PHYSICS LAB MANUAL · AIM: To determine the mass of a metre rule using the Principle of Moments....

109
PHYSICS LAB MANUAL Mr. R. Gopie /Mr. R. Singh/Mr. R. Ramroop Student`s Name: ___________________________________ YEAR: BARRACKPORE WEST SECONDARY 883 Papourie Road Lower Barrackpore

Transcript of PHYSICS LAB MANUAL · AIM: To determine the mass of a metre rule using the Principle of Moments....

PHYSICSLABMANUALMr. R. Gopie /Mr. R. Singh/Mr. R. Ramroop

Student`s Name:

___________________________________

YEAR: BARRACKPORE WEST SECONDARY

883 Papourie Road Lower Barrackpore

Student Name: Class: Date Done:

Date Received 2

LABPRACTICALS

Student Name: Class: Date Done:

Date Received 3

Lab # 1:

Title: Centre of Gravity

AIM: To determine the centre of gravity of an irregularly shaped lamina.

APPARATUS: Irregularly shaped lamina, Optical pin, Plumb line (bob and string), wooden cork, Retort Stand and Clamp.

DIAGRAM:

Student Name: Class: Date Done:

Date Received 4

DATA ANALYSIS:

1: Why must the intersection of the three lines be the centre of gravity?

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

2: List the important precautions in this experiment.

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………...

Student Name: Class: Date Done:

Date Received 5

3: When the procedure is repeated third time, how will this distinguish whether the location of the centre of gravity is accurate or not?

…………………………….…………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………

PROCEDURE: 1: Make three holes on the lamina far apart but close to the edge.

2: Suspend the lamina from hole A on an optical pin held horizontally by a wooden cork and retort stand and clamp.

3: Attach a plumbline in front of the lamina.

4: Displace the lamina and plumbline and allow them to come to rest.

5: Draw a straight line from the point of support to the bottom of the lamina along the plumbline.

6: Repeat steps 1-5 using holes C and E.

Student Name: Class: Date Done:

Date Received 6

DATA COLLECTED:

Place your lamina here.

MM-MANIPULATION/MEASUREMENT MARKS.

• Places holes close to the edge of the lamina 1 • Ensures the lamina swings freely 1 • Uses a pencil with a sharp point 1 • Place X’s as far apart as possible 1 • Repeats procedure for at least two other points 1 • Chooses three points of suspension that are reasonably far from each other 1

Student Name: Class: Date Done:

Date Received 7

PRECAUTIONS:

1) …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

2) …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

3) …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

1) …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

2) …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

3) …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 8

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

REFLECTION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 9

LAB #2

TITLE: Mass of Metre Rule

AIM: To determine the mass of a metre rule using the Principle of Moments.

APPARATUS: Metre rule with holes drilled at various positions, 50g mass, Optical Pin, Retort Stand and Clamp, String, Wooden Cork.

DIAGRAM:

Diagram (Students are to draw their own diagram)

Student Name: Class: Date Done:

Date Received 10

THEORY/RESEARCH:

1. What is the moment of a force? …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

2. What is the centre of gravity of an object?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

3. How do we decide if a moment is clockwise or anticlockwise?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 11

4. What does the Principle of Moments state? …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

5. Draw a labelled diagram and write a formula associated with this principle

6. How do you convert mass in grams to weight in Newtons?

Student Name: Class: Date Done:

Date Received 12

PROCEDURE:

1. Balance the metre rule at the 50cm mark using a piece of plasticine on the

lighter side, if necessary.

2. Pivot the at the 40cm mark and balanced again using a 50g mass.

RESULTS /CALCULATIIONS:

1. Position of the centre of gravity of the metre rule =..............cm.

2. Position of the 50g mass =.....................cm.

3. Position of the pivot = ......................cm.

4. Distance between W and the pivot =...................cm.

5. Distance between the 50g mass and the pivot =..............cm.

6. Clockwise moment due to W =......................Ncm.

7. Anticlockwise moment due to the 50g mass =................Ncm.

Apply the Principle of Moments to calculate the mass of the metre rule.

Student Name: Class: Date Done:

Date Received 13

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 14

CONCLUSION:

The mass of the metre rule was........................g.

