Physical Chemistry for Energy Engineering (20th: 2018/11/26)

33
Physical Chemistry for Energy Engineering (20 th : 2018/11/26) Takuji Oda Associate Professor, Department of Nuclear Engineering Seoul National University *The class follows the text book: D.A. McQuarrie, J.D. Simon, โ€œPhysical Chemistry: A Molecular Approach", University Science Books (1997).

Transcript of Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Page 1: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Physical Chemistry for Energy Engineering

(20th: 2018/11/26)

Takuji Oda

Associate Professor, Department of Nuclear EngineeringSeoul National University

*The class follows the text book: D.A. McQuarrie, J.D. Simon, โ€œPhysical Chemistry: A Molecular Approach", University Science Books (1997).

Page 2: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Course schedule (as of Nov. 5)

29-Oct No lecture31-Oct

14 5-Nov 2. Phase equilibrium-115 7-Nov 2. Phase equilibrium-216 12-Nov 3. Chemical equilibrium-117 14-Nov Answers of homework-218 19-Nov Exam-02 (2 hour)19 21-Nov 3. Chemical equilibrium-220 26-Nov 3. Chemical equilibrium-321 28-Nov 3. Chemical equilibrium-422 3-Dec 3. Chemical kinetics-123 5-Dec 3. Chemical kinetics-224 10-Dec 3. Chemical kinetics-325 12-Dec Answers of homework-326 17-Dec Exam-03 (2 hour)

Page 3: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases- $26-6: The sign of โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ and not that of โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ ๐‘‡๐‘‡ determines the direction of reaction

spontaneity -

(Example-6) Consider โ€œ H2 (g) + ยฝ O2 (g) โ‡Œ H2O (l) โ€, for which โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ = โˆ’237 kJ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘šโˆ’1 at 298.15 K.

In this case, โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ has a large negative value, thus basically H2O (l) is much more stable than the reactants at 298.15 K. However, a mixture of H2 (g) and O2 (g) remains unchanged.

If a spark or a catalyst is introduced, then the reaction occurs explosively. The โ€œnoโ€ is emphatic in thermodynamics: If thermodynamics insists that a

certain process will not occur spontaneously, then it will not occur. On the other hand, the โ€œyesโ€ is actually โ€œmaybeโ€. The fact that a process will

occur spontaneously does not imply that it will occur at a detectable rate. Diamond remains its form, although a graphite is more favorable

energetically, is another example.

The speed of reaction can be analyzed in the framework of rate theory. (next topic)

Page 4: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases- $26-6: The sign of โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ and not that of โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ ๐‘‡๐‘‡ determines the direction of reaction

spontaneity -

Theory of equilibrium is powerful, but it cannot indicate how long it take to reach the equilibrium state.Kinetics and rate theory can analyze and give information on the speed of a reaction.

Index

time

Spontaneous process

Equilibrium

Kinetics and rate theory are often based on thermodynamics, but sometimes extended to microscopic systems (via statistics mechanics/thermodynamics).

Sufficiently long time

Insufficient

Kinetics / rate theory

Page 5: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases- $26-7: The variation of an equilibrium constant with temperature is given by the

Vanโ€™t Hoff Equation -

We utilize the Gibbs-Helmholtz equation:

Substitute โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ = โˆ’๐‘…๐‘…๐‘‡๐‘‡ ln๐พ๐พ๐‘ƒ๐‘ƒ (note this is a definition of โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ, not a condition achieved at equilibrium state) for this equation:

โ„๐œ•๐œ•โˆ†๐บ๐บ๐บ ๐‘‡๐‘‡๐œ•๐œ•๐‘‡๐‘‡ ๐‘ƒ๐‘ƒ

= โˆ’โˆ†๐ป๐ป๐บ๐‘‡๐‘‡2

๐œ•๐œ• ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡)๐œ•๐œ•๐‘‡๐‘‡ ๐‘ƒ๐‘ƒ

=๐‘‘๐‘‘ ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡)

๐‘‘๐‘‘๐‘‡๐‘‡=โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ๐‘…๐‘…๐‘‡๐‘‡2

This means that If โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ > 0 (endothermic reaction), ๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡) increases with temperature. If โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ < 0 (exothermic reaction), ๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡) decreases with temperature.

Integrate the equation: ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡2)๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡1)

= ๏ฟฝ๐‘‡๐‘‡1

๐‘‡๐‘‡2 โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ(๐‘‡๐‘‡)๐‘…๐‘…๐‘‡๐‘‡2

๐‘‘๐‘‘๐‘‡๐‘‡

If the temperature range is small enough to consider โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ constant:

ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡2)๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡1)

= โˆ’โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ๐‘…๐‘…

1๐‘‡๐‘‡2โˆ’

1๐‘‡๐‘‡1

Page 6: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases- $26-7: The variation of an equilibrium constant with temperature is given by the

Vanโ€™t Hoff Equation -

(Example-7) Consider โ€œ PCl3 (g) + Cl2 (g) โ‡Œ PCl2 (g) โ€.Given that โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ has an average value of -69.8 kJ mol-1 over 500-700 K and ๐พ๐พ๐‘ƒ๐‘ƒ is 0.0408 at 500K, evaluate ๐พ๐พ๐‘ƒ๐‘ƒ at 700K.

As โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ can be assumed as a constant over the concerned temperatures,

ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡2)๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡1)

= โˆ’โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ๐‘…๐‘…

1๐‘‡๐‘‡2โˆ’

1๐‘‡๐‘‡1

Substituting provided values gives:

ln๐พ๐พ๐‘ƒ๐‘ƒ(700 ๐พ๐พ)๐พ๐พ๐‘ƒ๐‘ƒ(500 ๐พ๐พ)

= ln๐พ๐พ๐‘ƒ๐‘ƒ(700 ๐พ๐พ)

0.0408= โˆ’

โˆ’69.8 ร— 103

๐‘…๐‘…1

700โˆ’

1500

๐พ๐พ๐‘ƒ๐‘ƒ 700 ๐พ๐พ = 3.36 ร— 10โˆ’4

Note that since the reaction is exothermic, ๐พ๐พ๐‘ƒ๐‘ƒ 700 ๐พ๐พ is less than ๐พ๐พ๐‘ƒ๐‘ƒ 500 ๐พ๐พ ; namely less product (PCl2) at higher temperatures as ๐พ๐พ๐‘ƒ๐‘ƒ = ๏ฟฝ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐ถ๐ถ๐ถ๐ถ2

๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐ถ๐ถ๐ถ๐ถ3๐‘ƒ๐‘ƒ๐ถ๐ถ๐ถ๐ถ2.

