Physics of 0 + → 0 + transitions recent experimental efforts world data on 0 + → 0 + decay...

41
physics of 0 + → 0 + transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-Gradignan ISOLDE WS, 12-14 february 200

Transcript of Physics of 0 + → 0 + transitions recent experimental efforts world data on 0 + → 0 + decay...

Page 1: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• physics of 0+ → 0+ transitions

• recent experimental efforts

• world data on 0+ → 0+ decay

• future studies

Bertram Blank, CEN Bordeaux-Gradignan ISOLDE WS, 12-14 february 2007

Page 2: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• SM is theory which describes electro-weak interaction• BUT: parameters have to be determined experimentally

e.g. masses, coupling constants, mixing angles, etc.• nuclear decay is weak process and may allow for

determination of these parameters• 5 different couplings possible due to Lorentz invariance:

- scalar coupling (S)

- vector coupling (V)

- tensor coupling (T)

- axial-vector coupling (A)

- pseudo-scalar coupling (P)• decay: mainly vector and axial-vector V-A theory• weak contribution from other coupling?? scalar, tensor coupling• determination of vector coupling constant: 0+ 0+, n decay, decay• determination of axial-vector coupling constant: neutron decay

• SM is theory which describes electro-weak interaction• BUT: parameters have to be determined experimentally

e.g. masses, coupling constants, mixing angles, etc.• nuclear decay is weak process and may allow for

determination of these parameters• 5 different couplings possible due to Lorentz invariance:

- scalar coupling (S)

- vector coupling (V)

- tensor coupling (T)

- axial-vector coupling (A)

- pseudo-scalar coupling (P)• decay: mainly vector and axial-vector V-A theory• weak contribution from other coupling?? scalar, tensor coupling• determination of vector coupling constant: 0+ 0+, n decay, decay• determination of axial-vector coupling constant: neutron decay

Page 3: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

2F

2V Mg

Kft

2GT

2A Mg+

• in general:

• for 0+ 0+ transitions: only vector current due to selection rules

• experimental quantities: masses of parent and daughter, half-life, branching ratio

• K / (hc)6 = 8120.271(12) * 10-10 GeV-4 s = constant, <MF>2 = T(T+1) - TziTzf

• gv can be determined, Vud = gv / gF, quark-mixing matrix element

• one high-precision measurement would be enough

• BUT…..

2F

2V Mg

Kft f(Qec) * T1/2 / BR

Page 4: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• electromagnetic interactions: e.g. positron - protons, positron - electrons

radiative correction R → R’

• isospin impurity: binding energy difference, configuration mixing

Coulomb correction c = c1 + c2

• nuclear structure dependent radiative correction NS

• if these effects corrected: constant ft value

constant vector current hypothesis (CVC)

• determination of gv via Ft value:

many ft values are needed to test CVC and theoretical corrections

• from gv:

determination of Vud matrix element of CKM quark mixing matrix Vud = gv / gF

Ft = ft (1 + R’ ) (1 – c + NS) = = constant

K2

F2V Mg (1 + R)

Page 5: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

Jaus & Rasche, 1987

Page 6: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

Towner & Hardy, 2005

Page 7: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

Towner & Hardy, 2005

Page 8: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.
Page 9: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.
Page 10: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• overall precision: Ft = (3073.5 ± 1.2) s 4 * 10-4

single measurements: < 10-3

• f: f(QEC5) → Q < 2 * 10-8 → < 1keV

• T1/2: T < 10-3

• BR: BR < 10-3

• theoretical corrections: C, R ~ 1% → < 10%

9 “classical” cases

Page 11: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• Q value measurements at JYFLTRAP: 62Ga

T. Eronen et al., 2006

QEC = (9181.07 ± 0.54) keV

Page 12: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• half-life measurement at GSI:

• half-life measurement at JYFL:

G. Canchel et al., 2005

T1/2 = (116.12 ± 0.15) ms

B. Blank et al., 2004

T1/2 = (116.18 ± 0.04) ms

Page 13: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• branching ratio measurement at JYFL:

A. Bey et al., 2007 BR = (99.905 ± 0.026) %

2511- e+e

954 – 62Ga

1388 – 62Ga

2228 – 62Ga

Page 14: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

62Ga31 (0+,T=1)

10

12

22

20

32

42

11

3

?

62Zn32 (0+,T=1)0

953.5

953. 5

850

1389

2227

+ Fermi A

nalog. (sa)

99.902%

+ Fermi N

onanalog.

< 0.014%

+ Gamow-Teller

~ 0.022%

1803.5

2343.2

2374

2806

3159

3180.5

3638

0.078(8)%

0.025(7)%

0.014(5)%

0.022(7)%

%26902.99I

New Ft value for 62Ga

sFt 5863074.

