PHYSICAL CHEMISTRY OF MACROMOLECULES · 2011-09-29 · PHYSICAL CHEMISTRY OF MACROMOLECULES Basic...

12
PHYSICAL CHEMISTRY OF MACROMOLECULE S Basic Principles and Issue s Second Editio n S. F. SUN

Transcript of PHYSICAL CHEMISTRY OF MACROMOLECULES · 2011-09-29 · PHYSICAL CHEMISTRY OF MACROMOLECULES Basic...

PHYSICAL CHEMISTRYOF MACROMOLECULES

Basic Principles and Issues

Second Edition

S. F. SUN

Preface to the Second Edition

xv

Preface to the First Edition

xix

1 Introduction

1

1 .1 Colloids, 11 .2 Macromolecules, 3

1 .2 .1 Synthetic Polymers, 41 .2 .2 Biological Polymers, 7

1 .3 Macromolecular Science, 1 7References, 17

2 Syntheses of Macromolecular Compounds

19

2.1 Radical Polymerization, 1 92 .1 .1 Complications, 2 12 .1 .2 Methods of Free-Radical Polymerization, 2 3

2 .1 .3 Some Well-Known Overall Reactions o fAddition Polymers, 2 3

2.2 Ionic Polymerization, 252 .2 .1 Anionic Polymerization, 2 52 .2 .2 Cationic Polymerization, 272 .2 .3 Living Polymers, 2 7

2.3 Coordination Polymerization, 3 02.4 Stepwise Polymerization, 32

2.5 Kinetics of the Syntheses of Polymers, 3 32 .5 .1 Condensation Reactions, 342 .5 .2 Chain Reactions, 3 5

2.6 Polypeptide Synthesis, 4 02 .6 .1 Synthesis of Insulin, 4 32 .6 .2 Synthesis of Ribonucleus, 4 8

2 .7 DNA Synthesis, 48References, 5 0Problems, 5 0

3 Distribution of Molecular Weight

52

3 .1 Review of Mathematical Statistics, 5 33 .1 .1 Binomial Distribution, 533 .1 .2 Poisson Distribution, 5 43 .1 .3 Gaussian Distribution, 5 5

3 .2 One-Parameter Equation, 5 63 .2 .1 Condensation Polymers, 573 .2 .2 Addition Polymers, 5 8

3 .3 Two-Parameter Equations, 593 .3 .1 Normal Distribution, 5 93 .3 .2 Logarithm Normal Distribution, 6 0

3 .4 Types of Molecular Weight, 6 13 .5 Experimental Methods for Determining Molecula r

Weight and Molecular Weight Distribution, 6 4References, 6 5Problems, 65

4 Macromolecular Thermodynamics

67

4 .1 Review of Thermodynamics, 6 84.2 AS of Mixing: Flory Theory, 7 14 .3 OH of Mixing, 7 5

4 .3 .1 Cohesive Energy Density, 7 64 .3 .2 Contact Energy (First-Neighbor Interaction o r

Energy Due to Contact), 794.4 AG of Mixing, 8 14 .5 Partial Molar Quantities, 8 1

4 .5 .1 Partial Specific Volume, 8 24 .5 .2 Chemical Potential, 8 3

4.6 Thermodynamics of Dilute Polymer Solutions, 8 44 .6 .1 Vapor Pressure, 874 .6 .2 Phase Equilibrium, 8 9

Appendix : Thermodynamics and Critical Phenomena, 9 1References, 92Problems, 93

5 Chain Configurations

9 6

5 .1 Preliminary Descriptions of a Polymer Chain, 975 .2 Random Walk and the Markov Process, 9 8

5 .2 .1 Random Walk, 9 95 .2 .2 Markov Chain, 10 1

5 .3 Random-Flight Chains, 1035 .4 Wormlike Chains, 1055 .5 Flory's Mean-Field Theory, 1065.6 Perturbation Theory, 107

5 .6 .1 First-Order Perturbation Theory, 10 85 .6 .2 Cluster Expansion Method, 10 8

