Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

61
Eastern Illinois University e Keep Masters eses Student eses & Publications 2002 Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with Emphasis on the Evolution of Susceptibility to Fascioloides magna Infection Sarah Renee Joyce Eastern Illinois University is research is a product of the graduate program in Biological Sciences at Eastern Illinois University. Find out more about the program. is is brought to you for free and open access by the Student eses & Publications at e Keep. It has been accepted for inclusion in Masters eses by an authorized administrator of e Keep. For more information, please contact [email protected]. Recommended Citation Joyce, Sarah Renee, "Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with Emphasis on the Evolution of Susceptibility to Fascioloides magna Infection" (2002). Masters eses. 1496. hps://thekeep.eiu.edu/theses/1496

Transcript of Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Page 1: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Eastern Illinois UniversityThe Keep

Masters Theses Student Theses & Publications

2002

Phylogenetics of Lymnaeidae (Mollusca:Gastropoda) with Emphasis on the Evolution ofSusceptibility to Fascioloides magna InfectionSarah Renee JoyceEastern Illinois UniversityThis research is a product of the graduate program in Biological Sciences at Eastern Illinois University. Findout more about the program.

This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Thesesby an authorized administrator of The Keep. For more information, please contact [email protected].

Recommended CitationJoyce, Sarah Renee, "Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with Emphasis on the Evolution of Susceptibility toFascioloides magna Infection" (2002). Masters Theses. 1496.https://thekeep.eiu.edu/theses/1496

Page 2: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

THESIS/FIELD EXPERIENCE PAPER REPRODUCTION CERTIFICATE

TO: Graduate Degree Candidates (who have written formal theses)

SUBJECT: Permission to Reproduce Theses

The University Library is receiving a number of request from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow these to be copied.

PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS:

Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings.

Date

I respectfully request Booth Library of Eastern Illinois University NOT allow my thesis to be reproduced because:

Date

:1"1es1s..i form

Page 3: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with Emphasis on the

Evolution of Susceptibility to Fascioloides magna Infection

(TITLE)

BY

Sarah Renee Joyce

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS

2002 YEAR

I HEREBY RECOMMEND THAT THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DEGREE CITED ABOVE

f//tlo;L DATE

DATE

Page 4: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Acknowledgements

I am grateful to:

My co-advisors Dr. Jeffrey Laursen and Dr. Mark Mort for supporting me both

professionally and personally throughout my graduate program, and challenging me to

honor myself and my goals. I especially thank both for blessing me with their continued

friendship.

Dr. Charles Pederson who served on my thesis committee, and always proved a

valuable resource for research endeavors and professional advice.

Department of Biology at Eastern Illinois University, especially Dr. Kipp Kruse

and Dr. Andrew Methven, for financial support, and promoting research in molecular

systematics.

Sigma Xi for funding me with a Grant-In-Aid-of-Research Award, as •veil as the

Graduate School at Eastern Illinois University for a Research/Creative Activity Award.

Park Managers and Conservation Officers at St. Croix State Park, MN, for their

hospitality, support, and enthusiasm regarding this study.

Scott Meiners, Bud Fischer, Gary Averbeck, Randy Delong, Jess Morgan, Amy

Wethington, Sam Loker, Aparna Palmer, Nick Owens, Michael Douglas, and Mark

Druffel for their assistance in systematic methods and taxon sampling.

Many family members and friends whose shoulders I have had the great privilege

of leaning on over the last two years, and who continue to inspire me every day with their

love, courage, and strength of character.

11

Page 5: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Abstract

Snails in Lymnaeidae serve as intermediate hosts in the transmission of many

trematode species, including Fascioloides magna that is responsible for disease and death

in domestic livestock in North America. Previous classifications oflymnaeid snails have

relied primarily on morphological characters that exhibit high levels of homoplasy;

thereby, impeding a sound assessment ofrelationships in this group. The present study

provides a phylogenetic hypothesis for lymnaeid snails employing sequences from the

internal transcribed spacer (ITS) region of nrDNA, and addresses the evolution of

susceptibility to Fascioloides infection in lymnaeid snails. The final data set, comprising

ten species of lymnaeid snails and one species of Physidae, included 1368 characters, of

which 327 were parsimony-informative. Three major clades were recovered in neighbor­

joining analyses that consisted of individuals of Stagnicola caperata, Fossaria s.s., and

Stagnicola s.s. + F. Bakerlymnea sp. Stagnicola caperata, the main host of F. magna in

Minnesota, revealed a closer alliance to Fossaria spp. than to other species of Stagnicola,

suggesting that its placement in the stagnicoline sub-genus Hinkleyia is suspect.

Members of Fossaria s.s., that have tricuspid first lateral teeth in the radula, were

monophyletic to the exclusion of F. Bakerlymnea, a well-supported member of the

stagnicoline clade. Therefore, our estimate of lymnaeid phylogeny supports the

taxonomic scheme proposed by Baker (1911) that suggests members of Bakerlymnea be

classified as stagnicolines based on their shared bicuspid dentition. Although a

stagnicoline clade was strongly supported, there was low resolution of species within the

clade. Log-determinent distances between species of Stagnicola s.s. were less than those

observed between individuals of Stagnicola caperata, indicating that a region with higher

111

Page 6: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

rates of evolution is necessary to determine relationships in this group. Susceptibility to

Fascioloides magna infection is widespread in North American lymnaeid snails based on

experimental infections. However, an examination of naturally infected intermediate

hosts suggests that host status may be due to high exposure rates that result from close

interactions between intermediate and definitive hosts.

l\'

Page 7: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Table of Contents

Title Page .................................................. i

Acknowledgements .......................................... ii

Abstract .................................................. iii

Table of Contents ........................................... v

Introduction ................................................ 1

Materials and Methods ....................................... 7

Results . ................................................... 10

Discussion ................................................. 13

Literature Cited ............................................ 20

Tables .................................................... 32

Figures ................................................... 35

Appendix 1 ............................................... 47

v

Page 8: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

As buds give rise by growth to fresh buds, and these, if vigorous, branch out and overtop on all sides many a feebler branch, so by generation I believe it has been with the great Tree of Life, which fills with its dead and broken branches the crust of the earth, and covers the surface with its ever branching and beautiful ramifications.