Page 7: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases- $26-7: The variation of an equilibrium constant with temperature is given by the

Vanโ€™t Hoff Equation -

ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡2)๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡1)

= ๏ฟฝ๐‘‡๐‘‡1

๐‘‡๐‘‡2 โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ(๐‘‡๐‘‡)๐‘…๐‘…๐‘‡๐‘‡2

๐‘‘๐‘‘๐‘‡๐‘‡

Finally, we consider the temperature dependence of โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ constant in:

This equation can write down as:

ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡) = ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡1) + ๏ฟฝ๐‘‡๐‘‡1

๐‘‡๐‘‡ โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ(๐‘‡๐‘‡๐‘‡)๐‘…๐‘…๐‘‡๐‘‡๐‘‡2

๐‘‘๐‘‘๐‘‡๐‘‡๐‘‡

For example, as we learned, the temperature dependence of โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ may be written as:

โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ ๐‘‡๐‘‡2 = โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ ๐‘‡๐‘‡1 + ๏ฟฝ๐‘‡๐‘‡1

๐‘‡๐‘‡2โˆ†๐ถ๐ถ๐บ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡ ๐‘‘๐‘‘๐‘‡๐‘‡

or expanded in respect to temperature as:โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ ๐‘‡๐‘‡ = ๐›ผ๐›ผ + ๐›ฝ๐›ฝ๐‘‡๐‘‡ + ๐›พ๐›พ๐‘‡๐‘‡2 + ๐›ฟ๐›ฟ๐‘‡๐‘‡3 + โ‹ฏ

In this latter case, ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡) becomes:

ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡) = โˆ’๐›ผ๐›ผ๐‘…๐‘…๐‘‡๐‘‡

+๐›ฝ๐›ฝ๐‘…๐‘…

ln๐‘‡๐‘‡ +๐›พ๐›พ๐‘…๐‘…๐‘‡๐‘‡ +

๐›ฟ๐›ฟ2๐‘…๐‘…

๐‘‡๐‘‡2 + (๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘š๐‘š๐‘–๐‘–_๐‘๐‘๐‘š๐‘š๐‘–๐‘–๐‘๐‘๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–) โ€ฆ

Page 8: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases- $26-7: The variation of an equilibrium constant with temperature is given by the

Vanโ€™t Hoff Equation -

ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡) = ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡1) + ๏ฟฝ๐‘‡๐‘‡1

๐‘‡๐‘‡ โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ(๐‘‡๐‘‡๐‘‡)๐‘…๐‘…๐‘‡๐‘‡๐‘‡2

๐‘‘๐‘‘๐‘‡๐‘‡๐‘‡

โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ ๐‘‡๐‘‡2 = โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ ๐‘‡๐‘‡1 + ๏ฟฝ๐‘‡๐‘‡1

๐‘‡๐‘‡2โˆ†๐ถ๐ถ๐บ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡ ๐‘‘๐‘‘๐‘‡๐‘‡

โˆ†๐ถ๐ถ๐‘ƒ๐‘ƒ๐บ = ๐ถ๐ถ๐‘ƒ๐‘ƒ๐บ ๐‘๐‘๐ป๐ป3 ๐‘–๐‘– โˆ’ ๏ฟฝ12๐ถ๐ถ๐‘ƒ๐‘ƒ๐บ ๐‘๐‘2 ๐‘–๐‘– โˆ’ ๏ฟฝ3

2๐ถ๐ถ๐‘ƒ๐‘ƒ๐บ ๐ป๐ป2 ๐‘–๐‘–

Thus

ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡) = ln๐พ๐พ๐‘ƒ๐‘ƒ(725 ๐พ๐พ) + ๏ฟฝ725

๐‘‡๐‘‡ โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ(๐‘‡๐‘‡๐‘‡)๐‘…๐‘…๐‘‡๐‘‡โ€ฒ2

๐‘‘๐‘‘๐‘‡๐‘‡โ€ฒ

= 12.06 + โ„4583 ๐‘‡๐‘‡ โˆ’ 3.749 ln๐‘‡๐‘‡ + 1.857 ร— 10โˆ’3๐‘‡๐‘‡ โˆ’ 0.118 ร— 10โˆ’6๐‘‡๐‘‡2

(Example-8) Consider โ€œ ยฝ N2 (g) + 3/2 H2 (g) โ‡Œ NH3 (g) โ€.The molar heat capacities of these species are give over 300-1500K as:

โ„๐ถ๐ถ๐‘ƒ๐‘ƒ๐บ ๐‘๐‘2 ๐‘–๐‘– ๐ฝ๐ฝ ๐พ๐พโˆ’1 ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘šโˆ’1 = 24.98 + 5.912 ร— 10โˆ’3๐‘‡๐‘‡ โˆ’ 0.03376 ร— 10โˆ’6๐‘‡๐‘‡2โ„๐ถ๐ถ๐‘ƒ๐‘ƒ๐บ ๐ป๐ป2 ๐‘–๐‘– ๐ฝ๐ฝ ๐พ๐พโˆ’1 ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘šโˆ’1 = 29.07 โˆ’ 0.8368 ร— 10โˆ’3๐‘‡๐‘‡ + 2.012 ร— 10โˆ’6๐‘‡๐‘‡2โ„๐ถ๐ถ๐‘ƒ๐‘ƒ๐บ ๐‘๐‘๐ป๐ป3 ๐‘–๐‘– ๐ฝ๐ฝ ๐พ๐พโˆ’1 ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘šโˆ’1 = 25.93 + 32.58 ร— 10โˆ’3๐‘‡๐‘‡ โˆ’ 3.046 ร— 10โˆ’6๐‘‡๐‘‡2

Given that โˆ†๐‘“๐‘“๐ป๐ป๐บ ๐‘๐‘๐ป๐ป3(๐‘–๐‘–) = โˆ’46.11 ๐‘˜๐‘˜๐ฝ๐ฝ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘šโˆ’1๐‘–๐‘–๐‘–๐‘– 300 ๐พ๐พ ๐‘–๐‘–๐‘–๐‘–๐‘‘๐‘‘ ๐พ๐พ๐‘ƒ๐‘ƒ = 6.55 ร— 10โˆ’3 at 725 K, derive the expression for the variation of ๐พ๐พ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡ with temperature.

โˆ†๐‘Ÿ๐‘Ÿ๐ป๐ป๐บ ๐‘‡๐‘‡ = โˆ’46.11 ร— 10โˆ’3 + ๏ฟฝ300

๐‘‡๐‘‡โˆ†๐ถ๐ถ๐บ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡ ๐‘‘๐‘‘๐‘‡๐‘‡

Page 9: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Review of Chapter 3:Comparison between phase equilibrium and chemical equilibriumWe consider a system consisting of two phases of a pure substance (1-component) in equilibrium each other. (liquid and gas, for example here) under const.-T and const.-P condition..

The Gibbs energy of this system is given by๐บ๐บ = ๐บ๐บ๐‘™๐‘™ + ๐บ๐บ๐‘”๐‘”

where ๐บ๐บ๐‘™๐‘™ and ๐บ๐บ๐‘”๐‘” are the Gibbs energies of the liquid and the gas phase.

Now, if the liquid phase increases with ๐‘‘๐‘‘๐‘–๐‘–๐‘™๐‘™ mole (thus, the solid phase decreases with ๐‘‘๐‘‘๐‘–๐‘–๐‘”๐‘” (๐‘‘๐‘‘๐‘–๐‘–๐‘™๐‘™ = โˆ’๐‘‘๐‘‘๐‘–๐‘–๐‘”๐‘”)), the Gibbs energy change is:

๐‘‘๐‘‘๐บ๐บ = ๐‘‘๐‘‘๐บ๐บ๐‘™๐‘™ + ๐‘‘๐‘‘๐บ๐บ๐‘”๐‘” = ๐œ•๐œ•๐บ๐บ๐‘”๐‘”

๐œ•๐œ•๐‘›๐‘›๐‘”๐‘” ๐‘ƒ๐‘ƒ,๐‘‡๐‘‡๐‘‘๐‘‘๐‘–๐‘–๐‘”๐‘” + ๐œ•๐œ•๐บ๐บ๐ถ๐ถ

๐œ•๐œ•๐‘›๐‘›๐ถ๐ถ ๐‘ƒ๐‘ƒ,๐‘‡๐‘‡๐‘‘๐‘‘๐‘–๐‘–๐‘™๐‘™ = ๐œ•๐œ•๐บ๐บ๐‘”๐‘”