5 .7 Chain Crossover and Chain Entanglement, 10 95 .7 .1 Concentration Effect, 1095 .7 .2 Temperature Effect, 1145 .7 .3 Tube Theory (Reptation Theory), 11 65 .7 .4 Images of Individual Polymer Chains, 11 8

5 .8 Scaling and Universality, 119Appendix A Scaling Concepts, 12 0Appendix B Correlation Function, 12 1References, 12 3Problems, 124

6 Liquid Crystals

127

6 .1 Mesogens, 12 86.2 Polymeric Liquid Crystals, 13 0

6 .2 .1 Low-Molecular Weight Liquid Crystals, 13 16 .2 .2 Main-Chain Liquid-Crystalline Polymers, 1326 .2 .3 Side-Chain Liquid-Crystalline Polymers, 13 26 .2 .4 Segmented-Chain Liquid-Crystalline Polymers, 13 3

6.3 Shapes of Mesogens, 13 36.4 Liquid-Crystal Phases, 13 4

6 .4 .1 Mesophases in General, 13 46 .4 .2 Nematic Phase, 13 56 .4 .3 Smectic Phase, 13 5

6 .4 .3 .1 Smectic A and C, 13 66 .4 .4 Compounds Representing Some Mesophases, 1366 .4 .5 Shape and Phase, 13 76 .4 .6 Decreasing Order and OH of Phase Transition, 13 8

6.5 Thermotropic and Lyotropic Liquid Crystals, 13 86.6 Kerr Effect, 14 06.7 Theories of Liquid-Crystalline Ordering, 14 1

6 .7 .1 Rigid-Rod Model, 14 16 .7 .2 Lattice Model, 14 26.7 .3 De Genne's Fluctuation Theory, 144

6 .8 Current Industrial Applications of Liquid Crystals, 14 56 .8 .1 Liquid Crystals Displays, 14 66 .8 .2 Electronic Devices, 147

References, 14 9

7 Rubber Elasticity

150

7 .1 Rubber and Rubberlike Materials, 15 07 .2 Network Structure, 15 17.3 Natural Rubber and Synthetic Rubber, 15 27 .4 Thermodynamics of Rubber, 15 47.5 Statistical Theory of Rubber Elasticity, 15 87.6 Gels, 16 2References, 16 3Problems, 164

8 Viscosity and Viscoelasticity

16 5

8 .1 Viscosity, 16 58 .1 .1 Capillary Viscometers, 16 68 .1 .2 Intrinsic Viscosity, 17 08 .1 .3 Treatment of Intrinsic Viscosity Data, 17 28 .1 .4 Stokes' Law, 17 68 .1 .5 Theories in Relation to Intrinsic Viscosity

of Flexible Chains, 17 68 .1 .6 Chain Entanglement, 1798 .1 .7 Biological Polymers (Rigid Polymers, Inflexible Chains), 18 1

8 .2 Viscoelasticity, 18 48 .2 .1 Rouse Theory, 18 78 .2 .2 Zimm Theory, 19 0

References, 192Problems, 19 3

9 Osmotic Pressure

19 8

9.1 Osmometers, 19 99 .2 Determination of Molecular Weight an d

Second Virial Coefficient, 19 99.3 Theories of Osmotic Pressure and Osmoti c

Second Virial Coefficient, 20 29 .3 .1 McMillan-Mayer Theory, 2039 .3 .2 Flory Theory, 2049 .3 .3 Flory-Krigbaum Theory, 2059 .3 .4 Kurata-Yamakawa Theory, 20 79 .3 .5 des Cloizeaux-de Gennes Scaling Theory, 20 99 .3 .6 Scatchard's Equation for Macro Ions, 213

Appendix A Ensembles, 215Appendix B Partition Functions, 215Appendix C Mean-Field Theory and Renormalizatio n

Group Theory, 216Appendix D Lagrangian Theory, 21 7Appendix E Green's Function, 21 7References, 21 8Problems, 21 8

10 Diffusion

22 3

10 .1 Translational Diffusion, 22 310 .1 .1 Fick's First and Second Laws, 22 310 .1 .2 Solution to Continuity Equation, 224

10 .2 Physical Interpretation of Diffusion :Einstein's Equation of Diffusion, 22 6