Charles Darwin On the Origin of Species

Introduction

Lymnaeidae (Rafinesque, 1815) is a group of primarily aquatic snails that are

cosmopolitan in distribution, occurring in a variety of ecological habitats. The greatest

diversity of lymnaeid snails is found in the extensive freshwater ecosystems of the

northern United States and central Canada (Burch, 1982). Taxonomically, this group is

quite complex with between 57 to 100 species historically recognized in North America

alone (e.g., Baker, 1911; Hubendick, 1951; Clarke, 1973; Burch, 1982). Clearly,

classification of this group remains controversial despite considerable efforts. In

addition, lymnaeid snails serve as intermediate hosts for more than 70 trematode species

world-wide (Brown, 1978). Therefore, significance in investigating this group ranges

from taxonomic uncertainty to their role in transmitting parasitic disease.

On the American continents, lymnaeid snails serve as intermediate hosts for

fasciolid trematodes, a group of major medical and economic concern. Fascia/a

hepatica, the causative agent of fascioliasis in humans and other mammals, is emerging

as a medical concern in parts of Central and South America, as well as the Caribbean

(Mas-Coma et al., 1999a, 1999b). In North America, F. hepatica andFascio/oides

magna, the giant liver fluke, are causative agents of animal diseases in both wild and

1

Page 9: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

domesticated mammals. The definitive host of F. magna in North America is white­

tailed deer, Odocoileus virginianus (Cheatum, 1951; Griffiths, 1962; Dutson et al., 1967;

Pursglove et al., 1977; Addison et al., 1988); however, domestic livestock sympatric with

deer are at risk to F. magna infection (Figure 1 ). Infection in cattle has resulted in

economic loss due to chronic disease and condemnation of livers at slaughter. In sheep

infection often results in death (Foreyt and Todd, 1976a, b). Fascioloides magna has a

disjunct range in North America (Figure 2), with isolated populations reported from the

Pacific Northwest, Rocky Mountains, Gulf Coast, and Great Lakes regions (Cheatum,

195l;Griffiths, 1962; Knapp and Shaw, 1963;Dutsonetal., 1967;Behrandetal., 1973;

Pursglove et al., 1977; Foreyt, 1981; Schillhorn Van Veen, 1987; Knapp et al., 1992).

This is likely due to the requirement for suitable snail intermediate hosts and cervid

definitive hosts to complete the life cycle (Foreyt, 1990). Stagnicola caperata, S. elodes

(also called S. palustris), Fossaria parva, F. modicella, and F. bulimoides are the only

documented natural hosts of Fascioloides magna in North America (Sinitsin, 1930, 1933;

Swales, 1935; Griffiths, 1959; Laursen, 1993). However, Stagnicola catascopium, S.

exilis, Lymnea stagnalis, Pseudosuccinea columella, F. obrussa rustica, and F.

ferruginea have been infected in laboratory studies (Krull, 1933a, 1933b, 1934; Dutson et

al., 1967; Griffiths, 1973; ). Due to the reliance of F. magna on lymnaeid snails for

transmission, confidence in lymnaeid taxonomy is imperative for correct identification of

intermediate hosts, and a robust phylogeny is necessary to evaluate host-parasite

relationships.

Previous classifications of lymnaeid snails have defined species based upon shell

morphology, reproductive morphology, and radular teeth formulas, along with some

Page 10: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

emphasis on ecology. However, identification and classification has been compromised

by morphological and anatomical similarity between species of some genera (Bargues et

al., 2001), while other species exhibit high intraspecific variation in the presence of

different environmental conditions (Burch, 1982). Therefore, there is little consensus

among the available taxonomic keys. Different taxonomic schemes have recognized a

single genus (Walter, 1968), two genera (Hubendick, 1951; Clarke, 1973), and up to

seven genera (Baker, 1911; Burch, 1965, 1982) in the family. Proposed genera include

Lymnea, Bulimnea, Stagnicola, Fossaria, Radix, Psuedosuccinea, and Ace/la (Burch,

1982). Use of sub-groups within genera, of which many are considered artificial

(Hubendick, 1951; Walter, 1968), has contributed to the taxonomic confusion by putting

increased weight on characters like shell morphology that may exhibit extreme

homoplasy. Studies of immunology (Burch, 1968; Burch and Lindsay, 1968), karyology

(Burch, 1965; Inaba, 1969), cross-breeding (Burch and Ayers, 1973), and enzyme

electrophoresis (Rudolph and Burch, 1989) have either provided low systematic

resolution or disagreed with results from morphological examinations (Bargues et al.,

2001). Morphological examinations of reproductive organs have been useful in

differentiating some lymnaeid species, and may be more reliable than other

morphological characters for phylogeny reconstruction in this group (Hubendick, 1978;

Jackiewicz, 1988; Gloer and Meier-Brook, 1998).

Molecular data have been useful in evaluating relationships of European (Bargues

et al., 1997,2001; Bargues and Mas-Coma, 1997) and a limited number of North

American (Remigio and Blair, 1997a, 1997b; Remigio, in press) lymnaeid snails.

Sequences from 18S nrDNA have provided initial insights into lymnaeid relationships

3

Page 11: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

(Bargues et al., 1997; Bargues and Mas-Coma, 1997). However, this region is highly

conserved, and may not be appropriate for species-level differentiation. Previous

analyses of 16S mtDNA (Remigio and Blair, 1997b; Remigio, in press) and the internal

transcribed spacer (ITS) from nrDNA (Remigio and Blair, 1997a; Bargues et al., 200 l)

have shown promise in resolving relationships among lymnaeid genera. For example,

sequences from 16S mtDNA revealed a paraphyletic relationship among stagnicoline

snails, and produced a topology that disputed previous hypotheses regarding the

evolution of chromosome number in Lymnaeidae (Remigio and Blair, 1997b ). In

addition, parsimony analyses ofITS sequences revealed that Stagnicola caperata did not

cluster with three additional species of Stagnicola s.s. (S. catascopium, S. emarginata,

and S. elodes), thus suggesting this taxon may deserve recognition as a distinct genus

(Remigio and Blair, l 997a). Stagnicola caperata has previously been classified as a

stagnicoline based on size, radular dentition, and, to a limited extent, shell morphology

(Burch, 1982). However, differences between S. caperata and other stagnicolines do

exist, most notably observed in the smaller size and pronounced periostracal ridges on

shells of S. caperata. In addition, S. caperata and species of Fossaria serve as the main

natural intermediate hosts for F. magna in the United States, which might indicate a close

alliance between these two groups. Determining the taxonomic position of Stagnicola

caperata will help to develop hypotheses regarding host susceptibility in Lymnaeidae.

