of death 1 world‐wide. Antibody‐mediated immune responses can offer protection against repeated 2 exposure  to  S.  pneumoniae,  yet  vaccines  only  offer  partial  protection.  Patients  with 3 Activated PI3Kδ Syndrome (APDS) are highly susceptible to S. pneumoniae. We generated 4 a  conditional  knockin mouse model  of  this  disease  and  identified  a  CD19+B220‐  B  cell 5 subset  that  is  induced by PI3Kδ  signaling,  is  resident  in  the  lungs, and which promotes 6 increased  susceptibility  to  S.  pneumoniae  during  the  early  phase  of  infection  via  an 7 antibody‐independent mechanism. We  show  that  an  inhaled  PI3Kδ  inhibitor  improves 8 survival  rates  following  S.  pneumoniae  infection  in  wild‐type  mice  and  in  mice  with 9 activated PI3Kδ. These results suggest that a subset of B cells in the lung can promote the 10 severity of S. pneumoniae infection, representing a novel therapeutic target. 11 

Introduction 12 

Streptococcus pneumoniae  is an  invasive extracellular bacterial pathogen and  is a  leading 13 cause  of  morbidity  and  mortality.  Although  S.  pneumoniae  can  cause  disease  in 14 immunocompetent  adults,  it  commonly  colonizes  the  upper  airways  without  causing 15 disease. The World Health Organization has estimated that there are 14.5 million episodes 16 of  severe pneumococcal disease and  that 1.6 million people die of pneumococcal disease 17 every  year1.  Despite  the  implementation  of  global  vaccination  programs,  S.  pneumoniae 18 infection remains a major disease burden2‐4. 19  20 Invasive S. pneumoniae  infection  is a major cause of  lower airway  infections  (pneumonia), 21 sepsis  and meningitis.  Healthy  people  at  the  extremes  of  age  are more  susceptible  to 22 pneumococcal disease, as are people with chronic obstructive pulmonary disease  (COPD), 23 however those at greatest risk are patients with splenic dysfunction or immune deficiency. 24 This  increased  susceptibility  results at  least  in part  from  the  lack of protective antibodies 25 against  conserved  protein  antigens  or  against  polysaccharides  that  form  part  of  the 26 pneumococcal capsule5.  Indeed, the protective role of antibodies  in pneumococcal disease 27 is most obvious in individuals with congenital (primary) immunodeficiencies (PIDs). This was 28 first  recognized  in  a  patient  with  X‐linked  agammaglobulinemia  (XLA),  a  syndrome 29 subsequently shown to be caused by a block  in B cell development due to  loss‐of‐function 30 mutations  in  BTK6‐8.  These  patients  remain  highly  susceptible  to  S.  pneumoniae  into 31 adulthood, but  can be effectively  treated by  the administration of  immunoglobulins  from 32 healthy donors. 33  34 We and others have recently described cohorts of immune deficient patients with activating 35 mutations in PIK3CD, the gene encoding the p110δ catalytic subunit of phosphoinositide 3‐36 kinase  δ  (PI3Kδ)9‐11.  PI3Kδ  is  a  lipid  kinase  that  catalyzes  the  phosphorylation  of  the 37 phosphatidylinositol‐(4,5)‐bisphosphate  lipid  to  produce  phosphatidylinositol‐(3,4,5)‐38 trisphosphate (PIP3). PI3Kδ  is expressed  in cells of the  immune system and regulates many 39 aspects  of  immune  cell  signaling,  particularly  in  lymphocytes12,  13.  Activated 40 phosphoinositide 3‐kinase δ syndrome (APDS)  is a combined  immunodeficiency affecting T 41 and  B  cells.  APDS  patients  suffer  from  recurrent  sinopulmonary  infections,  with  S. 42 pneumoniae  being  the most  commonly  isolated  pathogen14.  85%  of  APDS  patients  have 43 been diagnosed with pneumonia15. APDS patients are also more likely to develop structural 44 lung damage (bronchiectasis) than patients with other PIDs14. The mechanism underpinning 45 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 3: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

3  

the increased susceptibility to pneumococcal infection in APDS is unclear12.  Although APDS 46 patients often lack IgG2, the protection afforded by immunoglobulin replacement therapy is 47 not as robust as that observed  in patients with pure antibody deficiencies, suggesting that 48 antibody‐independent PI3Kδ‐driven mechanisms may be  involved14. The monogenic nature 49 of APDS  allows  us  to dissect mechanisms  of  susceptibility  to  S.  pneumoniae  infection  on 50 cellular and molecular  levels, and  to determine whether PI3Kδ  inhibitors may help reduce 51 the susceptibility to S. pneumoniae. If so, PI3Kδ  inhibitors, that are  in development for the 52 treatment of inflammatory and autoimmune diseases, might also have wider applications to 53 reduce the pathological consequences of S. pneumoniae  infection16.  In this study, we have 54 explored mechanisms by which PI3Kδ hyperactivation drives susceptibility to S. pneumoniae 55 infection. We  found  that  the  administration  of  the  PI3Kδ‐selective  inhibitor  nemiralisib 56 (GSK‐22696557)17,  18  reduced  the  severity of pneumococcal disease  in wild‐type mice.  To 57 investigate  this  further,  we  generated  a  p110δE1020K  mouse  model  that  accurately 58 recapitulates  the  genetics  and  immunological phenotype of APDS,  and displays  increased 59 susceptibility  to S. pneumoniae  infection. We show  that  this susceptibility segregates with 60 enhanced PI3Kδ signaling in B cells, which exacerbate S. pneumoniae infection at early time 61 points before the adaptive immune response comes into play. Of note, we have identified a 62 previously unappreciated population of CD19+B220‐ IL‐10‐secreting cells that was present in 63 wild‐type  mice  but  expanded  10‐20  fold  in  p110δE1020K  mice.  We  demonstrate  that 64 nemiralisib  reduces  the  frequency  of  IL‐10‐producing  B  cells  in  the  lung  and  improves 65 survival of p110δE1020K mice. Similarly, a higher proportion of transitional B cells from APDS 66 patients  produced  IL‐10  and  this  was  reduced  by  nemiralisib.  This  study  provides  new 67 insights  into  the  pathogenesis of  the  early  stages of  invasive  S.  pneumoniae disease  and 68 offers the potential of future therapeutic strategy to alleviate the severity of this disease in 69 susceptible patients.   70 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 4: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

4  

Results 71 

Inhaled nemiralisib alleviates the severity of S. pneumoniae infection in mice  72 Given that APDS patients are more susceptible to S. pneumoniae, we sought to determine 73 whether nemiralisib, an  inhaled PI3Kδ  inhibitor which  is  in development for the treatment 74 and prevention of COPD excacerbations17, 18, would alter susceptibility to airway infections.  75 We treated mice with nemiralisib and then  infected them  intranasally with S. pneumoniae. 76 Nemiralisib‐treated mice showed prolonged survival compared to mice given vehicle control 77 (Fig 1). This protection was only effective  if  the drug was administered before and during 78 infection  (Fig  1).  By  contrast,  nemiralisib  administration  8h  or  24h  post  infection  had  no 79 impact  on  survival  of  the mice.  These  data  suggest  that  PI3Kδ modulates  the  immune 80 response during early S. pneumoniae  infection, either by  inhibiting protective immunity, or 81 by promoting an adverse response. 82  83 

Mouse model of APDS: hyperactive PI3Kδ signaling and altered B and T cell 84 

development in p110δE1020K mice 85 We generated a conditional knock‐in mouse harboring mutation E1020K in the Pik3cd gene 86 that  is  equivalent  to  the  most  common  APDS‐causing  mutation  E1021K  in  humans 87 (Supplementary Fig 1). These mice were subsequently crossed with different Cre‐expressing 88 lines  to  either  generate  germline  mice  where  p110δE1020K  is  expressed  in  all  cells 89 (p110δE1020K‐GL) or  selectively  in B  cells using Mb1Cre  (p110δE1020K‐B),  in T  cells using Cd4Cre 90 (p110δE1020K‐T) or myeloid cells using Lyz2Cre (p110δE1020K‐M). We studied p110δE1020K mice in 91 comparison with wild‐type and p110δD910A mice that have catalytically inactive p110δ19. 92  93 Initially,  we  tested  if  p110δE1020K  mice  have  increased  PI3Kδ  activity  and  display  the 94 characteristic immunological phenotype of APDS. Biochemical analyses of B cells and T cells 95 from p110δE1020K‐GL mice confirmed that the kinase is hyperactive (Fig 2). Measurements of 96 PIP3  in T  cells  showed  that p110δE1020K  is about 6  times  as active as  the wild‐type  kinase 97 following stimulation with anti‐CD3 and anti‐CD28, but with no evidence for increased basal 98 activity (Fig 2A).  In B cells, p110δE1020K  led to  increased basal PIP3  levels, but  it was further 99 increased only about 2‐fold compared to wild‐type mice after stimulation with anti‐IgM (Fig 100 2B).  This  pattern  resembles  results  found  in  patients  with  APDS10.  In  wild‐type  and 101 p110δE1020K‐GL cells, the PI3Kδ‐selective inhibitor nemiralisib reduced PIP3 to the background 102 level observed  in p110δD910A cells, which, as expected, were  insensitive  to nemiralisib  (Fig 103 2A, B).  104  105 PIP3  binds  to  the  protein  kinase  AKT,  supporting  its  phosphorylation  on  Thr308  and 106 subsequent activation. Western blotting of purified p110δE1020K‐GL T cells showed  increased 107 AKT  phosphorylation  following  stimulation  with  anti‐CD3  and  anti‐CD28  antibodies 108 compared to wild‐type cells, whereas AKT phosphorylation  in p110δD910A T cells was below 109 the limit of detection (Fig 2C). In B cells, both basal and anti‐IgM‐induced phosphorylation of 110 AKT were elevated in p110δE1020K‐GL cells, while strongly diminished in p110δD910A B cells (Fig 111 2D). The phosphorylation of ERK and the AKT effector proteins, FOXO and S6, were similarly 112 affected. All phosphorylation events  in wild‐type and p110δE1020K‐GL  cells were  reduced  to 113 the  levels observed  in p110δD910A  cells by  inhibition with nemiralisib. As expected, p110δ 114 protein expression was not affected by the E1020K or D910A mutations (Figs 2C, D). 115  116 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 5: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

infection

24h pre-infectionnemiralisib treatment

8h post-infectionnemiralisib treatment

24h post-infectionnemiralisib treatment

-24h 0h +8h +24h

Figure 1: Prophylactic, but not therapeutic treatment with the inhaled PI3Kδ inhibitor nemiralisibmitigates disease severity following S. pneumoniae infection in wild-type mice.Wild-type mice were treated twice daily with the inhaled PI3Kδ inhibitor nemiralisib for the duration of thestudy: when treatment was started 24h prior to infection with S. pneumoniae, survival rates were improved.When started 8h or 24h post-infection, the treatment had no effect on survival outcome. (-24h: data from 5independent experiments combined n=60; +8h/+24h: data from 3 independent experiments combinedn=36).

Per

cent

sur

viva

l

Per

cent

sur

viva

l

Per

cent

sur

viva

l

Figure 2: PI3Kδ hyper-activation leads to increased PIP3 and pAKT levels that can be reduced using aselective PI3Kδ inhibitorA: PIP3 levels in purified T cells from wild-type, p110δE1020K and p110δD910A mice, unstimulated or stimulatedwith anti-CD3 and anti-CD28 in the presence or absence of the selective PI3Kδ inhibitor, nemiralisib (n=2-3).B: PIP3 levels in purified B cells from wild-type, p110δE1020K and p110δD910A mice unstimulated, or stimulatedwith anti-IgM in the presence or absence of nemiralisib (n=2-6). C: Western blots of purified T cells from wild-type, p110δE1020K and p110δD910A mice, unstimulated or stimulated with anti-CD3 and anti-CD28 in thepresence or absence of nemiralisib. D: Western blots of purified B cells from wild-type, p110δE1020K andp110δD910A mice, unstimulated or stimulated with anti-IgM in the presence or absence of nemiralisib.(Representative of 2 independent experiments).