REFLECTION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

ORR-OBSERVATION/RECORDING/REPORTING MARKS All lengths recorded to one decimal place 1

One neat table 1

Records all distances/positions with the appropriate unit 1

All sub-headings named 1

All sub-headings in logical order 1

Correct subject matter under correct headings 1

Logical sequence of steps in method 1

A large diagram 1

Uses the correct tense (discussion) 1

States conclusion in relation to the aim. 1

Student Name: Class: Date Done:

Date Received 15

LAB #3

TITLE: Archimedes Principle

AIM: To show that for a floating body the upthrust is equal to the weight of the body.

APPARATUS: A floating body, measuring cylinder, string, electronic balance.

DIAGRAM:

Diagram (Students are to draw their own diagram)

Student Name: Class: Date Done:

Date Received 16

THEORY /RESEARCH:

1. State Archimedes’ Principle. …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

2. Write the formula for density. What is the density of water?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

3. State the law of floatation. …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 17

PROCEDURE:

1. Half fill the measuring cylinder with water.

2. Record the volume of water in the measuring cylinder.

3. Determine the mass of the object using an electronic balance.

4. Gently lower the object in the measuring cylinder and allow it to float.

5. Record the new volume.

RESULTS/CALCULATIONS: 1. The initial volume of water =.....................cm3.

2. The final volume of water = ....................cm3.

3. Volume of water displaced =..................cm3.

4. Mass of water displaced =................g

5. Weight of water displaced =........................N.

1. Mass of object = ......................kg.

2. Weight of object =.................N

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 18

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Upthrust = .......................N.

Weight of body =.............N.

REFLECTION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 19

AI- ANALYSIS /NTERPRETATION MARKS

Formula correct 1

Substitution correct 1

Correct conversion of data to SI (g to kg) 1

Answer correct 1

Answer to the correct number of significant figures 1

Answer with unit 1

Conclusion follows from data 1

Conclusion justified using data 1

State one unavoidable source of error 1

Limitation of an apparatus 1

Student Name: Class: Date Done:

Date Received 20

LAB #4

Title: Density (irregular shaped body)

AIM:

To determine the density of an irregularly shaped body that sinks in water.

APPARATUS:

Ureka can, measuring cylinder, 100g brass mass, string, water, pivot, plastacine,

Metre rule.

DIAGRAMS: (Students are to draw their own diagrams (Plan and Design Experiment))

Diagram for Measuring Mass

Student Name: Class: Date Done:

Date Received 21

Diagram for Measuring Volume

THEORY/RESEARCH: (Students are to enter their own Theory for this experiment) (P+D)

1. Define the term density. …………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 22

PROCDURE: (Present tense) (Students are to write their own procedures)

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Method for Measuring Mass

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Method for Measuring Volume

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 23

EXPECTED RESULTS:

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 24

REFLECTION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

T o determine the density of an irregularly shaped body that floats in water. MARKS

Appropriate list of materials 1

Large diagram of set-up 1

Method for measuring the mass of the irregularly shaped body 1

Method for measuring the volume of the irregularly shaped body 1

Workable method outlined in logical sequence 1

Calculations to determine the density 1

Treatment of results 1

Non – standard precautions to improve accuracy 1

Safety precautions used 1

Sources of error identified. 1

Student Name: Class: Date Done:

Date Received 25

LAB #5

TITLE: Friction

AIM:

To test the hypothesis “Water can reduce friction to the same degree as oil “

APPARATUS:

Table top, wooden block, pulley, screw, string, scale pan, various masses, oil, and Water.

DIAGRAMS:

(Students are to draw their own Diagram (Plan and Design Experiment)

Student Name: Class: Date Done:

Date Received 26

THEORY/RESEARCH:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PROCDURE: (Present tense) (Plan and Design)

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 27

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 28

EXPECTED RESULTS:

OIL WATER

FRICTIONAL FORCE/N

List of Variables:

Constant Variables:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Independent Variables:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Dependent Variables:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 29

PRECAUTIONS: (Standard and Non-Standard Precautions)

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 30

To test the hypothesis “ Water can reduce friction to the same degree as oil “

PD- PLAN/DESIGN MARKS

Development of hypothesis 1

Appropriate list of materials 1

Large diagram of set- up 1

Clear, concise, workable plan in a logical sequence 1

Constant Variables 1

Independant Variables 1

Dependant Variables 1

Non-Standard precautions used to to improve accuracy 1

Sources of error that may affect the accuracy of the answer 1

Conclusion that supports or refutes the hypothesis 1

Student Name: Class: Date Done:

Date Received 31

LAB #6

TITLE: Acceleration due to gravity

AIM:

To determine the acceleration due to gravity using a simple pendulum.