Phylogenetic models have provided interesting insights into the evolution of

symbioses among a diverse array of organisms (Moran et al., 1995; Herre et al., 1996;

Clark et al., 2000), including parasites and their hosts (Hafner and Page, 1995; Baker et

al., 1998; Hugot, 1998; DeJong et al., 2001; Xiao et al., 2001; Refardt et al., 2002).

4

Page 12: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Molecular data, in particular, allow for robust analyses of host-parasite relationships by

providing independent estimates of phylogeny for both the host and parasite lineage(s)

(Page et al., 1998), while also reducing the phylogenetic noise that results from

morphological characters highly influenced by the association (Downes, 1990). In

addition, studies that have used molecular, morphological, and parasitiological data in

concert (e.g., Hugot, 1998) have been more successful in resolving host phylogeny.

In the absence of a robust host phylogeny, associations between host and parasite

can be useful in evaluating relationships. Xiao et al. (2001) used Hexamita infections of

fish in the family Xenocyprinae as a character for phylogenetic analysis, along with

segments from the mitochondrial genome, and found that host phylogeny based on

parasite fauna was congruent with that based on mtDNA sequences. Snail-trematode

interactions show equal promise for revealing patterns of parallel evolution due to high

host specificity exhibited by most digenean trematodes for their molluscan host (Roberts

and Janovy, 1996). For instance, mapping patterns of susceptibility to trematode

infection on snail phylogeny has been used in the development of hypotheses regarding

host and parasite biogeography, as well as predicting new potential host species due to

their genetic similarity to known host species (DeJong et al., 2001). Similar patterns

have been found between lymnaeid snails and fasciolid trematodes (Bargues and Mas­

Coma, 1997), but these studies have not included North American snails or Fascioloides

magna. I hypothesize that inclusion of North American lymnaeid snails in the

phylogeny, in addition to mapping Fascioloides susceptibility, will provide additional

insights into the evolution of fasciolid susceptibility in lymnaeid snails, allowing for

inference of the ancestral character states and the origins of susceptibility.

5

Page 13: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

My goals are to estimate phylogeny for lymnaeid snails in enzootic fluke regions

of Minnesota using internal transcribed spacer sequences, and use this phylogenetic

hypothesis as an evolutionary framework to examine the phylogenetic distribution of

susceptibility to Fascioloides magna infection in lymnaeid snails. In addition, the

evolution of radular dentition will be explored on this framework, as it is typically used to

define species of Fossaria.

6

Page 14: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

lVIethods

Sampling of Fascioloides magna and Lymnaeid Snails

Fascioloides magna adults and eggs were collected from white-tailed deer in

November of 1999, 2000, and 2001 during fire-arm hunts supervised by the MnDNR at

St. Croix State Park, MN. Fascioloides magna adults were collected by slicing the liver

in approximately 0.25 inch intervals, and removing worms from cysts within the organ.

Adult worms were deposited into warm, 0.9% saline solution or distilled water for

several hours to shed eggs. Eggs were concentrated by sedimentation, washed several

times with distilled water, and incubated at room temperature until fully embryonated (-3

weeks). They were then kept at 4°C to suspend development, so that small aliquots of

eggs could be hatched as needed for infection studies.

Lymnaeid snails were collected from eight sites in six counties in Minnesota.

Wetland habitats (sensu Eggers and Reed, 1987) sampled were emphemeral

ponds/ditches, marshes, prairie potholes, lakes, and streams. Specimens either were kept

alive in containers of water packed on ice or were fixed in 100% ETOH in the field.

Snails were identified based on shell morphology and radular dentition using available

taxonomic keys (e.g., Clarke, 1973; Burch, 1982). Eight putative species from three

genera within Lymnaeidae were identified (Table 1): one from Lymnea (stagnalis); four

from Stagnicola (caperata, catascopium, exilis, and elodes); and three from Fossaria

(Bakerlymnea sp., obrussa rustica, and parva). Snail colonies were established in

separate 10-gallon aquaria for each of five species of lymnaeid snails (S. caperata, S.

exilis, S. elodes, S. stagnalis and S. catascopium) for use in infection studies. A species

from the genus Physa, a proposed sister group to Lymnaeidae (Hubendick, 1947, 1978),

7

Page 15: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

was collected for use as an outgroup, and sequences for five additional lymnaeid snails

were retrieved from GenBank to compliment taxon sampling (Table 1).

Infection Study

Individuals of L. stagnalis, S. exilis, and two populations of S. caperata were

exposed to 3-6 miracidia in a 48-well plate for 3 hours in modification of Foreyt and

Todd (1978) and Laursen (1993). An infection tank was established for each species

where snails were housed and fed frozen lettuce ad libidum for 40 days to allow for larval

amplification. On day 40 post-infection, snails were crushed to determine infection

status. Individual species were coded as susceptible to infection if any individual of that

species contained redia or cercaria, or susceptibility based on experimental infection was

known from previous studies.

Phylogenetic Study

Whole DNA was extracted from either frozen or preserved foot tissue using a

HotSHOT protocol (Truett et al, 2000) modified for snails (J.A.T. Morgan, pers. comm.).

A small amount of tissue (- 3 mg) from each snail was dissected and pulverized in a 1.5

ml tube using sterile micro-grinders with 150 µL of an alkaline lysis reagent (25 mM

NaOH and 0.2 mM disodium EDTA at pH 12). Ground samples were incubated at 95°C

for one hour, then cooled to 25°C prior to the addition of 150 µL of neutralizing reagent

(40 mM Tris-HCl at pH 5). Presence of whole DNA was verified by electrophoreses on a

1 % agarose gel followed by staining with ethidium bromide. The complete ITS region

(ITSl- 5.8S - ITS2) of the nrDNA was amplified using the primers BDl and BD2 of

Degnan et al. (1990). Individual reactions contained 1 µL of template DNA in a 100 µL

reaction mixture with sterile double-distilled water, 0.2 mM of dNTP' s, 1 OX PCR buffer,

8

Page 16: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

5% DMSO, 0.25 ~tM primer concentrations, and one-half unit of TAQ polymerase.