C

nemiralisib (10 nM)

αCD3 + αCD28

pAkt (Thr308)

pErk 1/2 (Thr202/Tyr204)

Total Akt

pFoxo 1/3a (Thr32/Thr24)

p110δ

pS6 (Ser235/236)

β-actin

Control E1020K D910A

D

nemiralisib (10 nM)

Control E1020K D910A

αIgM

pAkt (Thr308)

pErk 1/2 (Thr202/Tyr204)

pFoxo 1/3a (Thr32/Thr24)

pS6 (Ser235/236)

p110δ

Total Akt

β-actin

- +

nem

iralis

ib+- +

nem

iralis

ib+- +

nem

iralis

ib+

PIP

3 A

R/ P

IP2

AR

- +

nem

iralis

ib+- +

nem

iralis

ib+- +

nem

iralis

ib+

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

PIP

3 A

R/ P

IP2

AR

A B

T cells B cells

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 6: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

5  

Germline p110δE1020K‐GL mice had near normal numbers of myeloid cells in the bone marrow 117 and  spleen.  In  the  bone marrow we  observed  a  significant  B  cell  lymphopenia  that was 118 associated with a block  in B cell development between Pro‐B and Pre‐B cells and did not 119 extend to the spleen. Although these mice had normal numbers of splenic B cells, there was 120 an  increased  proportion  of marginal  zone  B  and  B1  cells with  an  altered  distribution  of 121 transitional B  cells  (Supplementary Fig. 2). The  thymus of p110δE1020K‐GL mice was normal 122 except for a mild reduction  in single positive CD8+ T cells.  In the spleens and  lymph nodes 123 there  were  increased  proportions  of  activated/memory  T  cells  identified  by  high  CD44 124 expression and  low CD62L expression, and  increased numbers of Foxp3+ T regulatory cells 125 (Supplementary Fig 3). These T cell and B cell phenotypes were recapitulated in p110δE1020K‐T 126 and p110δE1020K‐B mice, respectively (Supplementary Figs 4 and 5.). The reciprocal effects of 127 the inhibitory D910A and activating E1020K mutations on specific cell subsets demonstrate 128 the pivotal role of PIP3 during  lymphocyte development and highlight  the  importance of a 129 tight control of PI3Kδ activity. 130  131 Analysis of serum  immunoglobulins showed that p110δE1020K‐GL mice had elevated  levels of 132 IgG1  and  IgG2b  and  a  trend  towards  increased  levels  of  IgG2c,  IgA,  and  IgE  isotypes 133 compared to wild‐type mice.  There was also a trend to hyper IgM in p110δE1020K‐GL mice as 134 is  frequently observed  in APDS patients  10,  11,  14, whereas p110δD910A mice were  antibody 135 deficient  (Supplementary  Fig  6).  The  level  of  serum  IgG3, which  has  been  shown  to  be 136 protective  against  S.  pneumoniae19, was  comparable  in  p110δE1020K‐GL  and wild‐type mice 137 (Supplementary Fig 6).  138  139 

Susceptibility to S. pneumoniae is caused by PI3Kδ hyper‐activation in B cells 140 Given that the  immunological phenotype of p110δE1020K‐GL mice strongly resembled that of 141 APDS, we sought to determine whether these mice recapitulate the increased susceptibility 142 to  S. pneumoniae observed  in APDS patients. We  infected p110δE1020K‐GL, p110δD910A,  and 143 p110δWT mice with S. pneumoniae (TIGR4 serotype 4) and followed their survival for 10 days 144 (Fig  3A).  Interestingly,  despite  being  antibody‐deficient,  p110δD910A  mice  did  not  show 145 increased  susceptibility  to  S.  pneumoniae.  By  contrast,  p110δE1020K‐GL  mice  showed 146 accelerated disease onset and increased mortality (Fig 3A).  147  148 In  order  to  determine  the  cell  type  responsible  for  increased  susceptibility  to  S. 149 pneumoniae,  we  next  infected  the  lineage‐restricted  p110δE1020K‐B,  p110δE1020K‐T  and 150 p110δE1020K‐M mice. Myeloid  expression  of  p110δE1020K  had  no  effect  on  the  course  of  S. 151 pneumoniae  infection  (Fig 3B), whereas expression of p110δE1020K  in T cells was protective 152 (Fig  3C).  Only  the  p110δE1020K‐B  mice  replicated  the  increased  susceptibility  of  the 153 p110δE1020K‐GL mice  to S. pneumoniae  (Fig 3D). Furthermore,  transfer of p110δE1020K‐B bone 154 marrow  into  irradiated  RAG2‐/‐  recipients  also  conferred  increased  susceptibility  to 155 infection, which was  only  partially  rescued  by  co‐transferring wild‐type  and  p110δE1020K‐B 156 bone marrow at a 1:1 ratio  (Fig 3E). These results  indicate that B cells drive the  increased 157 susceptibility  to  S.  pneumoniae  infection  in  p110δE1020K‐GL  mice  in  an  immune‐dominant 158 manner. 159  160 Natural  antibodies  against  phosphorylcholine  (PC)  can  offer  protection  against  infection 161 with encapsulated bacteria,  including S. pneumoniae  20, 21. We  found that p110δD910A mice 162 lacked anti‐PC antibodies, presumably because of the absence of B1 and MZ B cells which 163 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 7: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

Per

cent

sur

viva

l

Per

cent

sur

viva

l

Per

cent

sur

viva

l

Per

cent

sur

viva

l

Figure 3: PI3Kδ hyper-activation leads to increased susceptibility to S. pneumoniae infectionA: Germline p110δE1020K-GL mice show accelerated disease development and significantly increased mortalitycompared to control mice in response S. pneumoniae infection, while kinase dead p110δD910A mice do notrespond differently to wild-type mice. B-D: The p110δE1020K mutation was introduced conditionally into myeloidcells, T cells and B cells by crossing onto Lyz2cre, Cd4cre and Mb1cre lines respectively. The myeloid conditionalmutation did not affect survival following S. pneumoniae infection in p110δE1020K-M mice (B), while T cellconditional p110δ hyper-activation lead to improved survival in p110δE1020K-T mice (C). However, introducing thep110δE1020K mutation specifically in B cells (p110δE1020K-B mice) replicated the increased susceptibility to S.pneumoniae seen in p110δE1020K-GL mice (D). E: Transfer of p110δE1020K-B bone marrow into irradiated RAG2-/-

recipients also conferred increased susceptibility to S. pneumoniae infection compared to recipients receivingwild-type bone marrow, and this phenotype was not fully rescued in a 50% BM chimera. F-G: Naïve PI3KδE1020K

mice produce normal levels of anti-phosphorylcholine IgM and significantly higher levels of anti-PC IgG, whilePI3KδD910A mice produce no natural antibody. (Data from 2 independent experiments combined. A: n=24; B:n=22; C: n=20; D: n=20; E: n=20; F-G: WT n=11; E1020K n=8 D901A n=9).

A: B:

C: D:

0 50 100 150 200 250

0

20

40

60

80

100

Time (h)

p=0.0027

E: F G

0.0

0.5

1.0

1.5

2.0

2.5 p<0.0001

p=0.002

WT

E1

02

0K

D9

10

A

0.0

0.5

1.0

1.5

2.0

2.5

Ant

i-PC

(A

450)

IgG p=0.0007 p<0.0001

p=0.005

Wild-type

p110δE1020K-GL

p110δD910A

Wild-type

p110δE1020K-M (Lyz2cre)

Wild-type

p110δE1020K-T (Cd4cre)Wild-type

p110δE1020K-B (Mb1cre)

Wild-type

p110δE1020K-B (Mb1cre)

50% chimera

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 8: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

6  

are  the major  source  of  natural  antibodies19,  22‐24.  By  contrast,  anti‐PC  antibodies  in  the 164 serum from p110δE1020K mice were similar (IgM) or elevated (IgG)(Fig 3 F  , G) compared to 165 wild‐type mice.  Therefore,  susceptibility  to  S.  pneumoniae  in  p110δE1020K mice  cannot be 166 explained by a failure to produce natural antibodies against conserved bacterial epitopes. 167  168 

B cells drive early pathology during S. pneumoniae infection in an antibody‐169 

independent manner but are required to prevent chronic infection  170 In order to further investigate antibody‐mediated protection in the context of PI3Kδ hyper‐171 activation,  we  immunized  mice  with  Pneumovax,  a  23‐valent  polysaccharide  vaccine25. 172 Following  infection with S. pneumoniae, wild‐type mice were completely protected by this 173 vaccination  protocol,  while  p110δE1020K‐GL mice  were  only  partially  protected,  to  a  level 174 similar  to  that  in  non‐immunized  wild‐type mice.  By  contrast,  p110δD910A  mice  did  not 175 benefit  from  vaccination  (Fig 4A, B).  Interestingly, p110δE1020K‐GL mice  and wild‐type mice 176 produced  a  similar  antibody  response,  in  contrast  to  p110δD910A  mice  that  showed  no 177 response (Fig 4C).  These data indicate that Pneumovax vaccination clearly protects against 178 S. pneumoniae, as shown  in  immunized wild‐type mice. Despite this protection p110δE1020K 179 mice  remained  significantly more  susceptible  to S. pneumoniae  infection. Together,  these 180 data suggest that B cells can affect susceptibility to S. pneumoniae by a mechanism that is at 181 least in part antibody‐independent.  182  183 To  determine more  definitively  whether  B  cells  can  be  pathogenic  in  the  context  of  S. 184 pneumoniae infection, we infected wild‐type and Ighmtm1   (µMT) mice which lack mature B 185 cells26. Strikingly,  Ighmtm1 mice  showed  reduced  susceptibility  to S. pneumoniae  infection, 186 delaying disease onset  from ~2 days  in wild‐type mice  to ~5 days  in  Ighmtm1 mice  (Fig 5). 187 Although survival  in  Ighmtm1 mice was  increased up to 30 days post  infection compared to 188 wild‐type mice,  CFU  counts  from  the  lungs  of mice  surviving  to  this  time‐point  indicates 189 that, despite  appearing  clinically healthy,   41%  (7/17) of  Ighmtm1 mice  failed  to  clear  the 190 infection  compared  to  100%  clearance  in  wild‐type mice  (Fig  5).  Taken  together,  these 191 results suggest that during early time‐points in the local infected environment B cells can be 192 pathogenic, while at later stages they are required to prevent chronic infection.   193  194 Increased susceptibility to S. pneumoniae could either be due to uncontrolled bacterial 195 proliferation or be caused by an aberrant immune response to the pathogen. The bacterial 196 titers from lungs and spleens of wild‐type, p110δD910A and p110δE1020K‐GL mice were similar 197 at 24h post infection, suggesting that the different susceptibilities did not correlate with 198 different abilities to control bacterial outgrowth during the early phase of infection 199 (Supplementary Fig 7A).  We observed a trend towards increased levels of TNFα, IL‐6, IL‐1β 200 and IL‐1α in the lung tissue of p110δE1020K‐GL mice at 24h post infection (Supplementary Fig 201 7B). Consistent with this, the levels of TNFα, IL‐6 and IL‐1β were reduced in the lungs of 202 wild‐type mice treated with nemiralisib prior to S. pneumoniae infection (Supplementary Fig 203 7C), indicating that, while PI3Kδ signaling affect the amount of pro‐inflammatory cytokines 204 produced in response to infection, the increase in response to PI3Kδ hyper‐activation is 205 modest.  206  207 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 9: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

AP

re-I

mm

Po

st-

Imm

Pre

-Im

m

Po

st-

Imm

Pre

-Im

m

Po

st-

Imm

IgG

R-P

E F

luor

esen

ce

0 50 100 150 200 250

0

20

40

60

80

100

Time (h)

Per

cent

sur

viva

l

p=0.005

0 100 200 3000

20

40

60

80

100

Time (h)

Per

cent

sur

viva

l

p<0.0001

p<0.0001

B

C

Figure 4: PI3KδE1020K-GL mice respond to Pneumovax and have normal antibody levels.A-B: Pneumovax (T-independent pneumococcal polysaccharide vaccine, PPV) partially protects p110δE1020K-

GL mice against infection (A), while p110δD910A are not protected (B). C: p110δE1020K-GL mice produce normallevels of total IgG in response to Pneumovax immunisation (anti-pneumococcal serotype 4 shown) whilep110δD910A mice do not respond to vaccine. (A: results from 3 independent studies combined, n=30; B: resultsfrom 2 independent studies combined, n=19; C: results from 2 independent studies combined: WT n=22;E1020K n=8; D910A n=6)

Wild-type (PBS)

Wild-type (PPV)

p110δE1020K-GL (PBS)

p110δE1020K-GL (PPV)

Wild-type (PBS)

Wild-type (PPV)

p110δD910A (PBS)

p110δD910A (PPV)

Figure 5: B cells could drive increased pathology in response to S. pneumoniae infection, independentof bacterial clearance.Ighmtm1 (µMT) mice show delayed disease progression and improved overall survival up to 30 days post S. pneumoniae infection, however 41% (7/17) surviving Ighmtm1 mice failed to clear bacteria from the lung tissue at 30 days post infection compared to 100% clearance in surviving wild-type mice. (Data from 1 study, n=24)

0 200 400 600 800

0

20

40

60

80

100

Time (h)

Per

cent

sur

viva

l

p=0.0002

WT

uM

T

1 100

1 101

1 102

1 103

1 104

CFU

/lung

30-day survival Lung CFU (30-day survivors) Wild-type

µMT

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 10: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