Apparatus:

Pendulum bob, string, retort stand clamp, optical pin, metre rule, stop clock.

DIAGRAM:

(Students are to also draw their own diagram)

Student Name: Class: Date Done:

Date Received 32

Diagram:

THEORY/RESEARCH: (Students are to continue theory based on Simple Pendulum)

If the length of the pendulum is l and g is the acceleration due to gravity where the pendulum is used then the time taken for one oscillation is T=2π√(l/g).

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 33

PROCEDURE:

• Hang the pendulum bob from one end of a 100cm length of thread and the other end

clamped firmly between two wooden blocks.

• Allow the bob to dangle over the edge of the table.

• Displace the pendulum bob and release it.

• Using the 3-2-1-0 method of countdown determine the time for twenty swings.

• Repeat for another twenty swings.

• Repeat the above procedure for different values of l.

Student Name: Class: Date Done:

Date Received 34

RESULTS/CALCULATIONS: (Students are to fill out Table)

L/M TIME FOR TWENTY SWINGS/S PERIOD/S T2/S2

1 2 AVG.

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20)

(Students are to Plot the following Graph)

PLOT A GRAPH OF L/M AGAINST T2/S2 Calculations:

g= GRADIENT X 4

=.......................m/s2

Student Name: Class: Date Done:

Date Received 35

DATA/ANALYSIS:

1.What is the relationship between l and T?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 36

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

The acceleration due to gravity was = .......................m/s2

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

To determine the acceleration due to gravity using a simple pendulum.

AI- ANALYSIS /INTERPRETATION MARKS

Large triangle 1

Accurate read off from graph to the appropriate number of significant figures 1

Calculation for gradient correct 1

Appropriate significant figures for gradient 1

Correct unit for gradient 1

Calculated values derived correctly (T,T2) 1

Calculated values to the appropriate number of significant figures 1

Correct units for calculated values( T2/s2) 1

Unavoidable sources of error 1

Relationship between l and T 1

Student Name: Class: Date Done:

Date Received 37

Lab #7

TITLE: Conservation of Momentum

AIM:

To demonstrate the principle of conservation of momentum.

APPARATUS:

Newton’s cradle

DIAGRAM:

Students are to also draw their own diagram

Student Name: Class: Date Done:

Date Received 38

THEORY/RESEARCH:

1. Define the term momentum.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

2. Is it a scalar or v vector quantity?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

3. State the principle of conservation of momentum.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 39

4. Write a formula associated with this principle.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PROCEDURE:

1. Displace the first ball and then release it.

2. Record all subsequent observations.

RESULTS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 40

DATA ANALYSIS:

• What happened to the momentum of the first ball.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

• What happened to the momentum gained by the second ball?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

• By substituting in the formula, show how your observations are supported

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 41

• Describe the energy changes that take place in the system.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 42

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 43

Lab #8

TITLE: Specific Heat Capacity (Electrical Method)

AIM:

To determine the specific heat capacity of water by an electrical method.

APPARATUS:

Calorimeter, thermometer, immersion heater, ammeter, voltmeter, stopwatch, water, 12V battery, stirring rod.

DIAGRAM:

Student Name: Class: Date Done:

Date Received 44

THEORY/RESEARCH:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

1. Energy supplied by heater = IVt

2. Energy gained by water = mcθ

Student Name: Class: Date Done:

Date Received 45

PROCEDURE:

• Place about 100g of water in a calorimeter.

• Record the initial temperature of the water.

• Heat the water electrically for ten minutes.

• At the end of this time, record the current and voltage.

• Record the final temperature of the water.

RESULTS :

1) Mass of water in the calorimeter =...................g.

2) Initial temperature of the water = ......................o C.

3) Steady current through the heater = .........................A.

4) Steady voltage across the heater = .........................v

5) Total time for heating =........................s.

6) Final temperature of the water = ......................o C.