๐œ•๐œ•๐‘›๐‘›๐‘”๐‘” ๐‘ƒ๐‘ƒ,๐‘‡๐‘‡โˆ’ ๐œ•๐œ•๐บ๐บ๐ถ๐ถ

๐œ•๐œ•๐‘›๐‘›๐ถ๐ถ ๐‘ƒ๐‘ƒ,๐‘‡๐‘‡๐‘‘๐‘‘๐‘–๐‘–๐‘”๐‘”

Here, we define chemical potentials, ๐œ‡๐œ‡๐‘”๐‘” = ๐œ•๐œ•๐บ๐บ๐‘”๐‘”

๐œ•๐œ•๐‘›๐‘›๐‘”๐‘” ๐‘ƒ๐‘ƒ,๐‘‡๐‘‡and ๐œ‡๐œ‡๐‘™๐‘™ = ๐œ•๐œ•๐บ๐บ๐ถ๐ถ

๐œ•๐œ•๐‘›๐‘›๐ถ๐ถ ๐‘ƒ๐‘ƒ,๐‘‡๐‘‡, then

๐‘‘๐‘‘๐บ๐บ = ๐œ‡๐œ‡๐‘”๐‘” โˆ’ ๐œ‡๐œ‡๐‘™๐‘™ ๐‘‘๐‘‘๐‘–๐‘–๐‘”๐‘” (constant T and P)As ๐‘‘๐‘‘๐บ๐บ = 0 is the condition for an equilibrium state, ๐œ‡๐œ‡๐‘”๐‘” = ๐œ‡๐œ‡๐‘™๐‘™ is the condition.

As the condition is cont.-T const.-P, the equilibrium system has the minimum Gibbs energy. This is the ground rule. Here, we consider conditions with which a two-phase system (liquid & gas here) as the minimum Gibbs energy.

Page 10: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Review of Chapter 3:Comparison between phase equilibrium and chemical equilibrium

http://cft.fis.uc.pt/eef/FisicaI01/fluids/thermo20.htm

(state-1) 300 K, 1 atm

(1)

Phase diagram of water

The phase diagram indicates that โ€œat 300 K and 1 atm, the equilibrium phase of water is liquid water.โ€

It means โ€œif water is at 300 K and 1 atm (and with a fixed amount), liquid phase has a smaller Gibbs energy than solid and gas phases.โ€

[Quiz] If there is a liquid water in this class room (assuming 300 K), do you think there are some ice (liquid) or vapor water (gas) coexisting? Why do you think so and what is the mechanism of it?

Page 11: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Review of Chapter 3:Comparison between phase equilibrium and chemical equilibrium

๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘‡๐‘‡ ๐‘ƒ๐‘ƒ

= โˆ’๐‘†๐‘†๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐œ•๐œ• ๐‘‡๐‘‡

= ๐‘‰๐‘‰[J]/[K]=[J/K] [J]/[Pa]=[m3]

Substance ๏ฟฝ๐‘‰๐‘‰ (m3/mol) S๐บ (J/mol/K)H2O l 0.018E-3 250.5

H2O g 22.4E-3 188.8

Typical pressure changes in chemistry are โ€œ1 atm โ†’ 0.5 atmโ€, โ€œ1atm โ†’ 10 atmโ€, for example, (โ€œ1E5 Pa โ†’ 0.5E5 Paโ€, โ€œ1E5 Pa โ†’ 1E6 Paโ€).

Typical temperature changes are such as โ€œ300 K โ†’ 600 Kโ€, etc. Thus, the difference between typical pressure and typical temperature (the

their changes) are 3-4 orders of magnituede. For gas, the difference between ๏ฟฝ๐‘‰๐‘‰ and S๐บ are 4 orders of magnitude. Thus,

pressure change affect the Gibbs energy of gas in a comparable scale with temperature change.

For liquid (solid), on the other hand, the difference between ๏ฟฝ๐‘‰๐‘‰ and S๐บ are 7orders of magnitude. Thus, the Gibbs energy is hardly affected by pressure.

Page 12: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Review of Chapter 3:Comparison between phase equilibrium and chemical equilibrium

H2O(l) H2O(l)

H2O (g)

300 K, V0 m3

(a Pa)

๐ด๐ด0 ๐ด๐ด1

๐œ‡๐œ‡๐‘”๐‘” 300 ๐พ๐พ,๐‘–๐‘–= ๐œ‡๐œ‡๐‘™๐‘™ (300 ๐พ๐พ, ๐‘–๐‘–)

300 K, V0 m3

(0 Pa)

H2O(s)

300 K, V0 m3

(0 Pa)

๐ด๐ด2

๐œ‡๐œ‡๐‘™๐‘™ 300๐พ๐พ, 0๐œ•๐œ•๐‘–๐‘–< ๐œ‡๐œ‡๐‘ ๐‘  (300๐พ๐พ, 0๐œ•๐œ•๐‘–๐‘–)

๐‘จ๐‘จ๐ŸŽ๐ŸŽ > ๐‘จ๐‘จ๐Ÿ๐Ÿ๐‘จ๐‘จ๐Ÿ๐Ÿ > ๐‘จ๐‘จ๐ŸŽ๐ŸŽ

Const.-T const.-V condition

H2O(l)

Initial state(a non-equilibrium state)

State-1(a non-equilibrium state)

State-2(the equilibrium state)

Page 13: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Review of Chapter 3:Comparison between phase equilibrium and chemical equilibrium

๐บ๐บ0๐‘ฎ๐‘ฎ๐Ÿ๐Ÿ > ๐‘ฎ๐‘ฎ๐ŸŽ๐ŸŽ

Const.-T const.-P condition

H2O(l)

300 K, 3E3 PaH2O(g)

300 K, 1E5 Pa

H2O(s)

๐บ๐บ1

๐บ๐บ2

๐‘ฎ๐‘ฎ๐Ÿ๐Ÿ > ๐‘ฎ๐‘ฎ๐ŸŽ๐ŸŽ

H2O(g)

H2O(l)

H2O(g)

H2O(l)

๐บ๐บ3

๐บ๐บ4

๐‘ฎ๐‘ฎ๐ŸŽ๐ŸŽ > ๐‘ฎ๐‘ฎ๐Ÿ’๐Ÿ’

๐‘ฎ๐‘ฎ๐ŸŽ๐ŸŽ > ๐‘ฎ๐‘ฎ๐Ÿ‘๐Ÿ‘

Indeed, ๐‘ฎ๐‘ฎ๐Ÿ‘๐Ÿ‘ = ๐‘ฎ๐‘ฎ๐Ÿ’๐Ÿ’ if the states where 2 coexisting phases exist are equilibrium states at this const.-T const.-P.

In this case, ๐œ‡๐œ‡๐‘”๐‘” 300 ๐พ๐พ, 3๐ธ๐ธ3 ๐œ•๐œ•๐‘–๐‘– = ๐œ‡๐œ‡๐‘™๐‘™ (300 ๐พ๐พ, 3๐ธ๐ธ3 ๐œ•๐œ•๐‘–๐‘–)

H2O(l)

Page 14: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Review of Chapter 3:Comparison between phase equilibrium and chemical equilibrium

The saturation pressure is the pressure where chemical potential of liquid and gas phases become identical at a given temperature.