7  

CD19+  B220‐  B  cells  produce  high  levels  of  IL‐10  in  response  to  S.  pneumoniae 208 

infection in comparison with conventional CD19+ B220+ B cells 209 We hypothesized that  increased susceptibility to S. pneumoniae  infection can be mediated 210 by  a  specific  subpopulation  of  B  cells.  Therefore, we  studied  the  B  cell  compartment  in 211 various tissues and found an atypical population of CD19+B220‐  B cells that was rare in wild‐212 type mice, but  significantly  increased  in p110δE1020K‐GL mice and was absent  in p110δD910A 213 mice  (Fig  6A).  In  the  spleen  and  bone  marrow,  there  was  a  10‐  and  5‐fold  increase, 214 respectively, in the numbers of CD19+B220‐ B cells in p110δE1020K‐GL mice compared to wild‐215 type  mice  (Fig  6A).  Infection  with  S.  pneumoniae  did  not  induce  further  expansion  of 216 CD19+B220‐ B cells in the lungs or other tissues examined 24h  post‐infection (Fig 6B). 217  218 To ascertain  if  these cells were also present  in  the  lungs and  to distinguish  resident  from 219 circulating cells, we  labelled circulating  leukocytes  in wild‐type and p110δE1020K‐GL mice by 220 intravenous injection of biotin‐conjugated anti‐CD45. We then stained the lung homogenate 221 with fluorochrome‐conjugated anti‐mouse CD45 and streptavidin, and used flow cytometry 222 to distinguish tissue resident leukocytes from those present in the lung capillaries. We found 223 a significant increase in the proportion and number of tissue‐resident, but not circulating, B 224 cells  in  p110δE1020K‐GL  mice  compared  to  wild‐type mice.  There  was  an  increase  in  both 225 CD19+B220+  and  CD19+B220–  cells  among  the  tissue‐resident  B  cells which  demonstrates 226 that both populations can take residence in the lung (Supplementary Fig 8). 227  228 Given  that  B  cells  from  p110δE1020K‐GL  mice  drive  susceptibility  to  S.  pneumoniae  in  an 229 antibody‐independent manner, we sought to look at other properties of B cells. We found a 230 trend  towards  lower  IL‐10 protein  levels and a significant 10‐fold decrease  in  IL‐10 mRNA 231 expression at 24h post  infection  in whole  lung homogenates  from wild‐type mice  treated 232 with nemiralisib (Supplementary Fig 7C, D), indicating that PI3Kδ signaling can regulate IL‐10 233 levels in the lung post infection. IL‐10 is an important immune‐regulatory cytokine known to 234 affect the course of S. pneumoniae  infection27, 28 and therefore  increased  IL‐10 production 235 could explain the B cell‐dependent but antibody‐independent effects seen  in p110δE1020K‐GL 236 mice. To  investigate this further, we crossed the p110δE1020K‐GL and p110δD910A mice with a 237 highly sensitive IL‐10 reporter (Il10ITIB) mouse29.  238  239 At 24h post S. pneumoniae  infection,  the  frequencies of  the  IL‐10‐producing B  cells were 240 significantly  increased  in  the  lungs of p110δE1020K‐GL  Il10ITIB mice  compared  to  in wild‐type 241 Il10ITIB  mice  (Supplementary  Fig  7E).  In  addition,  IL‐10‐producing  B  cells  were  barely 242 detected  in  lungs  from p110δD910A mice  (Supplementary Fig 7E). Frequencies of  the  IL‐10‐243 producing  CD11b+ myeloid,  T  and  NK  cells  in  lungs  were  variable,  but  not  consistently 244 increased in p110δE1020K‐GL mice (Supplementary Fig 7E). Further analysis of the CD19+ B cell 245 subset isolated from lungs and spleens at 24h post S. pneumoniae infection showed that the 246 proportion  of  IL‐10‐producing  cells  was  increased  among  the  B220‐  B  cell  subset  as 247 compared  to  the B220+ B  cell  subset  in p110δE1020K‐GL mice  (5% B220+  vs 68% B220‐)  and 248 wild‐type mice (2% B220+ vs 55% B220‐) (Fig 6C). Furthermore, the proportion and absolute 249 number  of  IL‐10‐producing  CD19+B220‐  cells  and  CD19+B220+  cells  was  increased  in 250 p110δE1020K‐GL  mice  compared  to  wild‐type  mice,  while  such  IL‐10‐producing  cells  were 251 virtually  absent  in  p110δD910A mice  (Fig  6C).  This  indicates  that  CD19+B220‐  cells  are  the 252 predominant population of B cells that produce IL‐10 in a PI3Kδ‐dependent manner.  253  254 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 11: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

WT

E1

02

0K

D9

10

A%C

D19

+B

220- (

CD

19+)

0

5

10

15p<0.0001 p<0.0001

WT

E1

02

0K

D9

10

A

0

1 105

2 105

3 105

CD

19+B

220- c

ells

/BM p<0.0001 p<0.0001

WT

E1

02

0K

D9

10

A

0

1 106

2 106

3 106

4 106

CD

19+B

220-

cells

/Spl

een

p<0.0001 p<0.0001

WT E1020K D910A WT E1020K D910A

CD19 (gated on CD19+ cells)

B22

0Bone Marrow Spleen

Bone Marrow Blood Spleen Lung

0

2 104

4 104

6 104

8 104

1 105

WT E1020K

0

2 106

4 106

6 106

WT E1020K

0

1 105

2 105

WT E1020K

PB

S

S.p

PB

S

S.

pCD

19+B

220- c

ells

/BM

B22

0

0.90.5 2.0 2.212.71.0 12.1 22.1

WT E1020K WT E1020K WT E1020K WT E1020K

CD19 (gated on CD19+ cells)

Figure 6: p110δE1020K mice have an expanded population of IL-10 producing CD19+B220- B cellsA: Naïve p110δE1020K mice show a significant increase in the proportion and number of B220- B cells in bone marrow and spleen. While thispopulation is detectable in wild-type mice, it is absent from p110δD910A mice. Representative pseudocolor plots show mean cell proportions in naïvemice B: S. pneumoniae (S.p) infection does not lead to significant expansion or recruitment of B220- B cells at 24h post infection in bone marrow,blood, spleen or lung tissue. Representative pseudocolor plots show mean cell proportions in naïve mice. C: At 24h post S. pneumoniae infection,IL-10 production is increased in p110δE1020K B cells from both lung and spleen, and reduced in p110δD910A B cells compared to wild-type mice.Furthermore, B220- B cells produce higher levels of IL-10 in response to S. pneumoniae infection compared to B220+ B cells in wild-type andp110δE1020K mice. Representative pseudocolor plots show mean cell proportions in S. pneumoniae infected mice (A: combined data from 2independent experiments, WT n=10; E1020K n=12; D910A n=7, B: representative data from 2 independent experiments, n=6, C: representativedata from 2 independent experiments n=6).

WT

E1

02

0K

D9

10

A

CD

19+B

220+

IL10

+ c

ells

/Rlu

ng

WT

E1

02

0K

D9

10

A

CD

19+B

220- IL

10+ c

ells

/Rlu

ng

WT

E1

02

0K

D9

10

A

CD

19+B

220+

IL10

+

cells

/spl

een

0

2 106

4 106

6 106

8 106

1 107p=0.0001

Lung Spleen

B220+ B220- B220+ B220-

IL-1

0

B220

1.8 5.2 0.7 3.7 10.5 1.1

55.0 67.8 14.0 50.7 68.4 5.3

WT E1020K D910A WT E1020K D910A

IL-1

0

B220

B22

0-B

220+

B22

0-B

220+

1 7 0.030.3 3 0.05

A

B

C

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 12: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

8  

Previously, B  cells  that  produce  IL‐10  have  been  termed B  regulatory  cells  (Bregs)30. We 255 sought to compare the phenotype of CD19+B220‐ IL‐10‐producing B cells with conventional 256 IL‐10‐producing  CD19+B220+  Bregs  described  previously  (Fig  7).  Following  in  vitro 257 stimulation for 5h and analysis of cell surface markers and intracellular IL‐10 we found that 258 there were  clear  phenotypic  differences  between  conventional  B220+  Breg  cells  and  the 259 B220‐ B cells we describe here, including the differential expression of CD43 and IgM (Fig 7). 260 The  lack  of  B220  expression  and  low  IgM  expression  differentiate  the  CD19+B220‐  IL‐10‐261 producing B cells from conventional B1 cells31.  262  263 

Nemiralisib ameliorates the susceptibility to S. pneumoniae in p110δE1020K mice 264 Given that increased PI3Kδ activity in mice leads to increased mortality after S. pneumoniae 265 infection we explored if nemiralisib would provide protection.  Treatment of p110δE1020K‐GL 266 mice with inhaled nemiralisib 24h prior to infection led to a 20% increase in survival. While 267 nemiralisib treatment did not affect the numbers of CD19+B220‐ B cells, the proportion of IL‐268 10 producing CD19+B220‐ B cells in the lungs were reduced in comparison to non‐treated 269 mice (Fig 8A). This was in keeping with our prior observations that nemiralisib treatment 270 reduced IL‐10 mRNA levels in the lung tissue of S. pneumoniae infected wild‐type mice 271 (Supplementary Fig 7D), suggesting a role for IL‐10‐producing CD19+B220‐ B cells in the 272 PI3Kδ‐dependent susceptibility to infection. 273  274 

Nemiralisib treatment suppresses IL‐10 production in B cells of APDS patients 275 Cohort  studies  have  shown  that  75%  of  patients  with  APDS  have  elevated  circulating 276 transitional B cells (CD19+IgM++CD38++)14. Other studies have shown that such transitional B 277 cells can produce high  levels of  IL‐1032,  33. We obtained blood samples  from patients with 278 APDS  and  healthy  controls  and  confirmed  that  all  of  these  APDS  patients  had  elevated 279 proportions  of  transitional  B  cells  (Fig  8B). We  isolated  PBMCs  from  two  of  these  APDS 280 patients and three healthy controls and stimulated them for 72h with anti‐CD3 and IL‐2 32. 281 After  stimulation  we  found  more  IL‐10‐producing  B  cells  and  more  IL‐10‐producing 282 transitional  B  cells  in  PBMCs  of  APDS  patients  than  in  PBMCs  of  healthy  controls, while 283 treatment with nemiralisib effectively  suppressed  IL‐10 production  in  these  cells  (Fig 8C). 284 Therefore,  in  keeping  with  reduction  of  CD19+B220‐IL‐10  producing  B  cells  in  the mice, 285 nemiralisib can also reduce IL‐10 producing human transitional B cells.   286 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 13: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

IL-1

0

CCF4

CD

43

B220

IL-10+ CD1d

CD5

CD21 IgD IgM CD138 PDL-1

E10

2KW

T

0

5000

10000

15000

CD1d

B220 + +- -

WT E1020K

CD5

+ +- -

WT E1020K

CD21

+ +- -

WT E1020K

IgD

0

200

400

600

800

1000

0

5000

10000

15000

0

500

1000

1500

2000

2500

CD138 PDL-1

0

500

1000

1500

0

1000

2000

3000

4000

5000

+ +- -

WT E1020K

+ +- -

WT E1020K

+ +- -

WT E1020K

0

5000

10000

15000

IgM

+ +- -

WT E1020K

B220

Med

ian

fluor

esce

nce

inte

nsity

Filled histogram – CD43+B220-

Unfilled histogram – CD43-B220+

Figure 7: IL-10 producing B220- B cell subset is a novel B cell subset, expanded in PI3KδE1020K mice.In order to compare surface marker expression from B220- and B220+ IL-10 producing B cells, splenocytesfrom Il10ITIB mice (WT and E1020K) were stimulated with LPS/PdBu/Ionomycin/Brefeldin A for 5 hours andthen stained for cell surface markers as shown. A: After gating on IL-10 producing B cells, CD43++B220- cellswere compared to CD43-B220+ cells. Histograms highlighting the differential surface marker expression asmeasured by median fluorescence intensity (MFI) between these populations are shown. B: Comparison ofsurface marker MFI show that CD19+ B220- IL-10+ B cells express: CD43++CD5int/+ CD23-CD21-CD1dlo/int

IgM+/-IgDlo/-PDL1-CD138- as opposed to conventional Bregs expressing: CD19hi B220hi IL-10+ CD43-

CD5VarCD23-CD21++CD1dhi IgMhi IgDVar/lo PDL1+CD138int. (Data from 1 experiment, n=5)

A

B

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 14: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

Figure 8: Nemiralisib treatment reduces the proportion of IL-10 producing B cells in mice and humans.A: Prophylactic treatment with nemiralisib improved survival in p110δE1020K-GL mice and was associated with asignificant reduction in the proportion of IL-10 producing B220- B cells in the lung at 24h post infection. (A: Combineddata from two independent studies, survival n=24; lung tissue analysis n=12) B: Blood from patients with APDS (n=6)and healthy controls (n=6) was obtained and the B cell phenotype was determined by flow cytometry. Transitional Bcells are identified as CD19+IgD+CD27-CD24+CD38+. Representative contour plots with outliers show the meanproportions of cells. C: Freshly isolated PBMCs were unstimulated or stimulated with plate bound anti-CD3 and anti-IL-2 for 72h in the presence or absence of nemiralisib (n=2-3). The proportion of IL-10 producing cells among the totalB cell and transitional B cell populations was determined by flow cytometry. Representative contour plots with outliersshow mean proportions of IL-10 producing cells. (Combined data from 2 independent experiments).

CD19

Healthy APDS-1

FS

C

Gated on CD19+CD27-IgD+

Unstimulated Stimulated Stimulated +nemiralisib

Gated on CD24+ CD38+ B cells

Healthy

APDS- 1

CD19

IL10

Isot

ype

CD19

B C

WT

APDS-10

20

40

60

80

100

% T

rans

ition

al c

ells

(of

CD

19+C

D27

- IgD

+ )

**

A

0 100 200 300

0

20

40

60

80

100

Time (h)

p=0.0116

vehicle control

nemiralisib

0

1 106

2 106

3 106

4 106

WT E1020K

p<0.002

Ve

hic

le

Ve

hic

le

Ne

mir

alis

ib

CD

19+B

220+

IL10

+ c

ells

/spl

een

Ve

hic

le

Ve

hic

le

Ne

mir

alis

ib%IL

-10+

(C

D19

+B

220-

)

0

5

10

15

20

25

WT E1020K

p=0.001

0

5 104

1 105

1.5 105

WT E1020K

p=0.0084

Ve

hic

le

Ve

hic

le

Ne

mir

alis

ib

0

5 103

1 104

1.5 104

CD

19+B

220+

IL10

+ c

ells

/Rlu

ng

WT E1020K

p=0.043

0

20

40

60

80p<0.0001 p=0.0058

WT E1020K

0

1

2

3

4

5

WT E1020K

p=0.008

CD24

CD

38

- +

nem

iralis

ib+- +

nem

iralis

ib+0

5

10

15

20

% IL

10+

(of C

D19

+ B

cel

ls)

** ***

- +

nem

iralis

ib+- +

nem

iralis

ib+0

5

10

15

20

25

% IL

10+

(of t

rans

ition

al B

cel

ls)

* *

10.78 7.81

6.86 67.9

10.68 21.5 9.78

2.3 11.71 4.84

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 15: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

9  

Discussion 287 

Our  results  show  that enhanced PI3Kδ  signaling  leads  to  the  increased  susceptibility  to S. 288 pneumoniae  infection  through a B  cell‐dependent, but antibody‐independent mechanism. 289 We  found an expansion of an aberrant B cell population which could be equivalent to the 290 elevated  transitional B cell population  found  in APDS patients. These cell populations may 291 have a detrimental effect during the early phase of S. pneumoniae infection.  292  293 