Amplification used 40 cycles of 94°C for 45 seconds, 48°C for one minute, and 72°C for

four minutes. PCR products were purified using QIAquick~ PCR purification kit

following manufacturers instructions (QIAGEN Inc., Valencia, CA) and were

resuspended in 35-50 µL sterile double-distilled water. DNA fragments were sequenced

using external primers BDl and BD2 (Degnan et al., 1990), internal primers ERl and

ER2 (Remigio and Blair, l 997a), and a Dye Terminator Cycle Sequencing Kit

(Beckman-Coulter, Fullerton, CA), and visualized on a Beckman-Coulter CEQ 2000XL

automated sequencer. Sequences were edited with Sequencher (Gene Codes, Ann Arbor,

MI), and edited contigs were initially aligned using ClustalX (Thompson et al., 1997)

followed by visual adjustment. Distance and Parsimony analyses were conducted using

PAUP* (Swofford, 1998) on a G-4 Macintosh ( 400 mHz). The data set was analyzed

using 1000 replications of RANDOM TAXON addition with NNI branch-swapping,

which generated a pool of "starting" trees, the shortest of which were subsequently used

for more rigorous analyses employing TBR branch-swapping. The relative support for

the clades recovered by these analyses was assessed using fast bootstrapping (Mort et al,

2000). Susceptibility to infection was coded for terminal taxa, and phylogenetic

distribution of susceptibility was examined using MacClade (Maddison and Maddison,

1992).

9

Page 17: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Results

Sequence data

Sequences for sixteen individuals, comprising 11 species and four genera, were

included in the final data set (Appendix 1). The final alignment included 1368 sites, with

759 constant and 609 variable characters, of which 327 were parsimony-informative.

Mean base frequencies for individual nucleotides were 17% (A), 31 % (C), 29% (G), and

23% (T), with a G + C content of 60%. No significant shifts in nucleotide usage were

observed across taxa based on a chi-square test (x2 = 25.6, df = 45, P > 0.99).

Evolutionary distances computed using a log-determinant model (Lockhart, 1994) ranged

from 0.08 to 54% among ingroup taxa, with smallest distances observed among

stagnicoline snails, excluding S. caperata (Table 2). Pairwise sequence comparisons

revealed 27.8 transitions and 38. l transversions on average, and a mean transition to

transversion ratio of 0. 73: 1, suggesting standard models of evolution would apply

(Swofford et al., 1996). The average proportion of sites differing between sequences was

0.167.

Lymnaeid Phylogenetics

Parsimony analyses of the aligned data set recovered 250 minimum-length trees

of 900 steps (Figure 3). Homoplasy appeared to be low as assessed by the consistency

index (0.8778) and retention index (0.8503). Variation among tree topologies was

limited to the clade representing Stagnicola spp., in which low sequence divergence was

observed; mean sequence divergence between Stagnicola elodes, S. catascopium, S.

exilis, and S. emarginatawas 0.00571, based on pairwise sequence comparisons. Strict

consensus analyses of the minimum length trees recovered the same three major clades as

10

Page 18: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

parsimony analyses (Figure 3) with strong bootstrap support: 1) individuals of S.

caperata (100%); 2) Stagnicola spp.-'- F. (Bakerlymnea) sp. (100%); and, 3) F. o. rustica

+ F. pan'a (100%). Placement of Fossaria truncatula and Lymnea stagnalis in the

consensus tree were suspect in light of previous hypotheses of lymnaeid taxonomy and

phylogeny (Burch, 1982; Remigio and Blair, 1997; Remigio, in press). In addition, this

topology did not show high support for relationships among Stagnicola s.s. An

examination of branch-lengths (Figure 3) suggested long-branch attraction could be a

factor, possibly causing parsimony analyses to be misleading (Felsenstein, 1978).

Greater sequence divergence was observed for S. caperata, F. truncatula, F. o. rustica, F.

parva, and L. stagnalis in contrast to nominal taxa in Stagnicola (i.e., S. catascopium, S.

elodes, S. exilis, and S. emarginata). These unequal rates of change among ingroup taxa

can cause tree topology to be incongruent with phylogenetic relationships (Felsenstein,

1978; Hendy and Penny, 1989).

Additional analyses were conducted to test topology from parsimony analyses

using methods less prone to long-branch phenomena. One method used was neighbor­

joining analyses with log-determinent (Lockhart, 1994) distances; this method is better

suited for long-branch phenomena since it operates under a wider set of models and is

robust to base changes across taxa (Hillis et al., 1996). The resulting topology (Figure 4)

resolved three distinct clades with high bootstrap support: 1) Stagnicola spp. + F.

(Bakerlymnea) sp. (100%); 2) individuals of S. caperata (99%); and, 3) Fossaria spp.

(81 %). Neighbor-joining analyses also resolved a close alliance between S. caperata and

species of F ossaria, as opposed to other stagnicolines, but support for this relationship

was low(< 50%). Constraining the topology from neighbor-joining analyses, employing

11

Page 19: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

a log-detertiment model, in parsimony analyses produced a tree with 13 additional steps,

which is less than a 2% difference from the initial tree produced by parsimony analyses.

Therefore, tree topology produced by neighbor-joining analyses was not appreciably

different than the maximum parsimony tree, and was accepted as the best estimate of

relationships among lymnaeid snails from Minnesota.

Traits for susceptibility based on experimental and natural infections, along with

radular dentition, were coded to examine their phylogenetic distribution (Table 3) using

topology from neighbor-joining analyses. Snails susceptible to Fascioloides magna

infection, as determined from infection studies in our laboratory and from a review of

literature, as well as species that are known intermediate hosts of F. magna were coded

with a value of one. Radular dentition, determined from slide mounts of the organ, was

also included (Table 3) since it has been used to define groups within the genus Fossaria

(Baker, 1911; Burch, 1982).