10

sft 1643074.

Page 15: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• Q value measurements at ISOLTRAP: e.g. 38Ca

• half-life measurements at ISOLDE using REXTRAP: e.g. 38Ca

S. George et al., 2007

B. Blank et al., 2007

T1/2 =

(450.0±1.6) ms

z0

r0

m =

(-22058.01±0.65) keV

T1/2 = (450.0 1.6) ms

Page 16: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

A longitudinal Penning trap filled with Ne as buffer gas

E

Accumulation Cooling Ejection – TOF selection

Buffer gas cooling

Superconducting magnet 3T

PNe ~10-4 mbar in the trapping area

Page 17: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• Q value measurements at ISOLTRAP: e.g. 38Ca

• half-life measurements at ISOLDE using REXTRAP: e.g. 38Ca

S. George et al., 2007

B. Blank et al., 2007

T1/2 =

(450.0±1.6) ms

z0

r0

m =

(-22058.01±0.65) keV

T1/2 = (450.0 1.6) ms

Page 18: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• branching-ratio measurement: 22Mg

• half-life measurement: 34Ar

• other measurements: 62Ga

J. Hardy et al., 2003

V. Iacob et al., 2006

BR = (53.15 ± 0.12) %

T1/2 =

(843.8 ± 0.4) ms

Page 19: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• branching-ratio measurement: 62Ga

• other measurements: 18Ne , 74RbB. Hyland et al., 2006

BR = (99.861 ± 0.011) %

Page 20: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

14O T1/2 Leuven, Auckland, Berkeley

QEC Auckland18Ne T1/2 TRIUMF

QEC ISOLDE22Mg T1/2, BR Texas A&M

QEC CPT Argonne, ISOLDE26Si QEC JYFL26Alm QEC JYFL34Ar T1/2, BR Texas A&M

QEC ISOLDE38Ca QEC, T12 ISOLDE

QEC MSU38Km T1/2 Auckland42Sc QEC JYFL42Ti QEC JYFL46V QEC JYFL, CPT Argonne50Mn QEC JYFL

T1/2 Auckland62Ga T1/2, BR GSI, JYFL, TRIUMF, Texas A&M

QEC JYFL74Rb T1/2 ,BR TRIUMF, ISOLDE

QEC ISOLDE

Page 21: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

<Ft> = (3074.4 ± 1.2) s gv = 1.1358(4) Vud = 0.9736(4)

Page 22: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• CVC accepted• measurement of ft• test c - NS from theoretical models

Page 23: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• ft value + QED corrections

• ft value with all corrections Ft

nuclear corrections seem to be okey, but they have large uncertainties

new calculations needed + measurements for nuclei with large corrections

ft (1 + R’ ) (1 – c + NS)

Page 24: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

b

s

d

VVV

VVV

VVV

b

s

d

tbtstd

cbcscd

ubusud

• coupling of quark weak eigen states to mass eigen states in the Standard Model

unitarity condition:

Vud = 0.9736(4) ~ 95 %Vus = 0.2254(21) ~ 5 %Vub = 0.00367(47) ~ 0 %

Vui² = 0.9987(12)

1VVV 2ub

2us

2ud

Vud 0+ 0+ decays: 0.9736(4)neutron decay: 0.9741(20) Part. Data Group (2004)(Serebrov et al. (2005) not included)pion beta decay: 0.9728(30) larger uncertainty

Vus KX decays + form factor Leutwyler-Roos (1984) Cirigliano et al. (2005)

deviation to

unitarity

Vud

nuclear

0+ 0+

neutron

pdg 04

neutron

Se 05

Vus

K decay: pdg04 ~ 2 ~ 2 ok

K: all results ~ 1 ok ~ 2

• the situation today

Severijns, Beck, Naviliat-Cuncic, 2006

Page 25: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• limit on induced scalar currents:

fs = -0.00005(130) or |fs| 0.0013

• limit for fundamental scalar current:

|Cs / Cv | 0.0013

• limit for Fierz interference term:

bF = 0.0001(26)

Ft =

• limits on right-handed currents: -0.0005 < < 0.0015 (90% C.L.)

