Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final...

30
Physics 405/505 Digital Electronics Techniques University of Arizona Spring 2006 Prof. Erich W. Varnes

Transcript of Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final...

Page 1: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Physics 405/505Digital Electronics Techniques

University of ArizonaSpring 2006

Prof. Erich W. Varnes

Page 2: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Administrative Matters• Contacting me

– I will hold office hours on Tuesday from 1-3 pm– Room 420K in the PAS building– I am also available by appointment

• Phone: 626-0217• E-mail: [email protected]

– Course web page• http://www.physics.arizona.edu/~varnes/Teaching/405-

505Spring2006– Accessible through StudentLink web pages

• Course information, including homework assignments and solutions,will be posted here

Page 3: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Requirements and Expectations• Your responsibilities for the course are:

– Lab reports:• Will be due one week after the lab (following Monday)• See “Guide for Lab Reports” on page 1 of your lab manual• Total lab score represents 60% of the final grade for P405 students, and

45% for P505 students– Homework:

• Assignments will be handed out on Monday or Wednesday, and duethe Wednesday of the following week

• Total homework score represents 40% of the final grade for P405students, and 30% for P505 students

Page 4: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Final Project (P505 only)• Those enrolled in 505 will do a final project• This project must use programmable logic, and include

some of the following:– State machines– Tri-state logic– Memory or FIFOs– Arithmetic units

• Projects will be presented during the last week of class• Will count for 25% of the final grade

Page 5: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Prerequisites• You should have already taken the following courses (or

their equivalents at another university):– Physics 241, 241H or 251 (Introductory Electricity and

Magnetism)

If you do not have this prerequisite, I recommend thatyou discuss your situation with me

Page 6: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Why Learn Electronics?• Electricity is used by mankind in two distinct ways:1. As a source of power

– think of power plants, transmission lines, etc.2. As a tool for transmitting and manipulating information• It’s the latter use that we call electronics• Examples of electronics are all around us

– from transistor radios to supercomputers• An understanding of electronics is also crucial to many

experimental physicists– The problems studied in physics today often take us to

realms that our senses can’t detect directly (such asstudying subatomic particles, or stars too faint to be seen bythe eye)

Page 7: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• We use electronics to access the information from theseareas– For example, a single subatomic particle can leave a trail of

ions as it passes through a detector. We “see” the particle byusing electronics to manipulate, amplify, digitize, store, andanalyze the charge of these ions.

• Often, the issues we want to explore don’t have obviouscommercial implications– Thus we can’t expect industry to design and build the

electronics we need– It’s up to us as experimentalists to understand the

fundamentals of electronics design, and how to apply them!

Page 8: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Linear circuit components• We begin our study by reviewing some of the components

that make up electronic circuits• First we consider linear components

– The current through such components is proportional to thevoltage drop across them

• The simplest of these is the resistor– Obeys Ohm’s Law:

– Represented on a schematic (circuit diagram) as:

– Typical resistors are made from carbon or thin metal film– Often circuits designs require a specific value for the

resistance R

V IR=

Page 9: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Resistor color codes• To make is easy to tell how much resistance a particular

resistor has, engineers have devised a color code:

• The tolerance band shouldn’t be neglected– If your circuit will not work with a resistance 3% away from

the design value, you’d better buy a 2% resistor!

Failuresper 1000hrs of use

Page 10: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Resistor circuits• First consider two resistors connected in series:

– Means current is same through both

– Voltage drop across circuit is

– is the equivalent resistance of the circuit

R1 R2

( )1 2 1 2V IR IR I R R= + = +

1 2R R+

Page 11: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• Now look at resistors connected in parallel– Meaning voltage drop is the same across both

R1 R2

( )1 1 2 2 1 2 eq

21 2

1

22 2 2 2 eq

1

eq 1 2

1 1 1

V I R I R I I R

RI I

R

RI R I I R

R

R R R

= = = +

=

! "= +# $% &

= +

Page 12: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Capacitors• Capacitors are components that store charge

– Voltage drop across a capacitor is proportional to the amountof stored charge

– Simplest version is two metal plates separated by a small gap• Represented on a schematic by:

• Capacitance can be increased by inserting a dielectricmaterial (insulator) in the gap– Capacitors used in circuits typically are made by depositing

layers of metal on each side of a mylar film

QV

C=

Page 13: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• Storing charge isn’t all that easy– Capacitance values tend to be small– Typically can store ~one billionth of a Coulomb with a 1 V

potential drop – that’s a capacitance of one picoFarad (pF)• Shorthand often used to represent value of capacitance:

– 3 or 4 numbers, i.e.,• 104 means 10 x 104 pF =105pF = 100nF = 0.1µF• 1004 means 100 x 104 pF =106pF = 1000nF = 1µF

• Capacitors can also be combined in series or parallel, justlike resistors– But rules for equivalent capacitance are just the opposite:– Series:

– Parallel:

eq 1 2

1 1 1

C C C= +

eq 1 2C C C= +

Page 14: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Time-dependent voltage• A circuit consisting of only resistors and capacitors with a

constant input voltage will be in a steady state– Thus won’t be transmitting or processing information– It’s not electronics yet!

• But with a time-dependent input voltage, we can start to dointeresting things with just these components

• First, consider a sinusoidally varying voltage– This is not really restrictive – from Fourier analysis we know

that we can represent any periodic function as a sum of sines• The voltage transmitted from the power company is of this

form, with a frequency of 60 Hz– it shows up at your house at

( ) ( )1170V sin 2 60sV t t!