12

Page 20: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Discussion

Phylogenetics of North American Lymnaeid Snails

Taxonomic certainty and a robust phylogenetic hypothesis for lymnaeid snails are

imperative for correctly identifying hosts of Fascioloides magna and interpreting host­

parasite relationships in the group, respectively. The present study indicates that DNA

sequences of the internal transcribed spacer region will resolve relationships between

genera in Lymnaeidae, as first proposed by Remigio and Blair (l 997a). Clades

comprising Stagnicola caperata, Fossaria s.s, and Stagnicola s.s. + F. Bakerlymnea sp.

were strongly supported in both parsimony and distance analyses. However, until

additional sequences from the ITS region are included to overcome unequal rates of

change along different branches, distance methods that use multiple-hit corrections are

more reliable for assessing relationships in this group (Hendy and Penny, 1989; Hillis et

al., 1996). Particularly, distance methods employing a log-determinent model (Lockhart,

1994; Steel, 1994), which operates under a wider set of models and is robust to changes

in base composition across taxa, will be most successful (Hillis et al., 1996).

Neighbor-joining analyses found a closer alliance between Stagnicola caperata,

the primary intermediate host of F. magna in Minnesota, and members of the genus

Fossaria, in contrast to other members of Stagnicola. Although support for this

relationship was low (<50%), a recent study employing sequences from the 16S mtDNA

region revealed a similar alliance between S. caperata and fossariad snails (Remigio, in

press). This relationship disputes previous taxonomic schemes (Baker, 1928; Burch,

1982) which place S. caperata in the stagnicoline subgenus Hinkleyia. Also, S. caperata

exhibits extreme differences in shell morphology from other members of Stagnicola (e.g.,

13

Page 21: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

smaller size and pronounced periostracal ridges); therefore, all available evidence

suggests that its placement in the subgenus Hinkleyia is discordant with both

morphological and molecular data.

Species of Fossaria have rarely been included in phylogenetic studies, mostly due

to the difficulty in locating and identifying members of this group. The present study

includes more species of Fossaria than have previously been evaluated. Fossaria

obrussa rustica, F. parva, and F. truncatula formed a well-supported clade (81%) and a

strong relationship was supported between F. o. rustica and F. parva (I 00%) in neighbor­

joining analyses. Fossaria Bakerlymnea sp. was excluded from the clade of other species

of Fossaria, and instead clustered with the stagnicoline clade. Exclusion of F.

Bakerlymnea sp. from the Fossaria clade is also supported by differences in radular

dentition (see below). More than 40 species of Fossaria have been described, but it is

likely that many are synonyms (Burch, 1982). Extensive sampling of Fossaria species is

needed to resolve, with confidence, relationships among members of the genus, and to

evaluate taxonomy in this group effectively. Furthermore, continued use of molecular

data in Fossaria may provide markers useful for the identification of cryptic species in

the group, as this method has been successful in other snail (Jones et al., 1997, 1999) and

invertebrate taxa (Walton et al., 1999).

Species from Stagnicola s.s. (e.g., S. elodes, S. emarginata, S. catascopium, and

S. exilis) form a well-supported clade (100%), but relationships within the clade are

largely unresolved. In fact, the average percent nucleotide difference from pairwise

sequence comparisons (Table 2) were higher between individuals of S. caperata (3%)

14

Page 22: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

than those observed between species comprising the Stagnicola s.s. clade (0.6%). One

clade within Stagnicola, consisting of S. exilis, S. catascopium (from Minnesota), and

F. Bakerlymnea sp., was moderately supported (74%); but, seems unreliable due to low

sequence divergence. Unlike other genera in Lymnaeidae, particularly Fossaria,

members of Stagnicola s.s. have distinctive shell characteristics that have allowed more

reliable identification of taxa. Previous descriptions of Stagnicola s.s. have

circumscribed species into two groups, elodes and emarginata/catascopium (Burch,

1982). Members of the elodes group, including S. exilis, typically have narrow,

elongated spires and inhabit stagnant waters such as ditches and marshes. Species in the

emarginata/catascopium group have more globose body whorls with shorter spires and

are found in open and/or flowing water systems (e.g., lakes and streams). However, shell

morphology among stagnicoline snails is greatly influenced by environmental conditions

(Burch, 1968; Burch and Lindsay, 1973; Patterson and Burch, 1978), which may explain

the discrepancies seen between highly diverse shell morphology and low sequence

divergence. Failure of both ITS nrDNA (this study) and 16S mtDNA sequences (Remigio

and Blair, 1997b; Remigio, in press) to resolve relationships in Stagnicola robustly

indicates that additional data are needed to determine species relationships. If this group

has undergone recent speciation events, then molecular studies that employ even more

rapidly evolving markers, and maybe hybridization studies, will be necessary to define

Stagnicola species. Also, studies that examine the effects oflimnological variables on

shell morphology may be necessary to determine how environmental factors are

influencing putative taxa.

15

Page 23: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

The phylogenetic position of Lymnea stagnalis was unresolved in neighbor­

joining analyses, reflecting the high sequence divergence between L. stagnalis and other

North American lymnaeids (e.g., 21.5 % on average from pairwise sequence

comparisons). Other studies employing molecular data (Barques et al., 2001; Remigio, in

press) consistently place N. American L. stagnalis as a sister to European Stagnicola

species, suggesting a recent introduction from Eurasia (Remigio and Blair, l 997b;

Remigio, in press). Like stagnicoline snails, L. stagnalis exhibits environmental

variations in shell morphology that have resulted in assignment of sub-species names.

With at least two type species recognized by both morphological and molecular data

(Clarke, 1973; Burch, 1982; Remigio, in press), molecular studies employing population­

level markers will be necessary to evaluate relationships among the various conspecifics.

Fossariad Snails and the Evolution of Radular Dentition

Historically, taxonomists have recognized members of Fossaria based on their

small size and marked absence of the shell characteristics used to define other taxa.