๐œ‡๐œ‡๐‘”๐‘” ๐‘‡๐‘‡ ๐พ๐พ,๐œ•๐œ•๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐œ•๐œ•๐‘–๐‘– = ๐œ‡๐œ‡๐‘™๐‘™ (๐‘‡๐‘‡ ๐พ๐พ,๐œ•๐œ•๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐œ•๐œ•๐‘–๐‘–) For practice, it may also be defined as ๐œ‡๐œ‡๐‘”๐‘” ๐‘‡๐‘‡ ๐พ๐พ,๐œ•๐œ•๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐œ•๐œ•๐‘–๐‘– = ๐œ‡๐œ‡๐‘™๐‘™ ๐‘‡๐‘‡ ๐พ๐พ, 1 ๐‘–๐‘–๐‘–๐‘–๐‘š๐‘š ~๐œ‡๐œ‡๐‘™๐‘™ ๐‘‡๐‘‡ ๐พ๐พ,๐œ•๐œ•๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘–๐‘–๐‘–๐‘–๐‘š๐‘š This equation is more useful when we want to

know the saturation pressure of water vapor in a class room, for example.

Note that (molar) Gibbs energy of water vapor depends on partial pressure of water vapor, not on the total pressure of system. (assuming ideal gas)

<Saturation pressure of water vapor>

So, even when the total pressure of the system is fixed, we may change the Gibbs energy (of the system) by adjusting partial pressures. For example, if we initially have 1 mol of H2O(g), a state where H2O(g),

H2(g) and O2(g) coexist may have the minimum Gibbs energy under const.-P const.-T condition.

0

20000

40000

60000

80000

100000

260 280 300 320

Satu

ratio

n pr

essu

re (

Pa)

Temperature (K)

Page 15: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.0. Pressure dependence of chemical potential--๐œ‡๐œ‡ ๐‘ป๐‘ป,๐‘ท๐‘ท = ๐œ‡๐œ‡๐บ ๐‘ป๐‘ป + ๐‘น๐‘น๐‘ป๐‘ป ๐’๐’๐’๐’ โ„๐‘ท๐‘ท๐’‹๐’‹ ๐‘ท๐‘ท๐บ for pure substance of an ideal gas -

Assuming const.-T condition, and dividing both sides with dP

For reversible processes (thus for thermodynamical equilibrium states)๐‘‘๐‘‘๐บ๐บ = ๐‘‰๐‘‰๐‘‘๐‘‘๐œ•๐œ• โˆ’ ๐‘†๐‘†๐‘‘๐‘‘๐‘‡๐‘‡

๐œ‡๐œ‡ ๐‘‡๐‘‡,๐œ•๐œ• = ๐œ‡๐œ‡๐บ ๐‘‡๐‘‡ + ๐‘…๐‘…๐‘‡๐‘‡ ln โ„๐œ•๐œ• ๐œ•๐œ•๐บ

We consider the pressure dependence of gas of pure substance (single-component).

๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐œ•๐œ• ๐‘‡๐‘‡

= ๐‘‰๐‘‰

Then, keeping T and P constant, taking derivative regarding n

๐œ•๐œ•๐œ•๐œ•๐‘–๐‘–

๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐œ•๐œ• ๐‘‡๐‘‡ ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ

=๐œ•๐œ•๐‘‰๐‘‰๐œ•๐œ•๐‘–๐‘– ๐‘‡๐‘‡,๐‘๐‘

๐œ•๐œ•๐œ•๐œ•๐‘–๐‘–

๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐œ•๐œ• ๐‘‡๐‘‡ ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ

=๐œ•๐œ•๐œ•๐œ•๐œ•๐œ•

๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘–๐‘– ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ ๐‘‡๐‘‡

=๐œ•๐œ•๐œ‡๐œ‡๐œ•๐œ•๐œ•๐œ• ๐‘‡๐‘‡

Page 16: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Note that up to here ideal gas is not assumed.

Here, we assume ideal gas. Then, using ๐œ•๐œ•๐œ•๐œ•๐œ•๐œ•๐‘›๐‘› ๐‘‡๐‘‡,๐‘๐‘

= ๐‘…๐‘…๐‘‡๐‘‡๐‘ƒ๐‘ƒ

๐œ‡๐œ‡ ๐‘‡๐‘‡,๐œ•๐œ• = ๐œ‡๐œ‡๐บ ๐‘‡๐‘‡ + ๐‘…๐‘…๐‘‡๐‘‡ ln โ„๐œ•๐œ• ๐œ•๐œ•๐บ

We consider the pressure dependence of gas of pure substance (single-component).

๐œ•๐œ•๐œ‡๐œ‡๐œ•๐œ•๐œ•๐œ• ๐‘‡๐‘‡

=๐œ•๐œ•๐‘‰๐‘‰๐œ•๐œ•๐‘–๐‘– ๐‘‡๐‘‡,๐‘๐‘

๐‘‘๐‘‘๐œ‡๐œ‡ = ๐‘…๐‘…๐‘‡๐‘‡๐‘‘๐‘‘๐œ•๐œ•๐œ•๐œ• (const.-T)

Taking the integral from the standard pressure (๐œ•๐œ•๐บ = 1 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–) to an arbitrary pressure ๐œ•๐œ•,

๐œ‡๐œ‡ โˆ’ ๐œ‡๐œ‡๐บ = ๐‘…๐‘…๐‘‡๐‘‡ ln๐œ•๐œ•๐œ•๐œ•๐บ

Be careful that chemical potential ๐œ‡๐œ‡ is molar Gibbs energy for pure substance, but it is not the case when multiple substances are mixed.

3.0. Pressure dependence of chemical potential--๐œ‡๐œ‡ ๐‘ป๐‘ป,๐‘ท๐‘ท = ๐œ‡๐œ‡๐บ ๐‘ป๐‘ป + ๐‘น๐‘น๐‘ป๐‘ป ๐’๐’๐’๐’ โ„๐‘ท๐‘ท๐’‹๐’‹ ๐‘ท๐‘ท๐บ for pure substance of an ideal gas -

Page 17: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases-Difference between ๐๐๐‘ฎ๐‘ฎ

๐๐๐’๐’๐‘จ๐‘จ ๐‘ป๐‘ป,๐‘ท๐‘ท,๐’๐’๐‘ฉ๐‘ฉ,๐’๐’๐’€๐’€,๐’๐’๐’๐’and ๐๐๐‘ฎ๐‘ฎ

๐๐๐’๐’ ๐‘ป๐‘ป,๐‘ท๐‘ท-

These two partial derivative are both definitions of chemical potential, but for

different conditions: ๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘›๐‘›๐‘Œ๐‘Œ ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ,๐‘›๐‘›๐‘๐‘,๐‘›๐‘›๐ด๐ด,๐‘›๐‘›๐ต๐ต

is for a mixture (A,B,Y,Z) and ๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘›๐‘› ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ

for

pure substance. For example, ๐œ•๐œ•๐บ๐บ

๐œ•๐œ•๐‘›๐‘› ๐‘‡๐‘‡,๐‘ƒ๐‘ƒis the change in Gibbs energy for the pure gas Y

when an infinitesimal amount of gas Y (๐‘‘๐‘‘๐‘–๐‘–) is added keeping other

parameters constant. In this case, ๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘›๐‘›๐‘Œ๐‘Œ ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ

= ๐บ๐บ๐‘›๐‘›๐‘Œ๐‘Œ

, because this process

only change the amount of Y with fixing other thermodynamical conditions. Thus, chemical potential is equal to molar Gibbs energy (const.-T and const.-P) for pure substance.

๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘›๐‘›๐‘Œ๐‘Œ ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ,๐‘›๐‘›๐‘๐‘,๐‘›๐‘›๐ด๐ด,๐‘›๐‘›๐ต๐ต

is the change in Gibbs energy for the gas mixture when

an infinitesimal amount of gas Y (๐‘‘๐‘‘๐‘–๐‘–๐‘Œ๐‘Œ) is added keeping other parameters constant. The chemical potential is equal to partial molar Gibbs energy(const.-T and const.-P [total P]) for a mixture.

Page 18: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

These two partial derivative are both definitions of chemical potential, but for

different conditions: ๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘›๐‘›๐‘Œ๐‘Œ ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ,๐‘›๐‘›๐‘๐‘,๐‘›๐‘›๐ด๐ด,๐‘›๐‘›๐ต๐ต

is for a mixture (A,B,Y,Z) and ๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘›๐‘› ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ

for

pure substance. (1) For example, if [T= 300 K and P= 1 atm, n=1 mol], โ€œ ๐œ•๐œ•๐บ๐บ

๐œ•๐œ•๐‘›๐‘› ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ๐‘‘๐‘‘๐‘–๐‘–โ€

corresponds to the Gibbs energy change by increasing ๐‘‘๐‘‘๐‘–๐‘– mol of the substance.

(2) On the other hand, if [T= 300 K, P= 1 atm, n=1 mol],

โ€œ ๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘›๐‘›๐‘Œ๐‘Œ ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ,๐‘›๐‘›๐‘๐‘,๐‘›๐‘›๐ด๐ด,๐‘›๐‘›๐ต๐ต

๐‘‘๐‘‘๐‘–๐‘–๐‘Œ๐‘Œโ€ corresponds to the Gibbs energy change by

increasing ๐‘‘๐‘‘๐‘–๐‘–๐‘Œ๐‘Œ mol of Y. In this case, the partial pressure of the gas is not 1 atm, but ๐‘›๐‘›๐‘Œ๐‘Œ

๐‘›๐‘›๐‘Œ๐‘Œ+๐‘›๐‘›๐‘๐‘+๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ตatm. As the Gibbs energy of gas largely depends on

the partial pressure, the Gibbs energy change should be different from that of (1).

How can we define Gibbs energy of gas mixture?

3.1. Chemical equilibrium for gases-Difference between ๐๐๐‘ฎ๐‘ฎ

๐๐๐’๐’๐‘จ๐‘จ ๐‘ป๐‘ป,๐‘ท๐‘ท,๐’๐’๐‘ฉ๐‘ฉ,๐’๐’๐’€๐’€,๐’๐’๐’๐’and ๐๐๐‘ฎ๐‘ฎ

๐๐๐’๐’ ๐‘ป๐‘ป,๐‘ท๐‘ท-

Page 19: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases-Gibbs energy in gas mixture (ideal gas)-

T0 K, V0 m3, P0 PaA(g): na molB(g): nb mol๐œ•๐œ•๐ด๐ด = ๐œ•๐œ•0

๐‘›๐‘›๐ด๐ด๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

๐œ•๐œ•๐ต๐ต = ๐œ•๐œ•0๐‘›๐‘›๐ต๐ต

๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

T0 K, V0 m3, PB Pa

B(g): nb mol

๐œ•๐œ•๐ต๐ต = ๐œ•๐œ•0๐‘›๐‘›๐ต๐ต

๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

T0 K, V0 m3, PA Pa

A(g): na mol

P๐œ•๐œ•๐ด๐ด = ๐œ•๐œ•0๐‘›๐‘›๐ด๐ด

๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

The 1st law: ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐œ•๐œ•๐‘‘๐‘‘๐‘‰๐‘‰ โˆ’ ๐‘‡๐‘‡๐‘‘๐‘‘๐‘†๐‘†As const.-T const.-V condition, โˆ†๐‘‘๐‘‘ = โˆ’๐‘‡๐‘‡โˆ†๐‘†๐‘†If the gases are ideal gases, because const.-T is assumed, โˆ†๐‘‘๐‘‘ = โˆ†๐‘‘๐‘‘ ๐‘‡๐‘‡ = 0, hence, โˆ†๐‘†๐‘† = 0.In addition, for ideal gas, โˆ†๐ป๐ป = โˆ†๐ป๐ป ๐‘‡๐‘‡ = 0. Hence, โˆ†๐บ๐บ = โˆ† ๐ป๐ป โˆ’ ๐‘‡๐‘‡๐‘†๐‘† = 0.This result means that the Gibbs energy of mixed gas can be defined as the summation of Gibbs energies of constituent pure gasses holding corresponding partial pressure (for ideal gas).

๐œ‡๐œ‡๐ด๐ด =๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘–๐‘–๐ด๐ด ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ,๐‘›๐‘›๐ต๐ต

=๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘–๐‘–๐ด๐ด ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ๐ด๐ด

= ๐œ‡๐œ‡๐บ๐ด๐ด ๐‘‡๐‘‡ + ๐‘…๐‘…๐‘‡๐‘‡ ln โ„๐œ•๐œ•๐ด๐ด ๐œ•๐œ•๐บ

Mixture Pure substance

Page 20: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

T0 K, V0 m3, P0 Pa

A(g): na molB(g): nb mol

๐œ•๐œ•๐ด๐ด = ๐œ•๐œ•0๐‘›๐‘›๐ด๐ด

๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต๐œ•๐œ•๐ต๐ต = ๐œ•๐œ•0

๐‘›๐‘›๐ต๐ต๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

T0 K, V0 m3, PB Pa

A(g): na molB(g): nb mol

๐œ•๐œ•๐ต๐ต = ๐œ•๐œ•0๐‘›๐‘›๐ต๐ต

๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

T0 K, V0 m3, PA Pa

A(g): na mol

P๐œ•๐œ•๐ด๐ด = ๐œ•๐œ•0๐‘›๐‘›๐ด๐ด

๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

T0 K, V0 m3, P0 Pa

A(g): na molB(g): nb mol

๐œ•๐œ•๐ด๐ด = ๐œ•๐œ•0๐‘›๐‘›๐ด๐ด

๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต๐œ•๐œ•๐ต๐ต = ๐œ•๐œ•0

๐‘›๐‘›๐ต๐ต๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

T0 K, VBm3, P0 Pa

B(g): nbmol

๐‘‰๐‘‰๐ต๐ต =๐‘‰๐‘‰0

๐‘›๐‘›๐ต๐ต๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

T0 K, VAm3, P0 Pa

A(g): namol

P๐‘‰๐‘‰๐ด๐ด =๐‘‰๐‘‰0

๐‘›๐‘›๐ด๐ด๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

In this case, we need to consider the entropy of mixing.

Indeed, the entropy of mixing is related to entropy change due to volume change.

โˆ†๐บ๐บ โ‰  0

โˆ†๐‘†๐‘† โ‰  0

โˆ†๐บ๐บ = 0

โˆ†๐‘†๐‘† = 0

3.1. Chemical equilibrium for gases-Gibbs energy in gas mixture (ideal gas)-

Page 21: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases-review-

Regarding the pressure effect, it is largely different between gas phase and condensed phases (solid, liquid)

Solid Liquid GasEffect of pressure on Gibbs energy

Negligible (< GPa level)

Negligible(< GPa level)

Important (comparable with temperature effect)

Depending on partial pressureIf the total pressure is1 barโ€ฆ

Any solid phase feels1 bar.