B cells drive increased susceptibility to S. pneumoniae infection in p110δE1020K mice  294 In this study, we show that B cells can increase the susceptibility to S. pneumoniae infection 295 during  the  first  few hours  after exposure. Mice were more  susceptible  to  S. pneumoniae 296 infection when the hyperactive p110δE1020K mutation was expressed  in B cells. By contrast, 297 mice expressing the p110δE1020K mutation only  in T cells were protected. The basis  for the 298 protection remains unknown and  is the focus of ongoing study. The p110δE1020K mice have 299 increased numbers of TFH and Treg cells and the conventional T cells have a more activated 300 phenotype. A recent study has documented a population of lung‐resident innate Th17 cells 301 that confers protection against re‐challenge with S. pneumoniae34. Whether such a subset is 302 affected by PI3Kδ activity and can also protect against  immediate challenge  is not known. 303 However, we did not detect  increased proportions of Th17 cells after  infection. Regardless 304 of the mechanism, the protection offered by T cells was overcome by the adverse effects of 305 B cells in p110δE1020K‐GL mice.  306  307 We  describe  a  subset  of B  cells which  lack  the  common B  cell marker B220,  and whose 308 abundance  is correlated with  the susceptibility  to S. pneumoniae  infection. Moreover, we 309 show that the development of this CD19+B220‐ B cell subset is highly dependent on the level 310 of activity of PI3Kδ. Susceptibility to S. pneumoniae infection was not altered in p110δD910A 311 mice  as  compared  to wild‐type mice.  Kinase‐dead p110δD910A mice  lack natural  and  anti‐312 capsular  antibodies  which  may  make  them  more  susceptible,  however,  their  lack  of 313 CD19+B220‐  B  cells  may  counterbalance  this  antibody  deficiency,  such  that  overall  the 314 mutation has little net effect on S. pneumoniae susceptibility.  315  316 

PI3Kδ signaling controls IL‐10 production in B cells 317 A large proportion of the CD19+B220‐ B cells produced IL‐10. Although increased IL‐10 could 318 potentially reduce the production of inflammatory cytokines, we found similar or increased 319 levels of TNFα, IL‐6 and IL‐1 in the lungs of p110δE1020K mice and no difference in CFU counts 320 at 24h post infection. 321  322 One  of  the  defining  characteristics  of  APDS  patients  is  an  increased  proportion  of 323 CD24+CD38+ B cells defined as transitional B cells 10‐12, 14, 15. Intriguingly, production of IL‐10 324 is  a  characteristic  of  these  B  cells  as well. High  IL‐10  levels  in  response  to  secondary  S. 325 pneumoniae  infection  following  influenza  A  is  associated  with  increased  lethality  when 326 compared  to  a  primary  S.  pneumoniae  infection,  and  importantly,  the  outcome  of  a 327 secondary S. pneumoniae  infection  is  improved by  IL‐10 neutralisation27,  28. This  indicates 328 that, while IL‐10 is required for normal immune regulation and resolution of inflammation35, 329 excess  IL‐10  during  the  early  stages  of  S.  pneumoniae  infection  could  have  an  acute 330 detrimental effect. This  fits with our observation  that nemiralisib  treatment  improved  the 331 outcome of mice  infected with S. pneumoniae and reduced  IL‐10 mRNA  levels  in the  lung. 332 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 16: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

10  

Further  studies are  required  to  investigate  the  time and  location  specific effects of B  cell 333 dependent  IL‐10 production, keeping  in mind  that B cells have  the potential  to produce a 334 

number  of  different  cytokines  (such  as  IL‐6,  TNF‐,  and  IL‐35)  that  could  affect  S. 335 pneumoniae susceptibility36.  336  337 We postulate that the transitional B cells which are expanded in APDS patients may not just 338 be precursors to more mature B cells, but also include cells that are functionally equivalent 339 to  the  CD19+B220‐  cells  that  we  have  identified  in  p110δE1020K mice  and  thus may  also 340 contribute to the increased susceptibility to S. pneumoniae infection and hence to the high 341 incidence of bronchiectasis characteristic of  this disease15.  In  this context,  it  is  interesting 342 that CD19+B220‐ B cells had previously been described as immature progenitors in the bone 343 marrow37,  rather  than a  functional PI3Kδ dependent subset  found  in peripheral  tissues as 344 we describe here. Although the CD19+B220‐ B cells we describe resemble B1 cells by some 345 criteria, such as the expression of CD5 and CD43, their  lower  IgM expression,  lack of B220 346 and distribution pattern suggest  that  they are  related but distinct  to conventional B1 and 347 B10 cells30, 31. A similar subset has previously been described as being dependent on CD19 348 and increased in the absence of PTEN expression and PTEN haploinsuffiency in humans can 349 lead to an APDS‐like syndrome38‐40. 350   351 Our results do not question the important role that antibodies play in the protection against 352 S. pneumoniae and other encapsulated bacteria.  Indeed,  in wild‐type mice,  immunization 353 with  Pneumovax  offered  complete  protection.  Rather,  our  results  highlight  a  hitherto 354 underappreciated  subset  of  B  cells  that  increase  the  pathological  response  shortly  after 355 infection.  It  remains  to be determined whether  this  is a  feature of  the B cells being  lung‐356 resident (and hence among the first cells of the immune system to encounter the  invading 357 pathogens)  and  by which mechanisms  B  cells  either  condition  lung  epithelia  to  become 358 more susceptible to  invasion of S. pneumoniae, reduce the clearance of S. pneumoniae by 359 phagocytes  and/or  increase  the  collateral  adverse  effects  of  the  early  innate  immune 360 response to this pathogen. This is in keeping with the increasing realization that B cells are 361 important  sources  of  different  cytokines  and  can  modulate  immune  responses 362 independently of their capacity to present antigen and produce antibodies36. 363  364 

Therapeutic implications 365 Intriguingly, the inhaled inhibitor nemiralisib offered protection in not just in p110δE1020K but 366 also  in wild‐type mice  infected with S. pneumoniae, when administered prior  to  infection. 367 This result suggests that preventive inhibition of PI3Kδ can be beneficial not only just in the 368 context of APDS, but also in other conditions associated with PI3Kδ hyperactivation, such as 369 COPD41. 370  371 The results presented herein are relevant to our understanding and the potential treatment 372 of patients with APDS. Clinical trials are currently ongoing using both  inhaled and systemic 373 PI3Kδ  inhibitors  (NCT02593539, NCT02435173  and NCT02859727). Systemic use of  PI3Kδ 374 inhibitor  has  shown  promise  in  reduction  of  lymphoproliferation  and  immune  cell 375 aberrations  in patients with APDS, however, no comments were made regarding recurrent 376 infections or respiratory manifestations42. Systemic use of PI3Kδ  inhibitors  in malignancies 377 have been associated with serious side effects,  including colitis43.  It would therefore be of 378 importance  to determine whether  inhaled PI3Kδ  inhibitors  could alleviate  the  respiratory 379 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 17: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

11  

manifestations  of  APDS  while  reducing  the  risk  of  the  adverse  effects  associated  with 380 systemic inhibition. Moreover, the results may also be relevant to other conditions, such as 381 COPD17, where PI3Kδ may be activated by non‐genetic mechanisms. Overall, our  findings 382 suggest  that  in subjects with  increased PI3Kδ activity prophylactic administration of PI3Kδ 383 inhibitors may help alleviate the course of S. pneumoniae infection.     384 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 18: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

12  

Materials and Methods 385 

Mouse strains and gene targeting 386 The  p110δE1020K  mice  were  generated  by  Ozgene,  Australia  using  homologous 387 recombination  in ES  cells. A duplicate  sequence  corresponding  to  the  last  coding exon  in 388 Pik3cd and carrying  the E1020K mutation was  flanked by  loxP sites and  inserted 3’  to  the 389 wild‐type sequence. Upon Cre‐mediated recombination, the wild‐type sequence is replaced 390 by  the mutant  E1020K  sequence.  p110δD910A,  Cd4cre, Mb1cre,  Lyz2cre,  Ighmtm1  (µMT)  and 391 Il10ITIB  mice  have  been  described  previously19,  26,  29,  44‐46.  Throughout  the  study,  the 392 p110δE1020K  allele  was  heterozygous  whereas  the  p110δD910A  alleles  were  homozygous. 393 Genotyping was performed by Transnetyx (Cordova, TN).  394  395 

S. pneumoniae stock preparation  396 Streptococcus  pneumoniae  (TIGR4,  serotype  4  (provided  by  Professor  Jeremy  Brown, 397 University College, London)) was grown  to mid‐log phase  (OD500 = 0.5‐0.7)  in Todd‐Hewitt 398 broth (Oxoid) supplemented with 0.5% yeast extract (Oxoid) at 37°C, 5% CO2. The bacteria 399 were collected by centrifugation, and resuspended in PBS/20% glycerol (Sigma‐Aldrich) prior 400 to freezing in liquid N2 and storage at ‐80 °C. Stocks were assessed for viable CFU counts and 401 homogeneity by plating out serial dilutions of three frozen samples on blood agar plates (LB 402 agar, supplemented with 5% defibrinated sheep blood (Oxoid)) after  incubation  for 24h at 403 37 °C, 5% CO2. S. pneumoniae colonies were confirmed by the presence of an α‐hemolytic 404 zone  and  sensitivity  to  optochin  (Sigma‐Aldrich).  Virulent  stocks  were  maintained  by 405 performing an in vivo passage every 6‐12 months.   406  407 

S. pneumoniae infections 408 Frozen  stocks  were  thawed  and  washed  twice  by  centrifugation  in  sterile  PBS  before 409 resuspending at 4x107 CFU/mL in PBS. The suspension was kept on ice at all times, and used 410 for infection within 2h of thawing (no loss of viability was observed under these conditions). 411 Mice were  lightly  anaesthetized  by  inhalation  of  3%  isoflurane  and maintained with  2% 412 isoflurane. Mice (males and females aged 8‐12 weeks) were infected intranasally with 50µL 413 S.  pneumoniae  suspension  containing  2x106  CFU.  Animals  were  observed  to  confirm 414 inhalation of the dose and  full recovery  from anesthesia. The  infection dose was routinely 415 confirmed by plating out serial dilutions of the inoculum on blood agar plates, as described 416 above.  417   418 

Survival studies 419 Mice were  infected with  S.  pneumoniae  as  described  above.  Pre‐infection  body weights 420 were  recorded  and  animals were weighed  daily  post  infection.  Animals were monitored 421 three times a day for a period of 10 days post  infection. Disease progression was assessed 422 by assigning  clinical  scores without  knowledge of  the  individual genotypes: 0: Healthy; 1: 423 mild  clinical  signs; 2: Up  to 2 moderate  clinical  signs; 3: up  to 3 moderate  signs. Animals 424 were culled when they showed >25% bodyweight loss or reach score 3. The most frequently 425 observed clinical signs were piloerection, hunched posture, tremor, and labored breathing.     426 At the study end‐point, animals were culled and terminal blood samples collected.  427  428 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 19: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

13  

Bone Marrow transfer 429 A single cell suspension of p110δE1020K‐B and wild‐type (C57Bl/6.SJL) donor bone marrow was 430 prepared in sterile HBSS (Sigma‐Aldrich) as described below (Isolation of immune cells from 431 mouse  tissues).  Cells  from  two  sex‐matched  donors were  pooled.  RAG2‐/‐  recipient mice 432 were supplied with 4mg/mL Neomycin  (Sigma‐Aldrich)  in drinking water before  sub‐lethal 433 irradiation  (one  dose  of  500Rads  over  63  seconds),  and  received  3x106  donor  cells  by 434 intravenous  (tail  vein)  injection.  Neomycin  treatment  was maintained  for  4  weeks  post 435 transfer, and after 8 weeks reconstitution was confirmed by analyzing tail bleeds.   436  437 

Vaccination 438 For  vaccine  studies,  mice  were  immunized  with  Pneumovax  II  (pneumococcal 439 polysaccharide vaccine, serotypes: 1‐5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B. 17F, 18C, 440 19F, 19A, 20, 22F, 23F and 33F; Sanofi Pasteur MSD). One 0.5mL dose containing 50µg/mL 441 of each serotype was diluted 1:12.5  in sterile PBS  to 4µg/mL. Mice were given one 100µL 442 (0.4µg)  dose  by  intraperitoneal  injection,  14  days  before  infection  with  S.  pneumoniae. 443 Blood  samples  were  taken  from  the  tail  vein  prior  to  vaccination  and  14  days  after 444 vaccination  into serum collection tubes  (BD microtainer, SST) samples were centrifuged at 445 15000xg for 5 min and the serum stored at ‐20°C until analysis.  446  447 

Nemiralisib treatment 448 The PI3Kδ  inhibitor nemiralisib  (GSK2269557) was supplied by GSK, Respiratory Refractory 449 Inflammation DPU, UK. The nemiralisib suspension was prepared on the day of use in 0.2% 450 Tween80, and administered intranasally to mice twice daily at 0.2mg/kg in a total volume of 451 50µL, as described above  (S. pneumoniae  infections). Unless otherwise  specified,  the  first 452 dose was given 24h before infection, and treatment was maintained for the duration of the 453 study.    454  455 