Burch (1982) identified two subgenera within Fossaria, based upon differences in radular

dentition. Species of Fossaria s.s. (e.g., F obrussa rustica, F. parva, and F. truncatula)

have tricuspid teeth in the first lateral position, whereas F Bakerlymnea spp. (e.g., F.

bulimoides, F cubensis, and F dalli) are bicuspid. Bicuspid radular dentition is a trait

shared between the Bakerlymnea group and Stagnicola species, causing Baker (1928) to

classify bicuspid fossariad snails as the subgenus Nasonia in Stagnicola. Internal

transcribed spacer sequences support the relationship proposed by Baker, since

F. Bakerlymnea sp. was well-resolved within the stagnicoline clade (Figure 4). An

examination of the phylogenetic distribution of radular dentition suggests a single origin

16

Page 24: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

for tricuspid, first lateral teeth that is limited to Fossaria s.s. (Figure 5). Based on our

estimate of phylogeny, radular dentition may provide more reliable phylogenetic signal

than shell morphology or ecology in this group. Noteworthy is that sequences from 16S

mtDNA (Remigio, in press) do not agree with our results, instead suggesting that

bicuspid and tricuspid Fossaria are congeners in accordance with Burch (1982). Both the

neighbor~oining tree presented here and the 16S phylogeny proposed by Remigio (in

press) included only one species from the Bakerlymnea group. Therefore, it is not yet

clear whether the Bakerlymnea group is monophyletic. Inclusion of additional species

from Bakerlymnea is required to test the monophyly of this tax on and ascertain its

position in the family. In addition, using a combination of molecular markers may be

necessary to elucidate the patterns of evolution of radular dentition; since ITS nrDNA

and 16S mtDNA have very different rates and modes of evolution (Hillis and Dixon,

1991) that may cause them to continue to be counteractive.

Evolution of Susceptibility to Fascioloides Infection

Experimental infections show that susceptibility to F. magna infection is

widespread among the taxa sampled in this study, as all lymneaid species tested show

some degree of susceptibility to infection. Stagnicola emarginata has not been tested,

therefore, no conclusions can be made regarding its susceptibility. Fossaria

Bakerlymnea sp. is not coded because it is not identified to species. However, it is likely

that both of these species would be susceptible to F. magna infection if tested, especially

F. Bakerlymnea sp., since members of this group include Fossaria bulimoides and F.

cubensis that are intermediate hosts found naturally infected in the United States.

17

Page 25: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Only a subset of species experimentally susceptible to F. magna infection serve as

natural intermediate hosts (Figure 6). These include S. caperata, S. elodes, and F. pan-a

in the United States, as well as F. truncatula in Europe. Each of these species is

commonly found in ephemeral waters, such as woodland ponds and ditches, where deer

may be more likely to forage. Therefore, host status among lymnaeid snails may be a

function of high exposure rates that result from close interactions between intermediate

and definitive hosts in endemic areas. Studies of cervid foraging behavior lend support to

different feeding strategies in enzootic and fluke-free regions of Minnesota (Laursen,

1993), providing one explanation for increased contact between intermediate and

definitive hosts. The northeast region of Minnesota that is endemic to F. magna typically

has low sodium concentrations in terrestrial vegetation and aquatic systems (Botkin et al.,

1973; Helgensen et al., 1973; Jordan et al., 1973; Olcott et al., 1978). Deer in these areas

make increased use of sodium-rich mineral licks, such as seeps or small springs (Weeks

and Kirkpatrick, 1976; Fraser and Hristienko, 1981). These ephemeral sites are also

suitable habitat for intermediate host species; therefore, frequent use by deer would

increase contact between intermediate and definitive hosts, and would help perpetuate the

fluke (Laursen, 1993 ).

Snails that were infected under laboratory conditions may be susceptible to

infection as a result of shared ancestry (i.e., genetic similarity), but not found as natural

hosts due to differences in habitat use. Susceptible species, such as S. catascopium are

typically found in large lakes and streams, while Stagnicola exilis and Lymnea stagnalis

are commonly found in marshes and prairie potholes. Larger aquatic habitats with deeper

water could make snail location by F. magna larvae more difficult, reducing the number

18

Page 26: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

of infected intermediate hosts. This may prevent infection in numbers required for

continued transmission. In addition, a case can be made for moderate levels ofresistance

in some snail taxa. Stagnicola exilis and L. stagnalis are generally considered poor

intermediate hosts, as they are only readily infected at juvenile life stages (Campbell and

Todd, 1955a, 1955b;Griffiths, 1973;WuandKingscote, 1953, 1954). Thisisnottypical

of natural intermediate hosts, which remain susceptible throughout their lifetime. It is not

clear whether this change in susceptibility from juvenile to adult snail is due to

physiological differences or development of resistance prompted by historic exposure.

Either way, it is obvious that genetic and ecological variables need to be evaluated in

concert to better understand host susceptibility.

19

Page 27: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Literature Cited

Addison, E.M., Hoeve, J., Joachim, D.G., and McLachlin, DJ. 1988. Fascioloides

magna (Trematoda) and Taenia hydatigena (Cestoda) from white-tailed deer.

Can. J. Zoo!. 66: 1359-1364.

Baker, F.C. 1911. Lymnaeidae of North and Middle America, recent and

fossil. Chicago Acad of Sci. Spec. Publ. No. 3, pi-xvi + 1-539, 58 pls.

Baker, F.C. 1928. The freshwater mollusca of Wisconsin. 1. Gastropoda. Wisconsin

Geo/. Nat. Hist. Surv. Bull. 70: 1-507.

Baker, M.D., Vossbrinck, C.R., Becnel, J.J., and Andreadis, T.G. 1998. Phylogeny of

Amblyospora (Microsporidia: Amblyosporidae) and related genera based on

small subunit ribosomal DNA data: A possible example of host parasite

cospeciation. J. Invert. Path. 71: 199-206.

Bargues, M.D., and Mas-Coma, S. 1997. Phylogenetic Analysis ofLymnaeid

Snails Based On 18S rDNA Sequences. Mo/. Biol. Evol. 14(5): 569-577.

Bargues, M.D., Mangold, A.J., Munoz-Antoli, C., Pointier, J., and Mas-Coma, S. 1997.

SSU rDNA Characterization ofLymnaeid Snails Transmitting Human

Fascioliasis in South and Central America. J. Parasito. 83(6): 1086-1092.

Bargues, M.D., Vigo, M., Horak, P., Dvorak, J., Patzner, RA, Pointier, J.P., Jackiewicz,

M., Meier-Brook, C., and Mas-Coma, S. 2001. European Lymnaeidae

(Mollusca: Gastropoda), intermediate hosts of trematodiases, based on nuclear

ribosomal DNA ITS-2 sequences. Infection, Genetics and Evolution. 1: 85-107.

20

Page 28: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Behrend, D.F., Mattfeld, G.F., and Willey, J.E. 1973. Incidence ofliver flukes in a

sample of white-tailed deer from the Adirondacks. New York Fish and Game

Journaf 20: 158-161.