10 .3 Size, Shape, and Molecular Weight Determinations, 22910 .3 .1 Size, 22910 .3 .2 Shape, 23010 .3 .3 Molecular Weight, 23 1

10 .4 Concentration Dependence of Diffusion Coefficient, 23 110 .5 Scaling Relation for Translational Diffusion Coefficient, 23 310 .6 Measurements of Translational Diffusion Coefficient, 23 4

10 .6 .1 Measurement Based on Fick's First Law, 23410 .6 .2 Measurement Based on Fick's Second Law, 23 5

10 .7 Rotational Diffusion, 23 710.7 .1 Flow Birefringence, 23 910.7 .2 Fluorescence Depolarization, 23 9

References, 240Problems, 24 0

11 Sedimentation

243

11 .1 Apparatus, 24411 .2 Sedimentation Velocity, 246

11 .2 .1 Measurement of Sedimentation Coefficients :Moving-Boundary Method, 24 6

11 .2 .2 Svedberg Equation, 24911 .2 .3 Application of Sedimentation Coefficient, 249

11 .3 Sedimentation Equilibrium, 25 011 .3 .1 Archibald Method, 25 111 .3 .2 Van Holde-Baldwin (Low-Speed) Method, 25 411 .3 .3 Yphantis (High-Speed) Method, 25 611 .3 .4 Absorption System, 25 8

11 .4 Density Gradient Sedimentation Equilibrium, 25 911 .5 Scaling Theory, 260

References, 26 2Problems, 263

12 Optical Rotatory Dispersion and Circular Dichroism

267

12 .1 Polarized Light, 26712 .2 Optical Rotatory Dispersion, 26712 .3 Circular Dichroism, 27 212 .4 Cotton Effect, 27 512 .5 Correlation Between ORD and CD, 27 712 .6 Comparison of ORD and CD, 280References, 28 1Problems, 28 1

13 High-Performance Liquid Chromatography and Electrophoresis

284

13 .1 High-Performance Liquid Chromatography, 28 413 .1 .1 Chromatographic Terms and Parameters, 28413 .1 .2 Theory of Chromatography, 28 913 .1 .3 Types of HPLC, 29 1

13 .2 Electrophoresis, 30013 .2 .1 Basic Theory, 30013 .2 .2 General Techniques of Modern Electrophoresis, 30 513 .2 .3 Agarose Gel Electrophoresis and Polyacrylamid e

Gel Electrophoresis, 30 713 .2 .4 Southern Blot, Northern Blot, and Western Blot, 30 913 .2 .5 Sequencing DNA Fragments, 31 013 .2 .6 Isoelectric Focusing and Isotachophoresis, 310

13 .3 Field-Flow Fractionation, 31 4References, 31 7Problems, 31 8

14 Light Scattering

320

14 .1 Rayleigh Scattering, 32014 .2 Fluctuation Theory (Debye), 32414 .3 Determination of Molecular Weight and Molecular Interaction, 32 9

14 .3 .1 Two-Component Systems, 32 914 .3 .2 Multicomponent Systems, 32 914 .3 .3 Copolymers, 33 114 .3 .4 Correction of Anisotropy and Deporalizatio n

of Scattered Light, 33 314 .4 Internal Interference, 33 314 .5 Determination of Molecular Weight and Radius o f

Gyration of the Zimm Plot, 33 7Appendix Experimental Techniques of the Zimm Plot, 341

References, 345Problems, 346

15 Fourier Series

348

15 .1 Preliminaries, 34815 .2 Fourier Series, 35 0

15 .2 .1 Basic Fourier Series, 35 015 .2 .2 Fourier Sine Series, 35 215 .2 .3 Fourier Cosine Series, 35 215 .2 .4 Complex Fourier Series, 35 315 .2 .5 Other Forms of Fourier Series, 35 3

15 .3 Conversion of Infinite Series into Integrals, 35 415 .4 Fourier Integrals, 35415 .5 Fourier Transforms, 35 6