Any liquid phase feels 1 bar

Total gas pressure is 1 bar, butpartial pressures are changeable.

*Note there is no โ€œpartial pressureโ€ for solid and liquid. For pure substance, the chemical potential, which is molar Gibbs energy for pure

substance, is as follows, where โ€๐บโ€ denotes the standard state

๐œ‡๐œ‡ ๐‘‡๐‘‡,๐œ•๐œ• =๐บ๐บ๐‘–๐‘–

= ๐œ‡๐œ‡๐บ ๐‘‡๐‘‡ + ๐‘…๐‘…๐‘‡๐‘‡ ln โ„๐œ•๐œ• ๐œ•๐œ•๐บ For example, โ€œ๐‘…๐‘…๐‘‡๐‘‡ ln โ„๐œ•๐œ• ๐œ•๐œ•๐บ โ€ term at 300 K becomes -1.72 kJ/mol for

0.5x105 Pa, -28.7 kJ/mol for 1 Pa, -57.4 kJ/mol for 1x10-5 Pa. However, the contribution to Gibbs energy of the system (๐œ‡๐œ‡๐‘–๐‘– , not ๐œ‡๐œ‡) is not

so large because ๐‘–๐‘– is very small for a low pressure.

Page 22: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases-review-

The following equation is for pure substance:

๐œ‡๐œ‡ ๐‘‡๐‘‡,๐œ•๐œ• =๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘–๐‘– ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ

=๐บ๐บ๐‘–๐‘–

= ๐œ‡๐œ‡๐บ ๐‘‡๐‘‡ + ๐‘…๐‘…๐‘‡๐‘‡ ln โ„๐œ•๐œ• ๐œ•๐œ•๐บ

Now we want to know the related equation for mixture.

๐œ‡๐œ‡๐ด๐ด =๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘–๐‘–๐ด๐ด ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ,๐‘›๐‘›๐ต๐ต,๐‘›๐‘›๐‘Œ๐‘Œ,๐‘›๐‘›๐‘๐‘

<(system-1) Mixture>T0 K, P0 Pa

A(g): nA mol, B(g): nB molY(g): nY mol, Z(g): nZ mol

<(system-2) Pure A substance>T0 K, P0 PaA(g): nA mol

For each system, if we add โˆ†๐‘–๐‘–๐ด๐ด of A with keeping other quantities fixed (T0, and P0,and nB, nY and nZ for system-1), Gibbs energy of the system should be also changed, โˆ†๐บ๐บ. However, because the composition of the system different, โˆ†๐บ๐บ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ โˆ’1 โ‰  โˆ†๐บ๐บ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ โˆ’2. And

limโˆ†๐‘›๐‘›๐ด๐ดโ†’0

โˆ†๐บ๐บ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ โˆ’1โˆ†๐‘–๐‘–๐ด๐ด

=๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘–๐‘–๐ด๐ด ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ,๐‘›๐‘›๐ต๐ต,๐‘›๐‘›๐‘Œ๐‘Œ,๐‘›๐‘›๐‘๐‘

= ๐œ‡๐œ‡๐ด๐ด โ‰ ๐บ๐บ๐‘–๐‘–๐ด๐ด

limโˆ†๐‘›๐‘›๐ด๐ดโ†’0

โˆ†๐บ๐บ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ โˆ’2โˆ†๐‘–๐‘–๐ด๐ด

=๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘–๐‘–๐ด๐ด ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ

= ๐œ‡๐œ‡๐ด๐ด =๐บ๐บ๐‘–๐‘–๐ด๐ด

*Note both are definitions of chemical potential, but for different systems.

Page 23: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases-review-

Mixture Pure substance

Indeed, if we assume ideal gases, the chemical potential for a gas mixture can be replaced with the chemical potential for a pure gas substance with the corresponding partial pressure.

T0 K, V0 m3, P0 PaA(g): nA molB(g): nB mol๐œ•๐œ•๐ด๐ด = ๐œ•๐œ•0

๐‘›๐‘›๐ด๐ด๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

๐œ•๐œ•๐ต๐ต = ๐œ•๐œ•0๐‘›๐‘›๐ต๐ต

๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

where ๐บ๐บ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ โˆ’๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = ๐บ๐บ๐‘๐‘๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘๐‘โˆ’๐ด๐ด + ๐บ๐บ๐‘๐‘๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘๐‘โˆ’๐ต๐ต [for ideal gas].

๐œ‡๐œ‡๐ด๐ด =๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘–๐‘–๐ด๐ด ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ,๐‘›๐‘›๐ต๐ต

=๐œ•๐œ•๐บ๐บ๐œ•๐œ•๐‘–๐‘–๐ด๐ด ๐‘‡๐‘‡,๐‘ƒ๐‘ƒ๐ด๐ด

= ๐œ‡๐œ‡๐บ๐ด๐ด ๐‘‡๐‘‡ + ๐‘…๐‘…๐‘‡๐‘‡ ln โ„๐œ•๐œ•๐ด๐ด ๐œ•๐œ•๐บ

T0 K, V0 m3, PB Pa

B(g): nB mol

๐œ•๐œ•๐ต๐ต = ๐œ•๐œ•0๐‘›๐‘›๐ต๐ต

๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

T0 K, V0 m3, PA Pa

A(g): nA mol

P๐œ•๐œ•๐ด๐ด = ๐œ•๐œ•0๐‘›๐‘›๐ด๐ด

๐‘›๐‘›๐ด๐ด+๐‘›๐‘›๐ต๐ต

<System of mixture> <System of pure A > <System of pure B >

This idea can be extended to more than binary systems, then we can evaluate the pressure dependence of chemical potential of mixture as:

Page 24: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases-review-

Using the obtained pressure dependence of Gibbs energy of gas phase in a mixture, we can further write down โ€œdG = โˆ‘๐‘š๐‘š ๐œ‡๐œ‡๐‘š๐‘š๐‘‘๐‘‘๐‘–๐‘–๐‘š๐‘šโ€ to find dG = 0 condition, which is the condition for equilibrium state.

Then, as a result, following chemical equilibrium equations are obtained. Again, please recall that these equations give us the condition where the

Gibbs energy of the system is minimized. So, we can get the same result if we directly evaluate the Gibbs energy of the system and find the condition with which it is minimized.

โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ = โˆ’๐‘…๐‘…๐‘‡๐‘‡ ln๐พ๐พ๐‘ƒ๐‘ƒ(๐‘‡๐‘‡)

๐พ๐พ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡ = ๐‘„๐‘„๐‘๐‘๐‘’๐‘’ =โ„๐œ•๐œ•๐‘Œ๐‘Œ ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐‘Œ๐‘Œ โ„๐œ•๐œ•๐‘๐‘ ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐‘๐‘

โ„๐œ•๐œ•๐ด๐ด ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐ด๐ด โ„๐œ•๐œ•๐ต๐ต ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐ต๐ต๐‘๐‘๐‘’๐‘’

=๐œ•๐œ•๐‘Œ๐‘Œ๐œˆ๐œˆ๐‘Œ๐‘Œ๐œ•๐œ•๐‘๐‘

๐œˆ๐œˆ๐‘๐‘

๐œ•๐œ•๐ด๐ด๐œˆ๐œˆ๐ด๐ด๐œ•๐œ•๐ต๐ต

๐œˆ๐œˆ๐ต๐ต ร— ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐ด๐ด+๐œˆ๐œˆ๐ต๐ตโˆ’๐œˆ๐œˆ๐ต๐ตโˆ’๐œˆ๐œˆ๐ต๐ต๐‘๐‘๐‘’๐‘’

*the subscript eq emphasizes that the partial pressures are in an equilibrium.