Isolation of immune cells from mouse tissues  456 Mice were euthanized by CO2 inhalation and cervical dislocation. Lungs were perfused with 457 10mL  cold  PBS  through  the  right  ventricle,  and  collected  into  cold  PBS.  Lungs  were 458 homogenized using a GentleMACS tissue dissociator and mouse lung dissociation enzyme kit 459 from Miltenyi according to the manufacter’s instructions.  The homogenate was transferred 460 to  15mL  tubes  (BD  Falcon)  and washed  by  centrifugation  (500xg)  in  10mL  cold  PBS.  The 461 pellet was  resuspended  in  3mL  37.5%  isotonic  Percoll  (Sigma)  at  room  temperature  and 462 centrifuged  at  650xg  for  20min  with  low  acceleration  and  no  brake.  The  supernatant 463 including  tissue debris was  removed, and  the  cell pellet was washed and  resuspended  in 464 cold  PBS. Where  CFU  counts were  required,  the  right  lung was  processed  as  described 465 above and  the  left  lung was processed  for CFU counts as described below.   Bone marrow 466 cells  were  collected  by  flushing  cold  PBS  through  femurs  and  tibias  collected,  filtered 467 through 40µm cell strainers and washed by centrifugation in 5mL PBS. Spleens, thymus and 468 peripheral lymph nodes were homogenized in PBS by pushing the tissue through 40µm cell 469 strainers  (BD) using a syringe plunge.   The cell suspension was then transferred to a 15ml 470 Tube (BD falcon) and washed once in 5ml cold PBS. For blood, bone marrow and spleen, red 471 blood cells  (RBC) were  lysed using hypotonic ammonium chloride RBC  lysis buffer  (Sigma). 472 Lysing was quenched with cold PBS and  the cells were collected by centrifugation.   Single 473 cell suspensions were processed for flow cytometry as described below.  474  475 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 20: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

14  

S. pneumoniae CFU counts 476 Lungs were homogenized in 1ml PBS using a Bullet Blender using 3x 3mm steel beads: speed 477 8, 3min (Next Advance, USA).   Spleens were homogenized as described above  in 2mL PBS. 478 Serial dilutions  (10‐fold) were performed  for  spleen  and  lung homogenates,  and  samples 479 were plated out on blood agar as described above.   Plates were  incubated for 24h at 37°C 480 and S. pneumoniae colonies were counted. 481  482 

In vitro stimulation of mouse B cells 483 Splenocytes were isolated from naïve wild‐type, p110δE1020K‐GL and p110δD910A mice that had 484 been crossed with the  Il10ITIB reporter  line as described above and the total cell count was 485 obtained using a CASY counter. The cells were  resuspended  in complete RPMI  (RPMI plus 486 5%  (v/v)  FCS,  50  μM  β‐mercaptoethanol  and  100  μg/ml penicillin  and  streptomycin)  and 487 plated at 5x106 cells in 100µL per well in a 96‐well U bottom plate. The cells were stimulated 488 with 10 ng/ml LPS, 50ng/ml PdBu  (Sigma, USA), 0.25 μg/ml  Ionomycin  (Sigma, USA) and 1 489 μl/ml of Brefeldin A  (eBioscience)  for 5h at 37 °C. The cells were  then processed  for  IL‐10 490 detection and flow cytometry as described below.  491  492 

Detection of IL‐10 in Il10ITIB reporter mice: 493 Single cell suspensions  from S. pneumoniae  infected mice or  in vitro stimulated cells were 494 prepared  as  described  above.  The  cells  were  incubated  with  3.3µM  CCF4‐AM,  a 495 Fluorescence  Resonance  Energy  Transfer  substrate  for  β‐lactamase  (LiveBLAzer  kit, 496 Invitrogen),  and  3.6mM  probenecid  (Sigma)  in  complete  RPMI  for  90min  at  29°C,  as 497 previously described 29, then placed on ice and collected by centrifugation. Cells were then 498 processed for flow cytometry as described below.  499  500 

Flow cytometry 501 Antibodies  used  for  flow  cytometry  are  listed  in  Table  1.  Single  cell  suspensions  were 502 stained using an antibody master mix in PBS/0.5%BSA for 40min at 4°C.  Cells were washed 503 and  fixed  in  4%  paraformaldehyde  (Biolegend)  for  10min  at  room  temperature  before 504 washing 2x in PBS/0.5%BSA. For intracellular detection of IL‐10 in human samples, the cells 505 were fixed and permeabilized with Cytofix/Cytoperm buffer (BD Biocsiences, USA) following 506 surface  staining.  For  FoxP3  staining,  the  eBioscence  FoxP3/Transcription  Factor  staining 507 Buffer Set was used according to the manufacturer’s instructions. Non‐fluorescent counting 508 beads (AccuCount Blank Particles 5.3µm; Spherotech, USA) were added to quantify absolute 509 cells numbers. Samples were kept at 4°C until analysis (BD Fortessa5). Analysis was carried 510 out using FlowJo (Treestar) analysis software. 511  512 

In vitro stimulation of human B cells 513 Freshly isolated PBMCs from patients and control individuals were stimulated with 0.5μg/ml 514 purified plate bound anti CD3 monoclonal antibody (clone‐OKT3) (Invitrogen) and 20ng/ml 515 recombinant human IL2 in presence or absence of, the p110δ inhibitor, nemiralisib (10nM) 516 for  72h.  This  stimulation  led  to  the  activation  of  CD40L  (CD154)  on  CD4  T  cells.  The 517 interaction between CD40L on CD4 T cells with CD40 on B cells resulted in the production of 518 IL‐10  in  regulatory B  cells. For a  final  stimulation 50ng/ml PdBu  (sigma, USA), 0.25 μg/ml 519 ionomycin (Sigma, USA) and 1μl/ml of Brefeldin A (eBioscience) were also added for the last 520 4h.  Cells  were  washed,  surface  stained,  fixed  and  permeabilized  with  Cytofix/Cytoperm 521 buffer (BD Biocsiences, USA) for the intracellular detection of IL‐10 as described above.  522 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 21: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

15  

 523 

Natural Antibody ELISA 524 Anti‐phosphorylcholine  IgM and  IgG  levels were assessed  in serum from naïve mice. Blood 525 samples were collected by cardiac puncture and serum collected as described above. NUNC 526 Maxisorp ELISA plates were coated overnight at 4°C with 20µg/mL phosphorylcholine‐BSA 527 (BioSearch)  in  sodium  bicarbonate  coating  buffer  (pH9)  (Biolegend)  (100µL/well).  Plates 528 were washed 4x with PBS/0.2% Tween20 followed by blocking for 1h at room temperature 529 in PBS/1%BSA.  Serum samples were diluted 1:10 in PBS/1% BSA and pooled WT serum was 530 diluted  from  1:5  to  1:400  to  confirm  the  linear  range  of  the  assay.  After  removing  the 531 blocking  solution,  samples  were  added  at  100µL/well,  and  the  plates  were  incubated 532 overnight  at  4°C.  The  plates were  then washed  4x  in  PBS/0.2%Tween20.  Polyclonal HRP 533 conjugated  goat‐anti‐mouse  IgM  (abcam  ab97023)  or  IgG  (abcam  ab97230)  was  diluted 534 1:5000  in PBS/1% BSA, added at 100µL per well and  the plates were  incubated  for 2h at 535 room  temperature.    The  plates were washed  6x with  PBS/0.2%Tween20,  TMB  substrate 536 (Biolegend) was added at 100µL per well and incubated for 5‐10 min at room temperature. 537 The  reaction was  stopped  by  adding  50µL  2N  H2SO4  solution.    Absorbance was  read  at 538 450nm (Fluostar omega, BMG Labtech). 539  540 

Tissue resident cell analysis (lung) 541 Mice  received  an  intravenous  (tail  vein)  injection  of  3µg  anti‐mouse CD45  conjugated  to 542 biotin (Biolegend, clone 30‐F11)  in 100µL PBS. 4min after  injection animals were killed and 543 the  lungs  were  collected  into  cold  PBS  without  prior  perfusion.  Lungs  were  then  finely 544 minced  using  a  scalpel  blade  and  the  pushed  through  a  100µm  cell  strainer  (BD)  the 545 homogenate was collected  in a 15mL  tube  (BD  falcon) and washed  in 10ml cold PBS. The 546 pellet was  resuspended  in  3mL  37.5%  isotonic  Percoll  (Sigma)  at  room  temperature  and 547 processed  as  described  above.  The  cells  were  stained  for  flow  cytometry  as  described 548 above, including streptavidin APC to identify anti‐CD45‐Biotin labelled circulating cells.  549  550 

Cytokine analysis 551 Cytokine  levels were measured  in  the  supernatant  from  lung  homogenates  prepared  for 552 CFU  analysis.  The  homogenates were  centrifuged  for  1min  at  10000xg  to  remove  tissue 553 debris. Samples collected from wild‐type mice treated with nemiralisib were analyzed using 554 Meso Scale Discovery mouse Th1/Th2 9‐plex ultrasensitive kits, according to manufacturer’s 555 instructions. Samples collected from genetically modified mice were analyzed using the flow 556 cytometry based Legendplex mouse inflammation 13‐plex panel (Biolegend).  557  558 

Gene Array 559 Wild‐type mice were treated with nemiralisib and infected with S. pneumoniae as described 560 above. At 24h post infection, whole lungs were collected and snap frozen in liquid nitrogen. 561 Samples  were  randomized  and  analyzed  (Affymetrix  Genechip  Mouse  genome  430  2.0 562 Array) by Expression Analysis, Quintiles Global Laboratories. Data analysis was performed by 563 Computational  Biology  and  Statistics,  Target  Sciences,  GlaxoSmithKline,  Stevenage.  Data 564 was  normalised  using  the  robust  multiarray  average  method47  and  quality  checked  in 565 R/Bioconductor48  using  the  affy    package49.  A  linear  model  was  fitted  to  the  RMA 566 normalised data for each probset and differiential expression analysis was conducted in the 567 ArrayStudio software  (Omicsoft Corporation). P‐values were  false discovery rate corrected 568 by the method of Benjamini and Hochberg50. Probes with an absolute fold change >1.5 and 569 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 22: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

16  

an adjusted p‐value <0.05 were called significant. The data been deposited  in the National 570 Center  for Biotechnology  Information Gene Expression Omnibus  (GEO) and are accessible 571 through GEO series accession number GSE109941. 572  573 

Luminex antibody analysis 574 Measurement  of  IgG  recognizing  pneumococcal  polysaccharide  of  13  serotypes  was 575 performed as described previously 51. The assay was modified  in order to measure murine 576 IgG  as  follows:  50µl  of  1:10  diluted mouse  sera was  added  to  each well  containing  the 577 pneumococcal polysaccharides coupled  to microspheres and  the secondary antibody used 578 was  50µl  of  10µg/ml  goat  F(ab’)2  anti‐mouse  IgG  (H+L)‐  R‐phycoerythrin  (Leinco 579 Technologies,  Inc). R‐PE  fluorescence  levels were  recorded  for each  serotype and median 580 fluorescence intensities were compared for the different genotypes.  581  582 PIP3 quantification 583 CD4 and CD8 cells were  isolated from mouse splenocytes using  immunomagnetic negative 584 selection by biotinylated cocktail of antibodies and Streptavidin dynabeads  (Invitrogen). T 585 cells were  stimulated with anti‐CD3  (1mg/ml),  (145‐2c11, Biolegend) anti‐ CD28  (2µg/ml), 586 (35.51, Biolegend) antibodies followed by crosslinking with anti‐ Armenian hamster IgG (10 587 µg/ml, Jackson ImmunoResearch labs). Cells were stimulated for 1 min at 37°C. B cells were 588 similarly isolated from mouse splenocytes and stimulated for 1 min at 37 °C with anti‐ IgM 589 2µg/ml  (AffinPure  F(ab’)2  Fragment  goat  anti‐mouse  IgM  from  Jackson  Immuno‐Research 590 labs).  591  592 After stimulation of the cells, we terminated the reactions by addition of 750µl kill solution 593 (CHCl3:MeOH:1M HCL  (10:20:1) and  immediately  froze  the  samples on dry  ice. PIP3  levels 594 were quantified by mass spectrometry as previously described52.  595  596 

Western blot 597 Purified T and B cells were isolated from murine spleens and stimulated as described above 598 (PIP3  measurement).  For  performing  western  blots  the  stimulation  period  was  5  min. 599 Isolated  T  cells were  stimulated with  anti  ‐CD3  1µg/ml  and  anti  ‐CD28  (2 µg/ml) with or 600 without 10 Nm nemiralisb; or B cells with anti‐ IgM 4µg/ml (AffinPure  F(ab’)2 Fragment goat 601 anti‐mouse IgM from Jackson ImmunosResearch labs). 602 Stimulated T and B cells were lysed with ice‐cold lysis buffer (50mM HEPES, 150mM NaCl, 10mM 603 NaF, 10mM  Indoacetamide, 1%  IGEPAL  and proteinase  inhibitors  (Complete Ultra  tablets, Roche))  for 604 15‐20 min. Lysates were centrifuged at 15,000g for 10 min at 4 °C   and supernatants were 605 mixed with NuPage LDS sample buffer (life technologies). Samples were heated at 70°C  and 606 resolved  on  4‐12% NuPage  bis‐tris  gel  (Invitrogen),  transferred  to  PVDF membranes  and 607 probed with  the  following antibodies: pAKT  (T308, Cell Signaling, 1  in 1000 dilution);  total 608 AKT1 (2H10, Cell signaling, 1  in 2000 dilution); p110δ (Sc7176, Santa Cruz Biotechnology, 1 609 in 200 dilution); pS6 (S235/236, Cell Signaling, 1  in 500 dilution); pFoxo1/3a (T24/T32, Cell 610 Signaling,  1  in  1000  dilution);  pErk  (p44/42,  Cell  Signaling,  1  in  200  dilution);  βActin 611 (Sc47778, Santa Cruz Biotechnology, 1 in 2000 dilution). 612 

Statistics 613 

Data  analysis was  performed  in Graphpad  Prism. Where  two  groups were  compared we 614 used student’s t‐test with Welch’s correction. Where three or more groups were compared 615 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 23: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

17  

we used 1‐way ANOVA with Tukey’s multiple comparisons test. Survival data was analyzed 616 using  the Gehan‐Breslow‐Wilcoxon  test.  Statistical  significance  is  indicated by asterisk as 617 follows:  p > 0.05 *; p ≤ 0.05 **; p ≤ 0.01 ***; p ≤ 0.001 **** 618 