Botkin, D.B., Jordan, P.A., Dominski, A.S., Lowendorf, H.S., and Hutchinson, G.E.

1973. Sodium dynamics in a northern ecosystem. Proc. Nat. A cad. Sci. 70:

2745-2748.

Brown, D.S. 1978. Pulmonate molluscs as intermediate hosts for digenetic trematodes.

In: Pulmonates. Systematics, Evolution, and Ecology, Vol. 2A (V. Fretter and J.

Peake, eds). Academic Press, London. pp. 287-333.

Burch, J.B. 1965. Chromosome numbers and systematics in euthyneuran snails. In:

Proceedings of the First European Malacologia Congress 215-41.

Burch, J.B. 1968. Morphology vs. immunology. Response. Am. Malacol. Union 34:

25-8.

Burch, J.B. 1982. North American Freshwater Snails. Trans. Poets Soc. 1(4):

217-365.

Burch, J.B., and Ayers, P.A. 1973. Breeding experiments with Stagnicola elodes and

Stagnicola emarginata. Malacol. Rev. 6: 51-2.

Burch, J.B., and Lindsay, G.K. 1968. An immunological approach to lymnaeid

systematics. Am. Malacol. Union 34: 22-3.

Burch, J.B., and Lindsay, G.K. 1973. Taxonomic groupings in the Lymnaeidae.

Am. Malacol. Union 3 8: 15.

21

Page 29: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Campbell, W.C., and Todd, A.C. 1955a. In vitro metamorphosis of the miracidium of

Fascia/aides magna (Bassi, 1875), Ward, 1917. Trans. Amer. Micro. Soc. 74:

225-228.

Campbell, W.C., and Todd, A.C. 1955b. Behavior ofmiracidium of

Fascia/aides magna (Bassi, 1875), Ward, 1917 in the presence of a snail host.

Trans. Amer. Micro. Soc. 74: 342-347.

Cheatum, E.L. 1951. Disease in relation to winter mortality in deer in New York. J

Wild. Man. 15: 216-220.

Clark, M.A., Moran, N.A., Baumann, P., and Wernegreen, J.J. 2000. Cospeciation

between bacterial endosymbionts (Buchnera) and a recent radiation of aphids

(Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54:

517-525.

Clarke, A.H. 1973. Canadian Freshwater Mollusks (Lymnaeidae). Malacologia 13-14:

1-509.

Darwin, C. 1859. On the origin of species by means of natural selection. London,

England: John Murray.

Degnan, B.M., Yan, J., Hawkins, C.J., and Lavin, M.F. 1990. rRNA genes from the

lower chordate Herdmania momus: structural similarity with higher eukaryotes.

Nucleic Acids Res. 18: 7063-7070.

DeJong, R.J., Morgan, J.A.T., Paraense, W.L., Pointier, J.P., Amarista, M., Ayeh-Kumi,

P.F.K., Babiker, A., Barbosa, C.S., Bremond, P., Canese, A.P., Pereira de Souza,

C., Dominguez, C., File, S., Gutierrez, A., Incani, RN., Kawano, T., Kazibwe, F.,

Kpikpi, J., Lwambo, N.J.S., Mimpfoundi, R., Njiokou, F., Poda, J.N., Serre, M.,

22

Page 30: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Velasquez, L.E., Yong, M., Adema, C.M., Hofkin, B.V., Mkoji, G.M., and Loker,

E.S. 2001. Evolutionary relationships and biogeography of Biomphalaria

(Gastropoda: Planorbidae) with implications regarding its role as host of the

human bloodtluke, Schistosoma mansoni. Mo!. Biol. Eva!. 18(12): 2225-2239.

Downes, B.J. 1990. Host-induced morphology in mites: Implications for host parasite

coevolution. Syst. Zoo!. 39: 162-168.

Dutson, V.J., Shaw, J.N., and Knapp, S.E. 1967. Epizootiologic factors of Fascioloides

magna (Trematoda) in Oregon and southern Washington. Amer. J Vet. Res. 28:

853-860.

Eggers, S.D., and Reed, D.M. 1987. Wetland plants and plant communities of

Minnesota and Wisconsin. Report of the U.S. Army Corps of Engineers, St. Paul

District. 201 pp.

Felsenstein, J. 1978. Cases in which parsimony and compatibility methods will be

positively misleading. Syst. Biol. 27: 27-33.

Foreyt, W.J. 1981. Trematodes and Cestodes. In: W.R. Davidson (Ed.), Diseases and

parasites of the white-tailed deer. Tall Timbers Research Station, Misc. Pub.

No. 7, pp. 237-265.

Foreyt, W.J. 1990. Domestic sheep as a rare definitive host of the large american liver

tl.ukeFascioloides magna. J Parasitol. 76: 736-739.

Foreyt, W.J., and Todd, A.C. 1976a. Development of the large american liver fluke,

Fascioloides magna, in white-tailed deer, cattle, and sheep. J Parasitol. 62: 26-

32.

'.23

Page 31: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Foreyt, W.J., and Todd, A.C. l 976b. Liver flukes in cattle. fvfed. Small Animal

Clinician. 71: 816-822.

Foreyt, W.J., and Todd, A.C. 1978. Experimental infection oflymnaeid snails in

Wisconsin with miracidia of Fascioloides magna and Fasciola hepatica. J.

Parasitol. 64: 1132-1134.

Fraser, D., and Hristienko, H. 1981. Activity of moose and white-tailed deer at mineral

springs. Can. J. Zoo/. 59: 1991-2000.

Gloer, P., Meier-Brook, C. 1998. Susswassermollusken. In: Bestimmungsschlusselfiir

die Bundesrepublik Deutsch/and, 12111 Edition. Deutscher Jugendbund for

Naturbeobachtung, Hamburg, Germany.

Griffiths, H.J. 1959. Stagnicola (Hinkleyia) caperata (Say), a natural intermediate host

for Fascioloides magna (Bassi, 1975), in Minnesota. J. Parasitol. 45: 146.

Griffiths, H.J. 1962. Fascioloidiasis of cattle, sheep, and deer in northern Minnesota. J.

Amer. Vet. Med. Assoc. 140: 342-347.