Student Name: Class: Date Done:

Date Received 46

CALCULATIONS:

What is the power of the heater?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

How much energy did the heater supply in total?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

What was the temperature rise of the water?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 47

Calculate the specific heat capacity of water.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 48

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

To determine the specific heat capacity of water by an electrical method.

MM-MANIPULATION/MEASUREMENT MARKS

Ensures that the bulb is completely immersed 1

Makes sure that the thermometer does not touch the sides of the beaker 1

Stirs to ensure uniform temperature 1

Leaves enough time to ensure equilibrium 1

Reads thermometer at eye level to avoid parallax 1

Ensure there is no zero error in stop clock 1

Reads stop clock so as to avoid error of parallax 1

Cleans balance before finding mass 1

Zero balance before finding masses 1

Determine the specific heat capacity accurately 1

Student Name: Class: Date Done:

Date Received 49

Lab #9

TITLE: Melting point of Paraffin Wax (cooling curve)

AIM:

To determine the melting point of paraffin wax by plotting a cooling curve.

APPARATUS:

Boiling tube with paraffin wax, thermometer, retort stand clamp, stopwatch, 500ml beaker, Bunsen burner, wire gauze, tripod stand.

DIAGRAM:

Student Name: Class: Date Done:

Date Received 50

THEORY/RESEARCH:

What is a phase change?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

What is the melting point of a substance?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 51

PROCEDURE:

• Bring a 500ml beaker of water to a boil.

• Place the paraffin wax in the beaker and leave to liquefy.

• Remove the clamped boiling and place a thermometer in it.

• Record the temperature at one minute intervals for twenty minutes.

RESULTS/CALCULATIONS:

TIME/S TEMPERATURE /0 C 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22)

Student Name: Class: Date Done:

Date Received 52

DATA ANALYSIS:

1.Plot a cooling curve (temperature against time) for the substance.

• Label the part of the graph in which the substance is a a) solid b) liquid c)undergoing a phase change.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

• What is the melting point of the substance?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

• What was noticeable as solidification was taking place?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

• Use the kinetic theory to account for the shape of your graph.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 53

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

Write an appropriate conclusion for this experiment using the terms lattice structure, kinetic energy and potential energy.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 54

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

To determine the melting point of paraffin wax by plotting a cooling curve.

ORR- OBSERVATION/RECORDING/REPORTING MARKS

Headings for tables labelled with quantity/symbol/unit 1

Appropriate significant figures in each column 1

Good range of readings 1

Correct quantities plotted on each axes 1

Axes labelled with quantity/unit 1

Suitable scale for each axes 1

Fine circled points or sharp crosses, thin line 1

Accurate plotting of all readings 1

Line of best fit 1

Uses acceptable language/expression to explain the shape of the curve 1

Student Name: Class: Date Done:

Date Received 55

Lab # 10

TITLE: Energy gained by water

AIM:

To determine the amount of energy gained by some water.

APPARATUS:

50g brass mass, Styrofoam cup, beaker of water, thermometer, balance.

DIAGRAMS:

(Students are to Draw their own Diagram of the Experiment)

Student Name: Class: Date Done:

Date Received 56

THEORY/RESEARCH:

How to calculate the energy gained by a substance.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PROCDURE:

• Find the mass of an empty Styrofoam cup using the electronic balance.

• Half fill the styrofoam cup with water and find its mass.

• Heat the brass mass in a beaker of water for three minutes.

• Take the initial temperature of the water in the Styrofoam cup.

• Quickly transfer the brass mass to the styrofoam cup.

• Take the final equilibrium temperature of the mixture.

Student Name: Class: Date Done:

Date Received 57

RESULTS/CALCULATIONS:

1.Mass of empty styrofoam cup =................g.

2. Mass of styrofoam cup and water =................g.

3 Initial temperature of water = .............0C

4. Final temperature of mixture = .................. 0

Energy gained by water = mcθ.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 58

DATA/ANALYSIS:

Why must the transfer of the metal be done quickly.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

After a while the temperature of the metal falls from its maximum value. Why is this?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Why is the Styrofoam cup a good choice as a container?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 59

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR: State two possible sources of error in the experiment.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 60

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 61

Lab #11

TITLE: Reflection

AIM:

To verify that the angle of incidence is equal to the angle of reflection.