Ethics 619 

Animal experiments were performed according  to  the Animals  (Scientific Procedures) Act 620 1986, licence PPL 70/7661. 621 Informed consent was obtained from patients and healthy controls. This study conformed to 622 the Declaration of Helsinki and according local ethical review document 12/WA/0148.  623 

Acknowledgements 624 

We thank Rahul Roychoudhuri, Bart Vanhaesebroeck and Martin Turner for their invaluable 625 advice on the draft manuscript. We also thank Hicham Bouabe and Jürgen Heesemann (LMU 626 Munich)  for providing  the  Il10ITIB mice  and  for advice. We  thank Ramkumar Venigalla  for 627 advice on B cell phenotyping and Alice Denton for advice on the detection of tissue resident 628 cells  in  the  lung.  Rainer  Döffinger  provided  advice  on  the  use  of  Luminex  for  the 629 quantification of antibodies against pneumococcal serotypes; Keith Burling helped quantify 630 mouse serum immunoglobulins. We gratefully acknowledge the support from the Babraham 631 Institute  Biological  Services  Unit,  Biological  Chemistry,  Mass  Spectroscopy  and  Flow 632 Cytometry  Facilities.  Funding  for  the  project  was  from  the  Medical  Research  Council 633 MR/M012328/2  (AS,  AMC,  SN,  KO), Wellcome  Trust  103413/Z/13/Z  and  206618/Z/17/Z 634 (AC),  095691/Z/11/Z  (KO),  095198/Z/10/Z  (SN)  Biotechnology  and  Biological  Sciences 635 Research Council BBS/E/B/000  ‐C0407,  ‐C0409,  ‐C0427  and  ‐C0428  (KO).  EBH  is  currently 636 employed  by  Cambridge  University  Hospitals  NHS  Foundation  Trust  but  is  seconded  to 637 spend  50%  of  his  time  on  GSK  clinical  trial  research.  He  receives  no  other  benefits  or 638 compensation from GSK. EBH was funded by the Wellcome Trust Translational Medicine and 639 Therapeutics (TMAT) PhD program. SN is also supported by the National Institute for Health 640 Research (NIHR) Cambridge Biomedical Research Centre. MRC is supported by the National 641 Institute of Health Research  (NIHR) Cambridge Biomedical Research Centre and  the NIHR 642 Blood  and Transplant Research Unit  and by  a Medical Research Council New  Investigator 643 Research  Grant  (MR/N024907/1)  and  an  Arthritis  Research  UK  Cure  Challenge  Research 644 Grant (21777). SS, GB, EBH, JNH and EMH are employed by GSK.    645 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 24: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

18  

Table 1: Antibodies 646  647 

anti‐mouse  Clone  Supplier 

CCR2  475301  R&D Systems 

CD11b  M1/70  Biolegend 

CD11c  N418  Biolegend 

CD138  281‐2  Biolegend 

CD19  ID3  BD Biosciences 

CD1d  K253  Biolegend 

CD21  7E9  Biolegend 

CD23  B3B4  Biolegend 

CD25  PC61  Biolegend 

CD28  37.51  Biolegend 

CD3  2C11  Biolegend 

CD4  GK1.5  Biolegend 

CD43  S7  BD Biosciences 

CD44  IM7  Biolegend 

CD45  30‐F11  Biolegend 

CD45R(B220)  RA3‐6B2  BD Biosciences 

CD5  53‐7‐3  eBioscence (ThermoFisher) 

CD62L  MEL‐14  Biolegend 

CD8a  53‐6.7  Biolegend 

FoxP3  FJK‐16s  eBioscence (ThermoFisher) 

IgD  11‐26c.2a  Biolegend 

IgM  II/41  eBioscence (ThermoFisher) 

IL‐7R  A7R34  Biolegend 

KLRG1  2F1  Biolegend 

Ly6C  HK1.4  Biolegend 

Ly6G  1A8  Biolegend 

Ly6G/Ly6C(Gr1)  RB6‐8C5  Biolegend 

NK1.1  PK136  Biolegend 

Siglec‐F  E50‐2440  BD Biosciences 

TCRβ  H57‐597  Biolegend 

γδTCR  UC7‐13D5  Biolegend 

     

anti‐human  Clone  Supplier 

CD19  SJ25C1  BD Biosciences 

CD24  ML5  BD Biosciences 

CD38  HIT2  BD Biosciences 

IL‐10  JES3‐9D7  Miltenyi Biotec 

 648 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 25: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

19  

References 649 

1.  WHO 2005 http://www.who.int/biologicals/areas/vaccines/pneumo/en/). 650 2.  Drijkoningen, J.J. & Rohde, G.G. Pneumococcal infection in adults: burden of disease. 651 

Clin Microbiol Infect 20 Suppl 5, 45‐51 (2014). 652 3.  Levine, O.S. et al. Pneumococcal vaccination in developing countries. Lancet 367, 653 

1880‐1882 (2006). 654 4.  O'Brien, K.L. et al. Burden of disease caused by Streptococcus pneumoniae in 655 

children younger than 5 years: global estimates. Lancet 374, 893‐902 (2009). 656 5.  Wilson, R. et al. Naturally Acquired Human Immunity to Pneumococcus Is Dependent 657 

on Antibody to Protein Antigens. PLoS pathogens 13, e1006137 (2017). 658 6.  Bruton, O.C. Agammaglobulinemia. Pediatrics 9, 722‐728 (1952). 659 7.  Tsukada, S. et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in 660 

human X‐linked agammaglobulinemia. Cell 72, 279‐290 (1993). 661 8.  Vetrie, D. et al. The gene involved in X‐linked agammaglobulinaemia is a member of 662 

the src family of protein‐tyrosine kinases. Nature 361, 226‐233 (1993). 663 9.  Jou, S.T. et al. Identification of variations in the human phosphoinositide 3‐kinase 664 

p110delta gene in children with primary B‐cell immunodeficiency of unknown 665 aetiology. International journal of immunogenetics 33, 361‐369 (2006). 666 

10.  Angulo, I. et al. Phosphoinositide 3‐kinase delta gene mutation predisposes to 667 respiratory infection and airway damage. Science 342, 866‐871 (2013). 668 

11.  Lucas, C.L. et al. Dominant‐activating germline mutations in the gene encoding the 669 PI(3)K catalytic subunit p110delta result in T cell senescence and human 670 immunodeficiency. Nat Immunol 15, 88‐97 (2014). 671 

12.  Lucas, C.L., Chandra, A., Nejentsev, S., Condliffe, A.M. & Okkenhaug, K. PI3Kdelta and 672 primary immunodeficiencies. Nat Rev Immunol 16, 702‐714 (2016). 673 

13.  Okkenhaug, K. Signaling by the phosphoinositide 3‐kinase family in immune cells. 674 Annu Rev Immunol 31, 675‐704 (2013). 675 

14.  Coulter, T.I. et al. Clinical spectrum and features of activated phosphoinositide 3‐676 kinase delta syndrome: A large patient cohort study. J Allergy Clin Immunol 139, 597‐677 606 e594 (2017). 678 

15.  Condliffe, A. & Chandra, A. Respiratory Manifestations of the Activated 679 Phosphoinositide 3‐kinase Delta Syndrome  Frontiers in immunology In press (2018). 680 

16.  Stark, A.K., Sriskantharajah, S., Hessel, E.M. & Okkenhaug, K. PI3K inhibitors in 681 inflammation, autoimmunity and cancer. Curr Opin Pharmacol 23, 82‐91 (2015). 682 

17.  Cahn, A. et al. Safety, pharmacokinetics and dose‐response characteristics of 683 GSK2269557, an inhaled PI3Kdelta inhibitor under development for the treatment of 684 COPD. Pulm Pharmacol Ther 46, 69‐77 (2017). 685 

18.  Down, K. et al. Optimization of Novel Indazoles as Highly Potent and Selective 686 Inhibitors of Phosphoinositide 3‐Kinase delta for the Treatment of Respiratory 687 Disease. J Med Chem 58, 7381‐7399 (2015). 688 

19.  Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110delta PI 689 3‐kinase mutant mice. Science 297, 1031‐1034 (2002). 690 

20.  Briles, D.E. et al. Antiphosphocholine antibodies found in normal mouse serum are 691 protective against intravenous infection with type 3 streptococcus pneumoniae. J 692 Exp Med 153, 694‐705 (1981). 693 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 26: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

20  

21.  Mi, Q.S. et al. Highly reduced protection against Streptococcus pneumoniae after 694 deletion of a single heavy chain gene in mouse. Proc Natl Acad Sci U S A 97, 6031‐695 6036 (2000). 696 

22.  Durand, C.A. et al. Phosphoinositide 3‐kinase p110 delta regulates natural antibody 697 production, marginal zone and B‐1 B cell function, and autoantibody responses. J 698 Immunol 183, 5673‐5684 (2009). 699 

23.  Rolf, J. et al. Phosphoinositide 3‐kinase activity in T cells regulates the magnitude of 700 the germinal center reaction. J Immunol 185, 4042‐4052 (2010). 701 

24.  Clayton, E. et al. A crucial role for the p110delta subunit of phosphatidylinositol 3‐702 kinase in B cell development and activation. J Exp Med 196, 753‐763 (2002). 703 

25.  Shapiro, E.D. et al. The protective efficacy of polyvalent pneumococcal 704 polysaccharide vaccine. N Engl J Med 325, 1453‐1460 (1991). 705 

26.  Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell‐deficient mouse by targeted 706 disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 707 350, 423‐426 (1991). 708 

27.  van der Sluijs, K.F. et al. IL‐10 is an important mediator of the enhanced susceptibility 709 to pneumococcal pneumonia after influenza infection. J Immunol 172, 7603‐7609 710 (2004). 711 

28.  Barthelemy, A. et al. Influenza A virus‐induced release of interleukin‐10 inhibits the 712 anti‐microbial activities of invariant natural killer T cells during invasive 713 pneumococcal superinfection. Mucosal Immunol 10, 460‐469 (2017). 714 

29.  Bouabe, H., Liu, Y., Moser, M., Bosl, M.R. & Heesemann, J. Novel highly sensitive IL‐715 10‐beta‐lactamase reporter mouse reveals cells of the innate immune system as a 716 substantial source of IL‐10 in vivo. J Immunol 187, 3165‐3176 (2011). 717 

30.  Tedder, T.F. B10 cells: a functionally defined regulatory B cell subset. J Immunol 194, 718 1395‐1401 (2015). 719 

31.  Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu Rev Immunol 19, 720 595‐621 (2001). 721 

32.  Vlkova, M. et al. Regulatory B cells in CVID patients fail to suppress multifunctional 722 IFN‐gamma+ TNF‐alpha+ CD4+ T cells differentiation. Clin Immunol 160, 292‐300 723 (2015). 724 

33.  Mauri, C. & Menon, M. Human regulatory B cells in health and disease: therapeutic 725 potential. J Clin Invest 127, 772‐779 (2017). 726 

34.  Smith, N.M. et al. Regionally compartmentalized resident memory T cells mediate 727 naturally acquired protection against pneumococcal pneumonia. Mucosal Immunol 728 11, 220‐235 (2018). 729 

35.  Penaloza, H.F. et al. Interleukin‐10 plays a key role in the modulation of neutrophils 730 recruitment and lung inflammation during infection by Streptococcus pneumoniae. 731 Immunology 146, 100‐112 (2015). 732 

36.  Shen, P. & Fillatreau, S. Antibody‐independent functions of B cells: a focus on 733 cytokines. Nat Rev Immunol 15, 441‐451 (2015). 734 

37.  Esplin, B.L., Welner, R.S., Zhang, Q., Borghesi, L.A. & Kincade, P.W. A differentiation 735 pathway for B1 cells in adult bone marrow. Proc Natl Acad Sci U S A 106, 5773‐5778 736 (2009). 737 

38.  Matsushita, T. et al. A novel splenic B1 regulatory cell subset suppresses allergic 738 disease through phosphatidylinositol 3‐kinase‐Akt pathway activation. J Allergy Clin 739 Immunol 138, 1170‐1182 e1179 (2016). 740 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 27: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

 

21  

39.  Browning, M.J., Chandra, A., Carbonaro, V., Okkenhaug, K. & Barwell, J. Cowden's 741 syndrome with immunodeficiency. J Med Genet 52, 856‐859 (2015). 742 

40.  Tsujita, Y. et al. Phosphatase and tensin homolog (PTEN) mutation can cause 743 activated phosphatidylinositol 3‐kinase delta syndrome‐like immunodeficiency. J 744 Allergy Clin Immunol 138, 1672‐1680 e1610 (2016). 745 

41.  To, Y. et al. Targeting phosphoinositide‐3‐kinase‐delta with theophylline reverses 746 corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit 747 Care Med 182, 897‐904 (2010). 748 

42.  Rao, V.K. et al. Effective "activated PI3Kdelta syndrome"‐targeted therapy with the 749 PI3Kdelta inhibitor leniolisib. Blood 130, 2307‐2316 (2017). 750 

43.  Coutre, S.E. et al. Management of adverse events associated with idelalisib 751 treatment: expert panel opinion. Leuk Lymphoma 0, 1‐8 (2015). 752 

44.  Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, 753 function, and survival. Immunity 15, 763‐774 (2001). 754 

45.  Hobeika, E. et al. Testing gene function early in the B cell lineage in mb1‐cre mice. 755 Proc Natl Acad Sci U S A 103, 13789‐13794 (2006). 756 

46.  Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene 757 targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8, 758 265‐277 (1999). 759 

47.  Irizarry, R.A. et al. Exploration, normalization, and summaries of high density 760 oligonucleotide array probe level data. Biostatistics 4, 249‐264 (2003). 761 