"= # ##

Angularfrequency ω

Page 15: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• You might be surprised by the “170V” in the previousexpression– After all, isn’t household voltage 120V?

• It is! But that’s the RMS voltage, defined as:

• If this voltage is applied across a resistor, the averagepower dissipated will be:

( )2

peak0rms

2

T

V t dtV

VT

= =

!

2

rms

rms

VP

R=

Page 16: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• What happens if we apply our V(t) across a capacitor?• We know that the capacitor will store a charge:

and also that

• For our sinusoidal input voltage, the current will also besinusoidal– or, in complex notation,

Q CV=

Q Idt= !

( ) i t

oI t I e

!=

( ) ( )

( )

1

1

i to

i t

o

IV t I t dt e dt

C C

I eI t

i C i C

!

!

! !

= =

= =

" "

Page 17: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• We can make this look just like Ohm’s Law:

where Zc is the impedance of the capacitor• Note that impedance depends both on the capacitance and

on the frequency of the applied voltage• Note also that we can rewrite the voltage as:

• i.e., the voltage is phase shifted by 90o with respect to thecurrent– current is 0 when voltage is maximum, and vice-versa

cV Z I=

( ) 21 i t

i t

o o

iV t I e I e

C C

!""

" "

# $%& '( )= % =

Page 18: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Low-pass filter• We now know enough to build our first electronic circuit:

out

in

1

1

1

1

in

c

c

c in in

c

VI

R Z

Z i CV IZ V V

R ZR

i C

Vi RC

!

!

!

=+

= = =+

+

=+

Page 19: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• So the ratio of output to input voltage is:

• This ratio is called the gain of the circuit• Often gains are expressed in decibels:

• If several filters are connected in series, total gain (in dB)is the sum of the gains (in dB) of all the filters

• Note that for passive circuits such as this one, the gain indB is always negative

( )

out

in

out

2

in

1

1

1 1 1

1 1 1

V

V i RC

V

V i RC i RC RC

!

! ! !

=+

= " =+ # +

out10

in

gain 20log dBV

V=

Page 20: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• The gain is clearly frequency-dependent, as shown on theBode plot below:

• “Break point” is the frequency at which the output poweris half the input power

( )

2

out

2

in

1 1

21

1

V

V RC

RC

!

!

= =+

=

Page 21: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• Gain at the break point is:

• The terms “break point” and “-3dB” point areinterchangeable

1

2

10 10

1 120log dB 10log 3dB

2 2

! " ! "= = #$ % $ %

& ' & '

Page 22: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Integrator• Even this simple circuit can do complicated mathematics

– if we choose R and C such that we’re in the low-gain region

• So this circuit (approximately) integrates the input voltage

out

out in out in

out in

out in

1

Q CV

dV V V VdQI C

dt dt R R

dV V

dt CR

V V dtCR

=

!= = = "

"

" #

Page 23: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

High-pass filter• We can build a high-pass filter by interchanging the

positions of the capacitor and resistor:

( )in

in

out

out

in1 1

c

c

V I Z R

V RV IR

Z R

V R i RC

V i RCR

i C

!

!

!

= +

= =+

= =+

+

Page 24: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• Note that for ω = 0 (a DC voltage) the output voltage is 0• This type of circuit is called “AC coupled”

– useful to protect against large input voltage levels that mightdamage components

• The following table summarizes the advantages anddisadvantages of AC and DC coupling:

Page 25: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Inductors• The final linear component we’ll consider is the inductor• These are basically coils of wire (often wrapped around an

iron core)– Represented on a schematic by:

– They have very small resistance to DC voltages– But they tend to resist changes in current – a voltage drop

across the inductor is required to change the current:

• The inductance L is measured in Henries (H), and typicalvalues are in the mH to µH range

dIV L

dt=

Page 26: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• What happens when a sinusoidal voltage is applied acrossan inductor?

• Just like capacitors, inductors have a frequency-dependentimpedance, ZL=iωL

• In principle, then, inductors could be used in filter circuitsinstead of capacitors– But capacitors tend to be less expensive

( ) ( )

( ) ( ) ( )

1 1

L

i t

o

i t

o

i t

o

dIV e L

dt

LdI V e dt

LI t V e V ti i

V t i LI t I tZ

!

!

!

! !

!

=

=

= =

= "

# #

Page 27: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

Bandpass filter• There’s one filter circuit where an inductor comes in very

handy• Let’s say one wants a circuit that “selects” only input

voltages in a narrow frequency range– a radio is an example

• The following does the trick:

Page 28: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• Similar to the low-pass filter, except we replace theimpedance of the capacitor with the equivalent impedanceof the capacitor and inductor connected in parallel:

where

• Look what happens when :– ZLC becomes infinite!

out

in

LC

LC

V Z

V R Z=

+

2

2

1 1 1 1 1

1

LC L C

LC

LCi C

Z Z Z i L i L

i LZ

LC

!!

! !

!

!

"= + = + =

="

1

R

LC! != =

Page 29: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• At this resonant frequency, |Vout| = |Vin|• But all other frequencies are attenuated• Response might look like this:

Page 30: Physics 405/505 Digital Electronics Techniques › ~varnes › Teaching › 405-505... · Final Project (P505 only) •Those enrolled in 505 will do a final project •This project

• The sharpness of the resonance is called the quality factor(Q) of the circuit– for radios, we want a really large Q!

• Q is defined as:

where Δω3dB is the range of frequencies for which the gainis greater than –3dB

• For the circuit shown here,

3dB

RQ!

!="

R

RC CQ RC R

LLC!= = =