๐œ•๐œ•๐บ = 1 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–

โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ = ๐œˆ๐œˆ๐‘Œ๐‘Œ๐œ‡๐œ‡๐บ๐‘Œ๐‘Œ ๐‘‡๐‘‡ + ๐œˆ๐œˆ๐‘๐‘๐œ‡๐œ‡๐บ๐‘๐‘ ๐‘‡๐‘‡ โˆ’ ๐œˆ๐œˆ๐ด๐ด๐œ‡๐œ‡๐บ๐ด๐ด(๐‘‡๐‘‡) โˆ’ ๐œˆ๐œˆ๐ต๐ต๐œ‡๐œ‡๐บ๐ต๐ต(๐‘‡๐‘‡)

๐พ๐พ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡ = ๐‘–๐‘–๐‘’๐‘’๐‘’๐‘’ โˆ’โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ๐‘…๐‘…๐‘‡๐‘‡

For โ€œ๐œˆ๐œˆ๐ด๐ดA(g) + ๐œˆ๐œˆ๐ต๐ตB(g) โ‡Œ ๐œˆ๐œˆ๐‘Œ๐‘ŒY(g) + ๐œˆ๐œˆ๐‘๐‘Z(g)โ€

Page 25: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Quiz

(Quiz-1) Please determine the equilibrium constant for the following reaction at 1000 K: H2(g) + CO2(g) โ‡Œ CO(g) + H2O(g)

(Quiz-2) Suppose that we have a mixture of the gases H2(g), CO2(g), CO(g) and H2O(g) at 1000 K at 1 bar, with ๐œ•๐œ•๐ป๐ป2 = 0.200 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–, ๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ2 = 0.200 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–, ๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ = 0.300 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–, and ๐œ•๐œ•๐ป๐ป2๐ถ๐ถ = 0.300 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–. Is the reaction described by the equation "H2(g) + CO2(g) โ‡Œ CO(g) + H2O(g)" at equilibrium? If not, in what direction (left or right) will the reaction proceed to attain equilibrium for const.-T cons.t-P condition?

(Quiz-3) Please determine the equilibrium partial pressures at 1000 K at 1 bar.

โˆ†๐’‡๐’‡๐‘ฎ๐‘ฎ๐บ (kJ/mol) @ 1000 K

H2(g) 0CO2(g) -394.9CO(g) -155.4H2O(g) -192.6

Page 26: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Quiz-answer

(Quiz-1) Please determine the equilibrium constant for the following reaction at 1000 K: H2(g) + CO2(g) โ‡Œ CO(g) + H2O(g)

โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ = ๐œˆ๐œˆ๐‘Œ๐‘Œ๐œ‡๐œ‡๐บ๐‘Œ๐‘Œ ๐‘‡๐‘‡ + ๐œˆ๐œˆ๐‘๐‘๐œ‡๐œ‡๐บ๐‘๐‘ ๐‘‡๐‘‡ โˆ’ ๐œˆ๐œˆ๐ด๐ด๐œ‡๐œ‡๐บ๐ด๐ด ๐‘‡๐‘‡ โˆ’ ๐œˆ๐œˆ๐ต๐ต๐œ‡๐œ‡๐บ๐ต๐ต ๐‘‡๐‘‡= ๐œ‡๐œ‡๐บ๐ถ๐ถ๐ถ๐ถ ๐‘‡๐‘‡ + ๐œ‡๐œ‡๐บ๐ป๐ป2๐ถ๐ถ ๐‘‡๐‘‡ โˆ’ ๐œ‡๐œ‡๐บ๐ป๐ป2 ๐‘‡๐‘‡ โˆ’ ๐œ‡๐œ‡๐บ๐ถ๐ถ๐ถ๐ถ2 ๐‘‡๐‘‡= โˆ’200.3 + โˆ’192.6 โˆ’ 0 โˆ’ 395.9 = 3 kJ/mol

๐พ๐พ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡ = ๐‘–๐‘–๐‘’๐‘’๐‘’๐‘’ โˆ’โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ๐‘…๐‘…๐‘‡๐‘‡

= ๐‘–๐‘–๐‘’๐‘’๐‘’๐‘’ โˆ’3 ร— 103

8.31 ร— 1000= 0.697

โˆ†๐’‡๐’‡๐‘ฎ๐‘ฎ๐บ (kJ/mol) @ 1000 K

H2(g) 0CO2(g) -395.9CO(g) -200.3H2O(g) -192.6

Page 27: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Quiz answer(Quiz-2) Suppose that we have a mixture of the gases H2(g), CO2(g), CO(g) and H2O(g) at 1000 K at 1 bar, with ๐œ•๐œ•๐ป๐ป2 = 0.200 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–, ๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ2 = 0.200 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–, ๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ = 0.300 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–, and ๐œ•๐œ•๐ป๐ป2๐ถ๐ถ = 0.300 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–. Is the reaction described by the equation "H2(g) + CO2(g) โ‡ŒCO(g) + H2O(g)" at equilibrium? If not, in what direction (left or right) will the reaction proceed to attain equilibrium for const.-T cons.t-P condition?

๐พ๐พ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡ = ๐‘„๐‘„๐‘๐‘๐‘’๐‘’ =โ„๐œ•๐œ•๐‘Œ๐‘Œ ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐‘Œ๐‘Œ โ„๐œ•๐œ•๐‘๐‘ ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐‘๐‘

โ„๐œ•๐œ•๐ด๐ด ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐ด๐ด โ„๐œ•๐œ•๐ต๐ต ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐ต๐ต๐‘๐‘๐‘’๐‘’

=๐œ•๐œ•๐‘Œ๐‘Œ๐œˆ๐œˆ๐‘Œ๐‘Œ๐œ•๐œ•๐‘๐‘

๐œˆ๐œˆ๐‘๐‘

๐œ•๐œ•๐ด๐ด๐œˆ๐œˆ๐ด๐ด๐œ•๐œ•๐ต๐ต

๐œˆ๐œˆ๐ต๐ต ร— ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐ด๐ด+๐œˆ๐œˆ๐ต๐ตโˆ’๐œˆ๐œˆ๐ต๐ตโˆ’๐œˆ๐œˆ๐ต๐ต๐‘๐‘๐‘’๐‘’

We need to use an equation like:

First, we evaluate โ€œreaction quotientโ€ using the following equation:

๐‘„๐‘„ =โ„๐œ•๐œ•๐‘Œ๐‘Œ ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐‘Œ๐‘Œ โ„๐œ•๐œ•๐‘๐‘ ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐‘๐‘

โ„๐œ•๐œ•๐ด๐ด ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐ด๐ด โ„๐œ•๐œ•๐ต๐ต ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐ต๐ต=

0.300 ร— 0.3000.200 ร— 0.200

= 2.25

Because this value is larger than ๐พ๐พ๐‘ƒ๐‘ƒ(= 0.697), the system should evolve to decrease ๐‘„๐‘„ (non-equilibrium state now). Thus, partial pressure of reactants will increase, which means the reaction will proceed from the right to the left.

*Be careful that ๐‘„๐‘„ is not identical to ๐‘„๐‘„๐‘๐‘๐‘’๐‘’. ๐‘„๐‘„ = ๐‘„๐‘„๐‘๐‘๐‘’๐‘’ = ๐พ๐พ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡ is achieved when the system (thus partial pressures) are of equilibrium state.