48.  Gentleman, R.C. et al. Bioconductor: open software development for computational 762 biology and bioinformatics. Genome Biol 5, R80 (2004). 763 

49.  Gautier, L., Cope, L., Bolstad, B.M. & Irizarry, R.A. affy‐‐analysis of Affymetrix 764 GeneChip data at the probe level. Bioinformatics 20, 307‐315 (2004). 765 

50.  Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and 766 Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series 767 B (Methodological) 57, 289‐300 (1995). 768 

51.  Willcocks, L.C. et al. The effect of sirolimus therapy on vaccine responses in 769 transplant recipients. Am J Transplant 7, 2006‐2011 (2007). 770 

52.  Clark, J. et al. Quantification of PtdInsP3 molecular species in cells and tissues by 771 mass spectrometry. Nature methods 8, 267‐272 (2011). 772 

 773    774 

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 28: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

Exon_21 Loxp

Exon 22

TAG(stop)

PolyA

FRTPolyA

FRTloxp

K1020E1020

Exon 22SASA

TAG(STOP)

PGK Neo

Exon_21 Loxp

Exon_22

TAG-stop

PolyA

FRTloxp

K1020E1020

SA SA

TAG (STOP)3' UTR

Exon 22

Exon_21 loxp

K1020

SA

TAG (STOP)

3' UTR

Exon 22

Frt recombination

Loxp recombination

P110δE1020K-GL

P110δE1020K-T

P110δE1020K-B

P110δE1020K-M

P110δE1020K-Flox

Gene-targeted ES cells

Founders crossed with FlpE transgenic

Conditional KI crossed with Cre transgenic

Exon 21

E1020

SA

TAG(STOP)

3' UTR

Exon 22

Endogenous locus

3' UTR

Supplementary Figure 1: Gene targeting strategy for generating conditional p110δE1020K miceThe p110δE1020K mice were generated by OzGene using homologous recombination in ES cells. Aduplicate sequence corresponding to the last coding exon in Pik3cd was flanked by loxP sites andinserted 3’ to the original sequence. The original sequence encoding E1020 was mutated to K1020.Upon Cre-mediated recombination, the wild-type sequence is replaced by the mutant E1020Ksequence. In this study, we used Tnfrsf4cre to delete in the germline, Cd4cre to delete in T cells, Mb1cre

to delete in B cells and Lyz2Cre to delete in myeloid cells.

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 29: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

Gat

ed o

n B

220+

CD

19+

Gat

ed o

n B

220+

CD

93+

IgM

CD23

Spleen

p110δWT p110δE1020K p110δD910A

Liv

e ce

lls

B220

CD

19

0.3 57 4.0 35 0.01 47

CD

21

CD23

581

10

0.06

94

4

9

57

26

40 28

156

20 53

126

52 11

1112

Supplementary figure 2: Phenotype of B cells in p110δE1020K-GL mice.A: B cell subsets in the spleen and bone marrow from wild-type, p110δE1020K-GL and p110δD910A mice were analyzed by flow cytometry andrepresentative pseudocolor plots with the mean cell proportion are shown. B: In the spleen, total CD19+B220+ B cells were increased inp110δE1020K-GL mice, due to increased numbers of B1, marginal zone (MZ) and T1 transitional cells while follicular B cell numbers were normal.These populations were reduced in p110δD910A mice. Analysis of the bone marrow showed normal pro-B cell numbers in p110δE1020K-GL mice with areduced number of pre-B cells, immature, transitional and mature B cells. Populations of cells are described as follows: Splenic B cells: Total Bcells CD19+B220+, B1 cells CD19+B220+CD23-CD21-, Follicular B cells CD19+B220+CD23+CD21+, Marginal zone B cells CD19+B220+CD23-CD21+,Transitional T1 B cells B220+CD93+IgM+CD23-, Transitional T2 B cells B220+CD93+IgM+CD23+, Transitional T3 B cells B220+CD93+IgM-CD23-;Bone marrow B cells - Immature B cells CD19+B220loIgM+, Mature B cells CD19+B220hiIgM+, Pro-B cells B220+IgM-CD19+CD25-, Pre-B cellsB220+IgMCD19+CD25+, Transitional B cells B220+IgD+. (Combined data from 2 independent experiments, n=8-12).

A

B220

CD

19Ig

MC

D25

IgD

B220

B220

CD19

25 1817

6

54

22

38

43 35

35

2 6

3 45 7 4 5

Bone marrow

Liv

e ce

llsL

ive

cells

Liv

e ce

llsG

ated

on

B

220+

IgM

-

p110δWT p110δE1020K p110δD910A

WT

E10

20

K

D91

0A

0.0

5.0×106

1.0×107

1.5×107

2.0×107

CD

19+B

220+

cel

ls/B

M p<0.0001

p<0.0016

WT

E10

20K

D91

0A

0

1×106

2×106

3×106

4×106

Imm

atur

e B

cel

ls/ B

M p<0.0001p<0.0001

p<0.0001

WT

E10

20K

D91

0A

0

2×106

4×106

6×106

Mat

ure

B c

ells

/ BM

p<0.0001

p<0.00384

WT

E10

20K

D9

10A

01×106

2×106

3×106

4×106

5×106

Pro

B c

ells

/ BM

WT

E1

020K

D91

0A

01×106

2×106

3×106

4×106

5×106

Pre

B B

cel

ls/ B

M

p<0.0001

p=0.0001

WT

E10

20K

D91

0A

01×106

2×106

3×106

4×106

5×106

Tran

sitio

nal B

cel

ls /B

M p=0.001p<0.0001

Bone marrow

B Spleen

WT

E1

02

0K

D9

10

A

0

1 107

2 107

3 107

4 107

CD

19+B

220

+ c

ells

/Spl

een

p<0.0001 p<0.0001

WT

E1

02

0K

D9

10

A

0

2 106

4 106

6 106

8 106

1 107

B1

cells

/ sp

leen

p<0.0001p<0.0001

p<0.0004

WT

E1

02

0K

D9

10

A

0

1 106

2 106

3 106

4 106

Mar

gina

l zon

e B

cel

ls /

sple

en

p<0.0001p<0.0001

p<0.0001

WT

E1

02

0K

D9

10

A

0

5 106

1 107

1.5 107

2 107

2.5 107

Fol

licul

ar B

cel

ls/ s

plee

n

p<0.0001

p<0.0001

WT

E1

02

0K

D9

10

A

0

2 106

4 106

6 106

8 106

Tra

nsiti

onal

B c

ells

- T

1/ S

plee

n

p<0.0001p<0.0013

p<0.0001

WT

E1

02

0K

D9

10

A

0

1 106

2 106

3 106

Tra

nsiti

onal

B c

ells

- T

2/ S

plee

n

p<0.0007

p<0.0001

WT

E1

02

0K

D9

10

A

0

5 105

1 106

1.5 106

2 106

Tra

nsiti

onal

B c

ells

- T

3/ S

plee

n

p<0.0001

p<0.0001

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 30: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

p110δWT p110δE1020K p110δD910A

CD62L

CD

44

Spleen Spleen

Lymph nodes

CD62L

CD

44

p110δWT p110δE1020K p110δD910A

p110δWT p110δE1020K p110δD910A

Lymph nodes

Wild

type

E10

20K

D91

0A

0

1 106

2 106

3 106

4 106

CD

4+ C

D25

+ F

oxp3

+

/ spl

een

p<0.0173 p<0.0016

Lymph nodes

p110δWT p110δE1020K p110δD910A

Wild

type

E10

20K

D91

0A

0

5 105

1 106

1.5 106

2 106

CD

4+C

D25

+F

oxp3

+

/ th

ymus

p<0.0001

p<0.0001

Spleen Thymus

Foxp3

CD

25

Wild

type

E10

20K

D91

0A

0

200000

400000

600000

CD

4+C

D25

+F

oxp3

+ /

peri

pher

al l

ymph

nod

es

p<0.0449 p<0.0003

p<0.0308

Lymph nodesSpleen

Thymus

A

B

C

Supplementary figure 3: Phenotype of T cells in p110δE1020K-GL mice.T cell populations in the thymus, spleen and lymph nodes of wild-type, p110δE1020K-GL andp110δD910A mice were analyzed by flow cytometry. Representative pseudocolor or contour plotswith outliers show mean cell proportions. A: Thymic T cell numbers in p110δE1020K mice werenormal apart from a reduction in single positive CD8+ cells. B: The number of activated CD4+

and CD8+ T cells (CD44hiCD62lo) as well as memory CD8+ T cells (CD44hiCD62Lhi) in lymphnodes and spleen were increased in p110δE1020K mice. C: The number of CD4+CD25+Foxp3+

regulatory T cells was increased in the lymph nodes and spleen of p110δE1020K mice.(Representative data from 2 independent experiments, n=3-8)

CD8

CD

4

CD

8+

T cells

CD

4+

T cells

CD

8+

T cells

CD

4+

T cells

0

1 107

2 107

3 107

4 107p<0.0001

p<0.002

Wild

typ

e

E10

20K

D91

0A

0

5 106

1 107

1.5 107

2 107

Via

ble

CD

8+ c

ells

/th

ymu

s

p<0.0001

p<0.0001

p<0.0037

Wild

typ

e

E10

20K

D91

0A

0

1 107

2 107

3 107

4 107

Via

ble

DN

(CD

4- C

D8

- ) ce

lls/t

hym

us

Wild

typ

e

E10

20K

D91

0A

0

5 105

1 106

1.5 106

Via

ble

DP

(C

D4

+ C

D8+

)ce

lls/t

hym

us

p<0.0001

p<0.0001

Wild

typ

e

E10

20K

D91

0A

3 106

4 106

5 106

6 106

Via

ble

CD

4+ T

cel

ls/ p

erip

ehra

l lym

ph n

odes

Wild

typ

e

E10

20K

D91

0A

0

1 105

2 105

3 105

CD

4+ C

D44

hi C

D62

Llo

T c

ells

/ pe

riphe

ral l

ymph

nod

es p<0.0008

p<0.0001

Wild

typ

e

E10

20K

D91

0A

0

1 106

2 106

3 106

4 106

Via

ble

CD

8+T

cel

ls/ p

erip

hera

l lym

ph n

odes

p<0.0405

p<0.0479

Wild

typ

e

E10

20K

D91

0A

CD

8+ C

D44

hi C

D62

Llo

T c

ells

/ per

iphe

ral l

ymph

nod

es

Wild

typ

e

E10

20K

D91

0A

0

1 107

2 107

3 107

4 107

Via

ble

CD

4+ T

cel

ls/

sple

en p<0.0042

0

2 106

4 106

6 106

8 106

p<0.0036p<0.0500

0

5 106

1 107

1.5 107

2 107

2.5 107

p<0.0090

Wild

typ

e

E10

20K

D91

0A

0

5 106

1 107

1.5 107

2 107

Via

ble

CD

8+T

ce

lls/s

plee

n p<0.0264

p<0.0070

Wild

typ

e

E10

20K

D91

0A

0

2 105

4 105

6 105

8 105

CD

8+ C

D44

hi C

D62

Llo

T c

ells

/ sp

leen

p<0.0068 p<0.0028

Wild

typ

e

E10

20K

D91

0A

0

5 106

1 107

1.5 107

CD

8+ C

D62

Lh

i CD

44lo

T c

ells

/ sp

leen

p<0.0275

p<0.0147

Wild

typ

e

E10

20K

D91

0A

0

1 106

2 106

3 106

CD

8+ C

D44

hi C

D62

Lh

i

T c

ells

/ sp

leen

p<0.0358

p<0.0047 p<0.0001

0.9312.5

83

1.50

17.5

76.3

0.22

3.78

91.6

2.82 1.025.11

83.390.6 94.5

9.14 11.9 5.49

7.38 10.8 3.10

3.64

10.7

82.6

5.37

19.5

71.2

2.03

90.2

5.89

10.5

81.5

21.2

59.9

5.97

89

2.06 1.43 3.78

6.32

86.2

2.173.29

4.95

87.9

2.013.25

8.45

81.7

4.242.63

Thymus Thymus

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 31: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

Spleen

Bone marrow

A

WT

E1

02

0K

D9

10

A

0

2×101

4×101

6×101

%C

D19

+ B22

0+ (

Live

cel

ls)

********

WT

E10

20K

D9

10A

0.0

5.0×100

1.0×101

1.5×101

% M

argi

nal z

one

B c

ells ***

*******

WT

E1

02

0K

D9

10A

6×101

7×101

8×101

9×101

1×102

% F

ollic

ular

B c

ells

**********

WT

E1

02

0K

D9

10A

0.05.0×100

1.0×101

1.5×101

2.0×101

2.5×101

% B

1 B

cel

ls ** ***

WT

E1

020K

D91

0A

0

2×101

4×101

6×101

% T

rans

tiona

l T1

B c

ells ***

*******

WT

E1

02

0K

D9

10A

0

2×101

4×101

6×101

8×101

% T

rans

ition

al T

2 B

cel

ls

*** ****

WT

E1

02

0K

D9

10A

0

1×101

2×101

3×101

% T

rans

ition

al T

3 B

cel

ls

** ****

Co

ntr

ol

E10

20K

D91

0A

01×101

2×101

3×101

4×101

5×101

% C

D19

+ B22

0+ ce

lls (

live

lyph

yocy

tes)

** *

Con

tro

l

E10

20K

D9

10A

0

2×101

4×101

6×101

% P

reB

cel

ls

**** ****

Co

ntro

l

E1

020K

D91

0A

0

2×101

4×101

6×101

8×101

% P

roB

cel

ls

**** ****

Con

tro

l

E10

20K

D91

0A

0.0

5.0×100

1.0×101

1.5×101

% m

atur

e B

cel

ls (

live

cells

)

*

Con

tro

l

E10

20K

D9

10A

0.0

5.0×100

1.0×101

1.5×101

% I

mm

atur

e B

cel

ls (

live

cells

)

**** ****

Co

ntr

ol

E1

020

K

D91

0A

0.0

5.0×100

1.0×101

1.5×101

% T

rans

ition

al B

cel

ls

Supplementary figure 4: Phenotype of B cells in p110δE1020K-B mice.B cell subsets in the spleen and bone marrow from wild-type, p110δE1020K-B and p110δD910A mice were analyzedby flow cytometry, and was shown to recapitulate the phenotype of p110δE1020K-GL mice. A: In the spleen, theproportion of B1, marginal zone (MZ) and T1 transitional cells were increased, while the proportion of follicular Bcells were reduced. B: Analysis of the bone marrow showed increased proportions of pro-B cells in p110δE1020K-B

mice with reduced proportions of pre-B cells and immature B cells, and a trend towards reduced proportions oftransitional and mature B cells. Populations of cells are described as follows: Splenic B cells - Total B cellsCD19+B220+, B1 cells CD19+B220+CD23-CD21-, Follicular B cells CD19+B220+CD23+CD21+, Marginal zone Bcells CD19+B220+CD23-CD21+, Transitional T1 B cells B220+CD93+IgM+CD23-, Transitional T2 B cellsB220+CD93+IgM+CD23+, Transitional T3 B cells B220+CD93+IgM-CD23-; Bone marrow B cells - Immature B cellsCD19+B220loIgM+, Mature B cells CD19+B220hiIgM+, Pro-B cells B220+IgM-CD19+CD25-, Pre-B cellsB220+IgMCD19+CD25+, Transitional B cells B220+IgD+. (Combined data from 2 independent experiments, n=6-10).