APPARATUS:

Plane mirror, three optical pins, drawing board, paper, protractor, pencil, ruler

DIAGRAMS:

Student Name: Class: Date Done:

Date Received 62

THEORY/RESEARCH:

State the two laws of reflection.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PROCDURE:

• A line RT was drawn across the sheet of paper.

• A normal was constructed at Q, the centre of the line.

• A line PQ was drawn to represent the incident ray.

• The mirror was placed on the line RT.

• Two pins P and Q were tacked on the incident ray.

• A third pin was tacked on the other side such that it was in line with the images of P and

Q as seen through the mirror.

• The mirror was removed and the reflected ray drawn passing through R.

• This was repeated for another angle of incidence.

Student Name: Class: Date Done:

Date Received 63

RESULTS:

Angle of incidence/ Angle of reflection

1.

2.

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 64

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 65

Lab #12

TITLE: Specific Latent Heat of Fusion

AIM:

To determine the specific latent heat of fusion of ice by the method of mixtures.

APPARATUS:

Ice at 0, thermometer ,string, stirring rod, Styrofoam cup ,electronic balance.

DIAGRAMS:

(Students are to draw their own diagram for the setup of the experiment)

Student Name: Class: Date Done:

Date Received 66

Student Name: Class: Date Done:

Date Received 67

THEORY/RESEARCH:

Define the term specific latent heat of fusion of ice.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PROCDURE:

• The mass of an empty cup was found using a balance.

• 100cm of room temperature water was placed in the cup and its mass determined.

• The initial temperature of the water was recorded.

• 16g of ice was dried and placed in the cup.

• The mixture was gently stirred and the final temperature of the chilled

Water and molten ice was recorded.

Student Name: Class: Date Done:

Date Received 68

RESULTS:

Mass of empty cup =

Mass of cup and room temperature water =

Initial temperature of ‘room temperature water’ =

Final temperature of chilled water and molten ice =

Total mass of cup , water and molten ice =

CALCULATIONS:

1. How many grams of room temperature water were there at the start?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 69

2. How many degrees was the water eventually chilled?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

3. How much energy was removed from this water?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

4. How many grams of ice at 0 was there originally?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 70

5. When having melted, it warmed up from 0 to the final temperature of the mixture.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

6. How much energy did it gain?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 71

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 72

To determine the specific latent heat of fusion of ice by the method of mixtures.

OBSERVATION/RECORDING/REPORTING MARKS Units on readings consistent with the instrument used 1

Zero error noted on the balance 1

One neat table 1

Records all temperatures to one decimal place 1

Well labelled diagram 1

All sub-headings named 1

All sub-headings in logical order 1

Correct subject matter under correct headings 1

Logical sequence of steps in method 1

States conclusion in relation to the aim. 1

Student Name: Class: Date Done:

Date Received 73

Lab #13

Title: Refractive index

AIM:

To determine the refractive index of glass using a rectangular glass block.

APPARATUS:

Plane mirror, four optical pins, drawing board, paper, protractor, pencil, ruler

DIAGRAMS:

(Students are to draw their own diagram)

Student Name: Class: Date Done:

Date Received 74

THEORY/RESEARCH:

State the two laws of refraction.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PROCDURE:

• A horizontal line was drawn across the sheet of paper.

• A rectangular glass block was placed face down on this line.

• An outline of the block was traced.

• A normal was constructed on one side of the block and an incident ray drawn.

• Two pins P and P were tacked on the incident ray.

• Pins P and P were placed on the other side of the glass block such that it

was in line with P and P as seen through the block.

• The angle of refraction was found by joining the incident ray and the refracted ray.

Student Name: Class: Date Done:

Date Received 75

RESULTS:

Angle of incidence/ Angle of refraction/

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

n =sin i/sin r

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Lateral Displacement

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 76

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 77

To determine the refractive index of glass using a rectangular glass block.

MM-MANIPULATION/MEASUREMENT MARKS

Sharp outline of glass block 1

Draws normal at 90 1

Measures angles from the normal 1

Pins far apart as possible to reduce error 1

Pins sighted for no parallax 1

Pins must be straight and vertical 1

Aligns the pin points and not the pin heads 1

Points used marked with X’s 1

Draw lines through marked holes 1

Lateral displacement 1

Student Name: Class: Date Done:

Date Received 78

Lab #14

TITLE: Series Circuit

AIM:

To investigate current in a series circuit.