15 .5 .1 Fourier Transform Pairs, 35615 .6 Convolution, 35 9

15 .6 .1 Definition, 35 915 .6 .2 Convolution Theorem, 36 115 .6 .3 Convolution and Fourier Theory : Power Theorem, 36 1

15 .7 Extension of Fourier Series and Fourier Transform, 36 215 .7 .1 Lorentz Line Shape, 36215 .7 .2 Correlation Function, 363

15 .8 Discrete Fourier Transform, 36415 .8 .1 Discrete and Inverse Discrete Fourier Transform, 36 415 .8 .2 Application of DFT, 36515 .8 .3 Fast Fourier Transform, 366

Appendix, 367References, 368Problems, 369

16 Small-Angle X-Ray Scattering, Neutron Scattering, an dLaser Light Scattering

37 1

16 .1 Small-Angle X-ray Scattering, 37 116 .1 .1 Apparatus, 37216 .1 .2 Guinier Plot, 37 316 .1 .3 Correlation Function, 37 516 .1 .4 On Size and Shape of Proteins, 37 7

16 .2 Small-Angle Neutron Scattering, 38 116 .2 .1 Six Types of Neutron Scattering, 38 116 .2 .2 Theory, 38 216 .2 .3 Dynamics of a Polymer Solution, 38 316 .2 .4 Coherently Elastic Neutron Scattering, 38 416 .2 .5 Comparison of Small-Angle Neutron Scatterin g

with Light Scattering, 384

16 .2 .6 Contrast Factor, 38 616 .2 .7 Lorentzian Shape, 38 816 .2 .8 Neutron Spectroscopy, 38 8

16 .3 Laser Light Scattering, 38 916 .3 .1 Laser Light-Scattering Experiment, 38 916 .3 .2 Autocorrelation and Power Spectrum, 39 016 .3 .3 Measurement of Diffusion Coefficient in General, 39 116 .3 .4 Application to Study of Polymers in Semidilute Solutions, 393

16 .3 .4 .1 Measurement of Lag Times, 39 316 .3 .4 .2 Forced Rayleigh Scattering, 39 416 .3 .4 .3 Linewidth Analysis, 39 4

References, 39 5Problems, 396

17 Electronic and Infrared Spectroscopy

399

17 .1 Ultraviolet (and Visible) Absorption Spectra, 40 017 .1 .1 Lambert-Beer Law, 40 217 .1 .2 Terminology, 40 317 .1 .3 Synthetic Polymers, 40 517 .1 .4 Proteins, 40 617 .1 .5 Nucleic Acids, 40 9

17 .2 Fluorescence Spectroscopy, 41 217 .2 .1 Fluorescence Phenomena, 41 217 .2 .2 Emission and Excitation Spectra, 41 317 .2 .3 Quenching, 41 317 .2 .4 Energy Transfer, 41617 .2 .5 Polarization and Depolarization, 41 8

17 .3 Infrared Spectroscopy, 42017 .3 .1 Basic Theory, 42017 .3 .2 Absorption Bands : Stretching and Bending, 42 117 .3 .3 Infrared Spectroscopy of Synthetic Polymers, 42 417 .3 .4 Biological Polymers, 42717 .3 .5 Fourier Transform Infrared Spectroscopy, 42 8

References, 430Problems, 432

18 Protein Molecules

43 6

18 .1 Protein Sequence and Structure, 43 618 .1 .1 Sequence, 43618 .1 .2 Secondary Structure, 43 7

18 .1 .2 .1 a-Helix and ß-Sheet, 43718 .1 .2 .2 Classification of Proteins, 43 918 .1 .2 .3 Torsion Angles, 440

18 .1 .3 Tertiary Structure, 44 118 .1 .4 Quarternary Structure, 441

18 .2 Protein Structure Representations, 44 118 .2 .1 Representation Symbols, 44 118 .2 .2 Representations of Whole Molecule, 442

18 .3 Protein Folding and Refolding, 44 418 .3 .1 Computer Simulation, 44 518 .3 .2 Homolog Modeling, 44718 .3 .3 De Novo Prediction, 44 7