B

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 32: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

Lymph nodes

Spleen

Thymus

Supplementary figure 5: Phenotype of T cells in p110δE1020K-T

mice.T cell populations in the thymus, spleen and lymph nodes in wild-type, p110δE1020K-T and p110δD910A were analyzed by flowcytometry. A: Thymic T cell proportions in p110δE1020K-T mice werenormal B: In the spleen, the proportions of activated CD4+ andCD8+ T cells (CD44hiCD62lo) were increased, and there was atrend towards increased proportions of memory CD8+ T cells(CD44hiCD62Lhi) in p110δE1020K-T mice. In the lymph nodes ofp110δE1020K-T mice, the proportions of activated CD4+ T cells(CD44hiCD62lo) were increased with a trend towards increasedproportions of activated CD8+ T cells, as well as increasedproportions of memory CD8+ T cells (CD44hiCD62Lhi). C: Theproportion of CD4+CD25+Foxp3+ regulatory T cells were increasedin the lymph nodes and spleen of p110δE1020K-T mice. (Combineddata from 3 independent experiments, n=7-12).

B

C

Lymph nodesSpleen Thymus

A

Wild

typ

e

E10

20K

D91

0A0

5

10

15

% v

iabl

e C

D4+

T c

ells

/thy

mu

s

* ****

****

Wild

typ

e

E10

20K

D91

0A

0

1

2

3

4

5

% v

iabl

e C

D8

+ T

cel

ls/t

hym

us

****

****

Wild

typ

e

E10

20K

D91

0A

0

1

2

3

4

% o

f DN

(C

D4

- CD

8- )

cells

/thy

mu

s

Wild

typ

e

E10

20K

D91

0A

707580859095

100

% o

f D

P (

CD

4+ C

D8

+)c

ells

/th

ymu

s

****

****

40

50

60

70

80

Wild

typ

e

E10

20K

D91

0A

0

10

20

30

40

50

% C

D4+

CD

44h

iI CD

62L

lo

T c

ells

/spl

een

***

*

****

Wild

typ

e

E10

20K

D91

0A

0

20

40

60

80

100

% C

D4

+C

D62

Lhi C

D44

lo

T c

ells

/spl

een

* ***

0

10

20

30

40

50

Wild

typ

e

E10

20K

D91

0A

0

5

10

15

20

% C

D8

+C

D44

hi C

D62

Llo

T c

ells

/spl

een

* *

0

5

10

15

20

25

**

***

Wild

typ

e

E10

20K

D91

0A

0

50

100

150

% C

D8+

CD

62L

hi C

D44

lo

T c

ells

/spl

een **

Wild

typ

e

E10

20K

D91

0A

0

5 106

1 107

1.5 107

Via

ble

CD

4+ T

cel

ls/

sple

en

**

**

Wild

typ

e

E10

20K

D91

0A

0

2 106

4 106

6 106

8 106

Via

ble

CD

8+

T c

ells

/spl

een

***

*

30

35

40

45

50

55

Wild

typ

e

E10

20K

D91

0A

0.0

0.2

0.4

0.6

0.8

1.0

% C

D8

+C

D44

hi C

D62

LL

o T

ce

lls/p

erip

hera

l lym

ph n

odes ****

Wild

typ

e

E10

20K

D91

0A

70

80

90

100

110

% o

f C

D8+

CD

62L

hi C

D44

lo c

ells

T c

ells

/per

iphe

ral l

ymph

nod

es

***

****

****

Wild

typ

e

E10

20K

D91

0A% C

D8+

CD

44h

i CD

62Lh

i

/ pe

riphe

ral l

ymph

nod

es

Wild

typ

e

E10

20K

D91

0A

0

2 106

4 106

6 106

Via

ble

CD

8+ T

cel

ls /

perip

hera

l lym

ph n

odes

*

Wild

typ

e

E10

20K

D91

0A

45

50

55

60

65

% v

iabl

e C

D4+

T c

ells

/per

iphe

ral l

ymph

nod

es

Wild

typ

e

E10

20K

D91

0A

0

2

4

6

8

10

% C

D4

+C

D44

hi C

D62

LL

oT

cel

ls/p

erip

hera

l lym

ph n

odes

** ***

****

Wild

typ

e

E10

20K

D91

0A

70

80

90

100

110

% C

D4

+C

D62

Lh

i CD

44L

o T c

ells

/pe

riphe

ral l

ymph

nod

es ** ****

**

Wild

typ

e

E10

20K

D91

0A

0

2 106

4 106

6 106

8 106

Via

ble

CD

4+ T

cel

ls/p

erip

hera

l lym

ph n

odes

*

0

5

10

15

20**

*

****

Wild

typ

e

E10

20K

D91

0A

0

5

10

15

% C

D4

+C

D25

+F

oxp3

+

/per

iphe

ral l

ymph

nod

es ** ****

**

Wild

typ

e

E10

20K

D91

0A% o

f C

D4

+ C

D25

+F

oxp3

+

T c

ells

/ t

hym

us

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 33: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

Supplementary figure 6: Serum immunoglobulins in p110δE1020K-GL mice.Analysis of serum immunoglobulins from naïve mice (age 8-12 weeks) showed significantly increasedlevels of IgG1 and IgG2b, and a trend towards increased levels IgG2c, IgM, IgA, and IgE in p110δE1020K-GL

mice, while IgG3 levels were similar compared to wild-type mice. p110δD910A mice were antibody deficientfor all isotypes analyzed. (n= 6-7).

WT

E10

20K

D91

0A

1

10

100S

erum

IgA

g/m

L

WT

E10

20K

D91

0A

1

10

100

Se

rum

Ig

G1

g/m

L

* *

WT

E10

20K

D91

0A

1

10

100

1000

Se

rum

IgG

2b

g/m

L * **

WT

E10

20K

D91

0A

0.1

1

10

100

1000

Se

rum

IgG

2c

g/m

L

WT

E10

20K

D91

0A10

100

1000S

eru

m Ig

G3

g/m

L

**

WT

E10

20K

D91

0A

Ser

um Ig

Mg/

mL

WT

E10

20K

D91

0A

0.1

1

10

100

Ser

um I

gEg/

mL **

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 34: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

WT

E1

02

0K

D9

10

A

1e-0011

10100

100010000

100000

CF

U/s

plee

n

WT

E1

02

0K

D9

10

A

1e-0011

10100

100010000

1000001000000

CF

U/g

Lun

g tis

sue

A: B:

WT

E1

02

0K

D9

10

A

IL-6

[pg/

mL]

0

100

200

300

400

WT

E1

02

0K

D9

10

A

0

50

100

150

200

250

IL-1

[pg/

mL]

WT

E10

20

K

D9

10

A

0

200

400

600

800

TNF

[pg/

mL]

WT

E10

20

K

D9

10

A

IFN

[pg/

mL]

WT

E1

02

0K

D9

10

A

0

5000

10000

15000

20000

IL-1

[pg/

mL]

Supplementary Figure 7: PI3Kδ signaling regulates B cell specific IL-10 production in the lung following S. pneumoniae infection.A: 24h post S. pneumoniae infection, lung and spleen CFU counts were similar in wild-type, p110δE1020K-GL and p110δD910A mice. B: 24hpost infection, cytokine levels in the lung homogenate showed a trend towards increased TNFα, IL-6 and IL-1 in p110δE1020K mice. C: 24hprophylactic treatment with nemiralisib (nem) led to a significant reduction in TNFα, IL-6 and IL-1β, and a trend towards reduced IFNγ andIL-10, in the lungs of wild-type mice compared to vehicle control (veh) treated animals at 24h post infection. D: Volcano plot (statisticalsignificance against fold change) of the gene expression changes in response to nemiralisib treatment showed reduced levels of pro-inflammatory cytokines as well as IL-10 at 24h post infection compared to vehicle control treatment. All genes analysed are shown (greydots) with the cytokines of interest labelled and coloured; green for those with a negative fold change, red for positive fold change. E:Analysis of immune cell subsets in Il10ITIB reporter mice at 24h post infection showed that the proportion of IL-10 producing B cells issignificantly increased in p110δE1020K-GL mice and reduced in p110δD190A mice compared to wild-type mice, with similar trends in T cells andmyeloid cells not reaching significance. (A: results from 2 independent studies combined, n=14; B: representative data from 3 independentstudies n=8; C: Combined data from 4 independent experiments n=25; D: data from 1 study, n=6; E: representative data from 2independent studies n=6).

C:

ve

h

ne

m

0

500

1000

1500

IFN

pg/

mL

p=0.0715

ve

h

ne

m

0

5000

10000

15000

IL-1

pg/

mL p=0.008

0

20000

40000

60000

80000 p=0.0026

0

100

200

300

400

500 p=0.0918

0

20000

40000

60000

80000 p=0.0933

0

1000

2000

3000

4000

5000 p=0.0062W

T

E1

02

0K

D9

10

A%IL

-10+

(C

D11

b+Ly

6G+)

0

20

40

60

80

WT

E1

02

0K

D91

0A%

IL-1

0+ (T

CR

+C

D4+

)

WT

E1

02

0K

D9

10A

0

5

10

15

%IL

-10+

(C

D11

b+Ly

6C+)

0

10

20

30

40

50 p<0.0001 p<0.0001

WT

E1

02

0K

D91

0A%

IL-1

0+ (T

CR

+C

D8+

)

D:

-log1

0(p

valu

e)

E:

log2FoldChange-4 -2 0 2

0

5

10

15

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint

Page 35: PI3Kδ hyper activation promotes the development of B cells ...6. Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage,

01020304050

7580859095

100105

p=0.0001

0

5

10

15 p<0.0001

0

1 105

2 105

3 105

0

5 104

1 105

1.5 105

02 1044 1046 1048 1041 105

0

5 103

1 104

1.5 104 p=0.03

02468

WT

E1

02

0K

%C

D19

+

(CD

45+)

WT

E1

020

K

%B

220+

(CD

19+, C

D45

+)

WT

E1

02

0K

0

10

20

30

%B

220-

(CD

19+,

CD

45+)

WT

E1

020

K

CD

45+

cells

/Lun

g

WT

E1

02

0K

CD

19+

cells

/Lun

g

01 103

2 103

3 103

4 103p=0.0117

02 1024 1026 1028 1021 103 p=0.0044

Supplementary Figure 8: Tissue resident B cell numbers are increased in the lungs of naïve p110δE1020K-GL miceBiotin-conjugated anti-CD45 was injected intravenously to distinguish between circulating (CC) and tissue resident (TRC) cells in the lungs ofnaïve mice. p110δE1020K-GL mice showed an increase in the proportion and number of tissue resident leukocytes (CD45+TRC), but notcirculating leukocytes. There was also an increase in the proportion and number of total CD19+ B cells among the tissue resident cellpopulation. Among circulating leukocytes (CD45+IV), total CD19+ B cell numbers were similar in p110δWT and p110δE1020K mice, andp110δE1020K mice had increased numbers and proportions of CD19+B220- B cells. (Representative data from 2 independent experimentsn=4).

CD

45 (

Circ

ulat

ing)

CD45 (Tissue Resident)

CD

11b

GR1 Gated on CD45(Circulating)

Wild-type E1020K

Gated on SiglecF-

17%

1%

27%

3%

59% 63%49% 60%

6% 24%

94%

1%

42%

18%

83%

11%

63%

20%

CD

11b

GR1 Gated on CD45(Tissue Resident)

TC

CD19 Gated on CD11b-GR1-

72% 63%

B22

0

CD19 Gated on CD19+

TC

CD19 Gated on CD11b-GR1-

B22

0

CD19 Gated on CD19+

Circulating Cells (CC) Tissue Resident cells (TRC)

Wild-type E1020K Wild-type E1020K

Tot

al le

ukoc

ytes

Tot

al B

ce

llsC

D19

+B

220+

CD

19+B

220-

Tot

al le

ukoc

ytes

Tot

al B

ce

llsC

D19

+B

220+

CD

19+B

220-

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (which was notthis version posted March 18, 2018. . https://doi.org/10.1101/280651doi: bioRxiv preprint