Page 28: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Quiz answer

(Quiz-3) Please determine the equilibrium partial pressures at 1000 K at 1 bar.

๐พ๐พ๐‘ƒ๐‘ƒ ๐‘‡๐‘‡ = ๐‘„๐‘„๐‘๐‘๐‘’๐‘’ =โ„๐œ•๐œ•๐‘Œ๐‘Œ ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐‘Œ๐‘Œ โ„๐œ•๐œ•๐‘๐‘ ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐‘๐‘

โ„๐œ•๐œ•๐ด๐ด ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐ด๐ด โ„๐œ•๐œ•๐ต๐ต ๐œ•๐œ•๐บ ๐œˆ๐œˆ๐ต๐ต๐‘๐‘๐‘’๐‘’

=(0.300 + ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’)(0.300 + ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’)(0.200 โˆ’ ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’)(0.200 โˆ’ ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’)

๐‘๐‘๐‘’๐‘’= 0.697

If we define the extent of reaction with ๐œ‰๐œ‰, the partial pressures at equilibrium state is given as follows (๐œ‰๐œ‰ becomes ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’):

๐œ•๐œ•๐ป๐ป2 = (0.200 โˆ’ ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’) ๐‘๐‘๐‘–๐‘–๐‘–๐‘– ๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ2 = (0.200 โˆ’ ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’) ๐‘๐‘๐‘–๐‘–๐‘–๐‘–

๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ = (0.300 + ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’) ๐‘๐‘๐‘–๐‘–๐‘–๐‘– ๐œ•๐œ•๐ป๐ป2๐ถ๐ถ = (0.300 + ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’) ๐‘๐‘๐‘–๐‘–๐‘–๐‘–

Then,

0.300 + ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’ = 0.697 0.200 โˆ’ ๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’๐œ‰๐œ‰๐‘๐‘๐‘’๐‘’ = โˆ’0.0725

๐œ•๐œ•๐ป๐ป2 = ๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ2 = 0.273 ๐‘๐‘๐‘–๐‘–๐‘–๐‘– ๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ = ๐œ•๐œ•๐ป๐ป2๐ถ๐ถ = 0.227 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–

Applying this value to the partial pressure expressions, we can obtain the following equilibrium partial pressures.

Page 29: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases-an example-

(Problem) Initially, we have 1 mol of CH4(g) and 1 mol of H2O(g) in the system and keep const.-T (1000 K) const.-P (1 bar) condition. When the system arrived at the equilibrium state, we found CH4(g), H2O(g), CO(g), H2(g), C2H2(g). Please determine the equilibrium amounts of these species.

Page 30: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases-an example-

(Problem) Initially, we have 1 mol of CH4(g) and 1 mol of H2O(g) in the system and keep const.-T (1000 K) const.-P (1 bar) condition. When the system arrived at the equilibrium state, we found CH4(g), H2O(g), CO(g), H2(g), C2H2(g). Please determine the equilibrium amounts of these species.

CH4(g) + H2O(g) โ†’nCH4 CH4(g) + nH2O H2O(g) + nCO CO(g) + nH2 H2(g) + nC2H2 C2H2(g)

For mass conservation, we have 3 conditions. [H] 4+2=4 nCH4 + 2 nH2O +2 nH2 +2 nC2H2 [C] 1= nCH4 + nCO + 2nC2H2 [O] 1= nH2O + nCO

We need 2 additional equations to determine 5 parameters. At equilibrium states, any balance reactions should be of equilibrium states. Then, we consider 2 of them. [eq.1] CH4(g) + H2O(g) โ‡Œ 3H2(g) + CO(g) [eq.2] CH4(g) + CO(g) โ‡Œ C2H2(g) + H2O(g)

Now we have 5 equations for 5 unknown variables, then we can determine the 5 variables.

Page 31: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases-an example -

(Problem) Initially, we have 1 mol of CH4(g) and 1 mol of H2O(g) in the system and keep const.-T (1000 K) const.-P (1 bar) condition. When the system arrived at the equilibrium state, we found CH4(g), H2O(g), CO(g), H2(g), C2H2(g). Please determine the equilibrium amounts of these species.

[eq.1] CH4(g) + H2O(g) โ‡Œ 3H2(g) + CO(g)

[eq.2] CH4(g) + CO(g) โ‡Œ C2H2(g) + H2O(g)

๐พ๐พ๐‘ƒ๐‘ƒ,1 ๐‘‡๐‘‡ = ๐‘–๐‘–๐‘’๐‘’๐‘’๐‘’ โˆ’โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ1๐‘…๐‘…๐‘‡๐‘‡

=๐œ•๐œ•๐ป๐ป23 ๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ๐œ•๐œ•๐ถ๐ถ๐ป๐ป4๐œ•๐œ•๐ป๐ป2๐ถ๐ถ

๐พ๐พ๐‘ƒ๐‘ƒ,2 ๐‘‡๐‘‡ = ๐‘–๐‘–๐‘’๐‘’๐‘’๐‘’ โˆ’โˆ†๐‘Ÿ๐‘Ÿ๐บ๐บ๐บ2๐‘…๐‘…๐‘‡๐‘‡

=๐œ•๐œ•๐ถ๐ถ2๐ป๐ป2๐œ•๐œ•๐ป๐ป2๐ถ๐ถ๐œ•๐œ•๐ถ๐ถ๐ป๐ป4๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ

For example, if the balance reaction given in [eq.1] is not of equilibrium state, some reaction (to right or to left) should happen to decrease the Gibbs energy of the system.

Hence, any kind of balance reaction between constituent gases should achieve equilibrium conditions.

where partial pressures are proportional to molar fractions.

Page 32: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

Quiz

(Quiz-1) Please determine the equilibrium constant for the following reaction at 1000 K: H2(g) + CO2(g) โ‡Œ CO(g) + H2O(g)

(Quiz-2) Suppose that we have a mixture of the gases H2(g), CO2(g), CO(g) and H2O(g) at 1000 K at 1 bar, with ๐œ•๐œ•๐ป๐ป2 = 0.200 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–, ๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ2 = 0.200 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–, ๐œ•๐œ•๐ถ๐ถ๐ถ๐ถ =0.300 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–, and ๐œ•๐œ•๐ป๐ป2๐ถ๐ถ = 0.300 ๐‘๐‘๐‘–๐‘–๐‘–๐‘–. Is the reaction described by the equation "H2(g) + CO2(g) โ‡Œ CO(g) + H2O(g)" at equilibrium? If not, in what direction (left or right) will the reaction proceed to attain equilibrium for const.-T cons.t-P condition?

(Quiz-3) Please determine the equilibrium partial pressures at 1000 K at 1 bar.

โˆ†๐’‡๐’‡๐‘ฎ๐‘ฎ๐บ (kJ/mol) @ 1000 K

H2(g) 0CO2(g) -394.9CO(g) -155.4H2O(g) -192.6

Page 33: Physical Chemistry for Energy Engineering (20th: 2018/11/26)

3.1. Chemical equilibrium for gases-an example-

(Problem) Initially, we have 1 mol of CH4(g) and 1 mol of H2O(g) in the system and keep const.-T (1000 K) const.-P (1 bar) condition. When the system arrived at the equilibrium state, we found CH4(g), H2O(g), CO(g), H2(g), C2H2(g). Please determine the equilibrium amounts of these species.