18 .4 Protein Misfolding, 44 818 .4 .1 Biological Factor: Chaperones, 44818 .4 .2 Chemical Factor : Intra- and Intermolecular Interactions, 44918 .4 .3 Brain Diseases, 45 0

18 .5 Genomics, Proteomics, and Bioinformatics, 45 118 .6 Ribosomes : Site and Function of Protein Synthesis, 45 2References, 45 4

19 Nuclear Magnetic Resonance

455

19 .1 General Principles, 45 519 .1 .1 Magnetic Field and Magnetic Moment, 45 519 .1 .2 Magnetic Properties of Nuclei, 45 619 .1 .3 Resonance, 45 819 .1 .4 Nuclear Magnetic Resonance, 46 0

19 .2 Chemical Shift (6) and Spin-Spin Coupling Constant (J), 46 119 .3 Relaxation Processes, 46 6

19.3 .1 Spin-Lattice Relaxation and Spin-Spin Relaxation, 46719.3 .2 Nuclear Quadrupole Relaxation and Overhauser Effect, 46 9

19 .4 NMR Spectroscopy, 47 019.4 .1 Pulse Fourier Transform Method, 47 1

19 .4 .1 .1 Rotating Frame of Reference, 47 119 .4 .1 .2 The 90° Pulse, 47 1

19 .4 .2 One-Dimensional NMR, 47219 .4 .3 Two-Dimensional NMR, 473

19 .5 Magnetic Resonance Imaging, 47519 .6 NMR Spectra of Macromolecules, 47 7

19 .6 .1 Poly(methyl methacrylate), 47719 .6 .2 Polypropylene, 48 119 .6 .3 Deuterium NMR Spectra of Chain Mobilit y

in Polyethylene, 48 219 .6 .4 Two-Dimensional NMR Spectra o f

Poly-y-benzyl-L-glutamate, 48 519 .7 Advances in NMR Since 1994, 48 7

19 .7 .1 Apparatus, 48719 .7 .2 Techniques, 487

19 .7 .2 .1 Computer-Aided Experiments, 48 719 .7 .2 .2 Modeling of Chemical Shift, 48 819 .7 .2 .3 Protein Structure Determination, 489

19 .7 .2 .4 Increasing Molecular Weight of Protein sfor NMR study, 49 1

19 .8 Two Examples of Protein NMR, 49 119 .8 .1 A Membrane Protein, 49 319 .8 .2 A Brain Protein: Prion, 49 4

References, 494Problems, 49 5

20 X-Ray Crystallography

49 7

20 .1 X-Ray Diffraction, 49720.2 Crystals, 49 8

20.2 .1 Miller Indices, hkl, 498

20.2 .2 Unit Cells or Crystal Systems, 502

20 .2 .3 Crystal Drawing, 503

20 .3 Symmetry in Crystals, 50420.3 .1 Bravais Lattices, 50 520 .3 .2 Point Group and Space Group, 50 6

20 .3 .2 .1 Point Groups, 50720 .3 .2 .2 Interpretation of Stereogram, 50920 .3 .2 .3 Space Groups, 512

20.4 Fourier Synthesis, 51 520.4 .1 Atomic Scattering Factor, 51 520 .4 .2 Structure Factor, 51 520 .4 .3 Fourier Synthesis of Electron Density, 51 6

20 .5 Phase Problem, 51 720 .5 .1 Patterson Synthesis, 51720 .5 .2 Direct Method (Karle-Hauptmann Approach), 518

20 .6 Refinement, 51 920 .7 Crystal Structure of Macromolecules, 52 0

20 .7 .1 Synthetic Polymers, 52 020 .7 .2 Proteins, 52 320 .7 .3 DNA, 52 3

20.8 Advances in X-Ray Crystallography Since 1994, 52 520 .8 .1 X-Ray Sources, 52520 .8 .2 New Instruments, 52 620 .8 .3 Structures of Proteins, 526

20 .8 .3 .1 Comparison of X-Ray Crystallograph ywith NMR Spectroscopy, 52 7

20 .8 .4 Protein Examples : Polymerse and Anthrax, 52 8Appendix Neutron Diffraction, 53 0References, 532Problems, 53 3

Author Index

535

Subject Index

543