APPARATUS:

Battery, switch, ammeter, rheostat, fixed resistor, connecting wires.

DIAGRAM:

(Diagram will be given by teacher)

Student Name: Class: Date Done:

Date Received 79

THEORY/RESEARCH:

1. Describe a series arrangement.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PROCEDURE:

• The circuit was set up as shown in the diagram with the ammeter in series and the rheostat

set at maximum resistance.

• The rheostat was adjusted until a reasonable current flowed.

• The current on the ammeter was recorded.

• The ammeter was placed at position B, C, and D and the current recorded.

Student Name: Class: Date Done:

Date Received 80

RESULTS/CALCULATIONS:

DATA ANALYSIS

What is the same for a series arrangement?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Position of ammeter Current/A A B C D

Student Name: Class: Date Done:

Date Received 81

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 82

Lab #15

TITLE: Parallel Circuit

AIM:

To investigate current and voltage in a parallel circuit.

APPARATUS:

Battery, switch, ammeter, rheostat, fixed resistors [2,3,6Ohms],connecting wires, voltmeter.

DIAGRAM:

(diagram will be given by teacher in class)

Student Name: Class: Date Done:

Date Received 83

THEORY/RESEARCH:

Describe a parallel arrangement.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PROCEDURE:

• The circuit was set up as shown in the diagram with the ammeter

• in position A and the rheostat set at maximum resistance.

• The rheostat was adjusted until a reasonable current flowed.

• The current on the ammeter was recorded.

• The ammeter was placed at position B, C, and D and E the current recorded.

• The voltage across the three resistors was recorded.

Student Name: Class: Date Done:

Date Received 84

RESULTS:

Position of Ammeter Current/A A B C D E

DATA ANALYSIS

What is the same for a parallel arrangement?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 85

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 86

LAB # 16

TITLE: Filament Bulb Voltage Characteristics

AIM:

To investigate the current – voltage relationship for a filament lamp.

APPARATUS: Battery, switch, ammeter, rheostat, filament lamp, connecting wires, voltmeter. DIAGRAM:

(diagram of circuit will be given by teacher in class)

THEORY/RESEARCH:

A filament lamp is non-ohmic. This graph is an approximate straight line at low currents. The resistance of the lamp increases at higher currents and graph curves correspondingly.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 87

PROCEDURE:

1. The circuit was set up as shown above. Device D was the filament lamp.

2. The variable resistor was varied to obtain several pairs of I/V readings.

3. A graph of I and V was plotted.

RESULTS:

Current/A Voltage/V 2. 3. 4. 5. 6. 7. 8. 9. 10.

DATA ANALYSIS:

1. What does the gradient of an I-V graph represent?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 88

2. What name is given to devices whose resistance does not remain constant?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

3. Explain why the graph curves at higher currents?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 89

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 90

Lab #17

TITLE: Radioactive Decay

AIM:

To illustrate that radioactive decay is a random process.

APPARATUS: 100 dice. DIAGRAM:

Student Name: Class: Date Done:

Date Received 91

THEORY/RESEARCH:

1.The decay of radioactive substances is random. Any atom may decay at any given time.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PROCEDURE:

• Throw all 100 dice and count the number which land “sixes up”. Consider these to be

decayed dice.

• Repeat, throwing the “undecayed dice”.

• Remove the decayed dice and repeat throws with undecayed dice.

• Record the number of undecayed dice and the number of throws.

• Draw a graph of your results. (Number of undecayed dice against throw number)

Student Name: Class: Date Done:

Date Received 92

RESULTS:

No. of undecayed dice

162 140 117 101 87 72 62 52 45 39 35 32 28

Throw No.

1 2 3 4 5 6 7 8 9 10 11 12 13

DATA ANALYSIS:

1. What is the name of decay curves like this?

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

PRECAUTIONS:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 93

SOURCES OF ERROR:

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

CONCLUSION:

The number of dice which turn up sixes decreases with each successive throw. The

of sixes depends on the number of dice in the throw and the probability of throwing a

six. Radioactive decay follows the same general pattern.