W1 = WL cos - WR sin W2 = WL sin + WR cos

• unitarity of first column of CKM matrix:

Vid = 0.9985(54)

best limits from all approaches

Ft value for fs = 0.002

K2 GF

2 Vud2 (1 + V

R) 1

(1 + <b’F>)

Hardy & Towner, 2005

Page 26: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• uncertainty on <Ft> : 3073.3(35) s 3074.4(12) s ==>> 30 % due to more and more precise exp. data

• Fierz term : 0.0010(30) 0.0001(26) ==>> strongly reduced value due to better exp. data

• Vud : 0.9740(10) 0.9736(4) ==>> slight change, factor 2.5

• unitarity test of first row of CKM matrix: Vui = 0.9970(21) Vui = 0.9987(12) ==>> change mainly due to Vus, improved precision from Ft

• unitarity test of first column of CKM matrix: Vid = 0.9985(54) ==>> not evaluated in 1990

• right-handed currents: Re(alr) = -0.0004(6) ==>> not evaluated in 1990

Page 27: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• Tz = -1 nuclei: 10C, 18Ne, 22Mg, 26Si, 30S, 34Ar, 38Ca, 42Ti

- major problems: T1/2 of daughter nuclei BR with precision of 10-3 → absolute efficiency with < 10-3

→ knowledge of source strength - solutions:

trap-assisted spectroscopy for half-life measurementshigh-precision efficiency calibration of single-crystal Germanium

ion counting → experiments on separators like MARS (Texas A&M), LISE3 (GANIL), TRMP (KVI)

• Tz = 0 nuclei: 66As, 70Br, 78Y, 82Nb, 86Tc, …, 98In

- major problem: production rates, for some isomers, excited 0+ states

- solution: future facilities like EURISOL, maybe SPIRAL2, ISOLDE

• theoretical corrections: - new approaches needed for nuclear corrections - higher-order calculations for QED corrections

Page 28: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• half-life of 38Ca at ISOLDE• half-life of 26Si at JYFL• half-life of 42Ti at JYFL or at KVI• calibration of a HP germanium

- branching ratio of 10C, 26Si,

38Ca, 42Ti

Page 29: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• interesting physics case with strong implications

beyond nuclear physics

• lively field with world-wide activities

• high-intensity beams of nuclei of interest are already available

• trap-assisted spectroscopy becomes more and more important,

ISOLDE is a very good place

• LISE3/GANIL and TRIP/KVI could be a prominent place for

new branching ratio measurements

• in Europe: ISOLDE, JYFL, LISE3, TRIP, LIRAT/DESIR can play an

important role

Page 30: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.
Page 31: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• Q value measurements at ISOLTRAP: e.g. 38Ca

• half-life measurements at ISOLDE: e.g. 38Ca

• other measurements: 18Ne, 22Mg, 34Ar, 74Rb

S. George et al., 2007

B. Blank et al., 2007

T1/2 = (451.8±1.6) ms

z0

r0

Page 32: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• Q value measurements at MSU trap: 38Ca

G. Bollen et al., 2006

• m = 280 eV

Page 33: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• Q value measurements at JYFLTRAP: e.g. 62Ga

• half-life and branching-ratio measurements:

• other measurements: 26Alm, 26Si, 42Ti, 42Scm, 46V, 50Mn

G. Canchel et al., 2005 A. Bey et al. , 2007

T. Eronen et al., 2006

T1/2 = (116.12 ± 0.15) ms

QEC = (9181.07 ± 0.54) keV

Page 34: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• Q value measurements at CPT at Argonne: 46V

• other measurements: 22Mg G. Savard et al., 2005

Page 35: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• half-life measurement: 62Ga

• branching-ratio measurement: 62Ga

B. Blank et al., 2004

G. Savard et al.

T1/2 =

(116.18 ± 0.04) ms

Page 36: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• half-life measurement: 14O

M. Gaelens et al., 2001T1/2 = (70.560 ± 0.049) s

Page 37: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• half-life measurement: 50Mn

• other measurements: 14O, 38Km P.H. Barker et al., 2006

T1/2 = (283.10 ± 0.14) ms

Page 38: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• half-life measurement: 14O

J.T. Burke et al., 2006

T1/2 = (70.696 ± 0.052) s

Page 39: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• half-life measurements:

- only nuclei without “daughter half-life problem”

e.g. 10C, 14O, 18Ne, 30S, ….. 66As, 70Br ??

on LIRAT2 or SIRa

• branching ratio measurements

- top candidates: 18Ne, 26Si, 38Ca, where half-life and QEC are measured

production rates at LISE3: 18Ne: 6000pps with 3A of 20Ne, 100% pure

26Si: 3000pps with 3A of 32S, 100% pure

38Ca: 2500pps with 3A of 40Ca, 100% pure

- others which are feasible: 10C, 14O, 22Mg, 30S, 34Ar, (42Ti)

Page 40: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

• integration of decay time

spectrum to yield source strength

(a few percent error)

• intensity of rays

(statistical and systematic error)

branching ratios with large error bars (~ 1%) acceptable for very small branching ratios

Page 41: Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.

Primary beam

SISSI target

spectrometer LISE3 :degrader Be Wien filter