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………

REFLECTION:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 94

Investigative Project

Part A: Proposal (Plan and Design)

Problem Statement:

It was observed that for Sports Day at Barrackpore West Secondary School, the house which was in the black uniform had more incidents of students fainting than others in the blue, red and white uniforms. Design and carry out an experiment to investigate this phenomenon.

Hypothesis:

(students are to write their own hypothesis from problem statement)

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Aim:

To investigate/To test

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Apparatus/Materials:

Water, measuring cylinder, 4 thermometers, 4 Aluminium cans (Students are to list the others)

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 95

Diagram:

Method:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 96

List of Variables:

Manipulated:

……………………………………………………………………………………………………………………………………………………

Controlled:

……………………………………………………………………………………………………………………………………………………

Responding:

……………………………………………………………………………………………………………………………………………………

Expected Results:

Time/Minutes Temperature/°C

Student Name: Class: Date Done:

Date Received 97

Assumptions:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Precautions:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Sources of Errors:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 98

Plan and Design

Hypothesis

(Clearly Stated)

(Testable)

1

1

Aim (related to hypothesis) 1

Materials and Apparatus 1

Method (Suitable) 1

Manipulated or Responding Variable 1

Controlled Variable 1

Expected Results

Reasonable

Link with Method

1

1

Assumptions/Precautions/Possible Sources of Errors 1

Total

Student Name: Class: Date Done:

Date Received 99

Part B: Implementation

Method/Procedure:

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 100

Results:

Time/Minutes Temperature/°C

0

10

20

30

40

50

60

70

80

Student Name: Class: Date Done:

Date Received 101

Calculations:

Calculate the amount of heat energy absorbed by the water in each aluminium can after (time

in minutes)____________.

The equation E= mcDT

where DT = (Final Temperature – Initial Temperature)

1) For the Black can: E= mcDT (Joules)

= 100g x 4.2Jkg/K x (DT)

=

=

2) For the Blue can: E= mcDT (Joules)

= 100g x 4.2Jkg/K x (DT)

=

=

3) For the Red can: E= mcDT (Joules)

= 100g x 4.2Jkg/K x (DT)

=

=

4) For the White can: E= mcDT (Joules)

= 100g x 4.2Jkg/K x (DT)

=

=

Student Name: Class: Date Done:

Date Received 102

DISCUSSION:

1. What do the results of the experiment show about the final temperature of each coloured can?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

2. Which coloured can had the largest increase in temperature? What does this mean in terms of

that colour absorbing heat?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

3. Which coloured can had the smallest increase in temperature? What does this mean in terms of

that colour absorbing heat?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 103

A graph of temperature against time was plotted for the results

obtained for each coloured can, on the same graph page, with a

labelled line representing each colour.

1. Describe the shape of each line for all of the different coloured cans(TRENDS). Which line was

the steepest or had the biggest slope? What does this mean in terms of that colour absorbing

heat?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

2. At the final time interval ___minutes which line and colour had the highest temperature as seen

from the graph? What does this mean in terms of that colour absorbing heat?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 104

The equation E = mcΔT [where m= mass of water, c= specific heat capacity of water and ΔT = (final

temperature – initial temperature)] was also used to measure the heat absorbed by each coloured can.

1. From you calculated data which colour absorbed the most heat energy?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

2. From you calculated data which colour absorbed the least heat energy?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

3. Are these results what was expected from the colours?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 105

LIMITATIONS:

SOURCES OF ERROR:

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

PRECAUTIONS:

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

LIMITATIONS:

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 106

ASSUMPTIONS:

• All cans made of the same material and have same dimensions.

• All cans are exposed to the same amount of sunlight.

• There will be a sufficient, recordable change in the temperature of the water in each can

exposed to the sun.

• A volume of 100cm3 of water has a mass of 100g

REFLECTION:

• What is the relevance between the experiment and real life (yourself, society and the

environment)?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

• What knowledge did you gain from the experiment? What did you learn?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 107

• What adjustments were made to the final experiment that are different from you initial

proposal? Why were these adjustments made?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

CONCLUSION:

Which colour had the highest temperature increase and therefore absorbed heat energy from the Sun

more than the other colours?

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

Student Name: Class: Date Done:

Date Received 108

Student Name: Class: Date Done:

Date Received 109