Griffiths, H.J. 1973. Galba modicella and Lymnea stagnalis as experimental

Intermediate hosts for Fascioloides magna in Minnesota. J. Parasitol. 59: 121.

Hafner, M.S., and Page, R.D.M. 1995. Molecular phylogenies and host-parasite

cospeciation: Gophers and lice as a model system. Phil. Trans. R. Soc. Land. B

349: 77-83.

Helgesen, J.O., Lindholm, G.F., Broussard, W.L., and Ericson, D.W. 1973. Water

resources of the Kettle River watershed, East-central Minnesota. Hydrologic

Investigations Atlas HA--137. U.S. Geological Survey.

24

Page 32: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Hendy, M.D., and Penny, D. 1989. A framework for the quantitative study of

evolutionary trees. Syst. Zoo!. 38: 297-309.

Herre, E.A., Machado, C.A., Bermingham, E., Nason, J.D., Windsor, D.M., McCafferty,

S.S., VanHouten, W., and Bachmann, K. 1996. Molecular phylogenies of figs

and their pollinator wasps. J. Biogeogr. 23: 521-530.

Hillis, D.M., and Dixon, M.T. 1991. Ribosomal DNA: Molecular evolution and

phylogenetic inference. Quart. Rev. Biol. 66(4): 411-431.

Hillis, D.M., Moritz, C., and Mable, B.K. 1996. Molecular Systematics. 2nd ed.

Sinauer Associates, Sunderland, Massachusetts.

Hubendick, B. 1947. Phylogenetic relations between higher limnic Basommatophora.

Zoologiska Bidragjran Uppsala. 25: 141-164.

Hubendick, B. 1951. Recent Lymnaeidae, their variation, morphology, taxonomy,

nomenclature, and distribution. Kung/. Svenska Vetenskapsakademiens Hand!.,

Fijarde Ser. 3(1): 1-223, 5 pis.

Hubendick, B. 1978. Systematics and comparative morphology of the Basommatophora.

In: Fretter, V., Peake, J. (Eds.), Pulmonates, Vol. 2A, 1-47. Academic Press,

London.

Hugot, J.P. 1998. Phylogeny ofneotropical monkeys: The interplay of morphological,

molecular, and parasitological data Mo!. Phy/. Evol. 9(3): 408-413.

Inaba, A. 1969. Cytotaxonomic studies oflymnaeid snails. Malacologia 7: 143-169.

Jackiewicz, M. 1988. The penis as a valuable diagnostic feature in lower taxonomic

units of the family Lymnaeidae (Gastropoda, Pulmonata). Malakai. Abh. Mus.

Tierkd Dresden l 3: 23-6.

25

Page 33: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Jones, C.S., Noble, L.R., Lockyer, A.E., Brown, D.S., and Rollinson, D. 1997. Species­

specific primers discriminate intermediate hosts of schistosomes: unambiguous

PCR diagnosis of Bulinus forskalii group taxa (Gastropoda: Planorbidae ).

Molecular Ecology 6: 843-49.

Jones, C.S., Noble, L.R., Ouma, J., Kariuki, H.C., Mimpfoundi, R., Brown, D.S., and

Rollinson, D. 1999. Molecular identification of schistosome intermediate hosts:

case studies of Bulinus forskalii group species (Gastropoda: Planorbidae) from

central and east Africa. Biological Journal of the Linnean Society 68(1/2): 215-

240.

Jordan, P.A., Botkin, D.B., Dominski, A.S., Lowendorf, H.S., and Belovsky, G.E. 1973.

Sodium as a critical nutrient for moose on Isle Royale. Proc. N. Amer. Moose

Conj. Workshop 9: 13-42.

Knapp, S.E., Dunkel, A.M., Han, K., and Zimmerman, L.A. 1992. Epizootiology of

fascioliasis in Montana. Vet. Parasitol. 42: 241-246.

Knapp, S.E., and Shaw, J.N. 1963. Occurance of Fascioloides magn,a (Bassi) in Oregon

cattle and deer. J. Parasitol. 49: 39.

Krull, W.H. 1933a. New snail hosts for Fascia/a magn,a (Bassi, 1975) Stiles, 1894.

J. Parasitol. 20: 107-108.

Krull, W.H. l 933b. A new intermediate host for Fascioloides magn,a (Bassi, 1875)

Ward, 1917. Science 78: 508-509.

Krull, W.H. 1934. The intermediate hosts of Fascia/a hepatica and Fascioloides magna

in the United States. N. Amer. Vet. 15: 13-17.

26

Page 34: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Lausen, J.R. 1993. Fascioloides magna in Minnesota: Regional ecology of the fluke

and serodiagnosis in cattle. Ph.D. Dissertation: University of Minnesota,

Minneapolis, MN.

Lockhart, P.J., Steel, M.A., Hendy, M.D., and Penny, D. 1994. Reconstructing

evolutionary trees under a more realistic model of sequence evolution. Mo!. Biol.

Evol. 11: 605-612.

Maddison, W.P., and Maddison, D.R. 1992. MacClade: Analysis of Phylogeny and

Character Evolution. Sinauer Associates, Inc., Sunderland, MA.

Mas-Coma, S., Bargues, M.D., and Esteban, J.G. 1999a. Human fasciolosis. In:

Dalton, J.P. (Ed.), Fasciolosis. CAB International Publishing, Wallingford, UK,

pp. 411-434.

Mas-Coma, S., Esteban, J.G., and Bargues, M.D. 1999b. Epidemiology of human

fascioliasis: a review and proposed new classification. Bull. WHO 77: 340-346.

Mas-Coma, S., Funatsu, I.R., and Bargues, M.D. 2001. Fasciola hepatica and lymnaeid

snails occurring at very high altitude in South America. Parasitology 123(7):

115-127.

Moran, N.A., Von Dohlen, C.D., and Baumann, P. 1995. Faster evolutionary rates in

endosymbiotic bacteria than in cospeciating insect hosts. J. Mo!. Evol. 41:

727-731.

Mort, M.E., Soltis, P.S., Soltis, D.E., and Mabry, M.L. 2000. Comparison of three

methods for estimating internal support on phylogenetic trees. Syst. Biol. 49(1):

160-171.

27

Page 35: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Olcott, P.G., Ericson, D.W., Felsheim, P.E., and Broussard, W.L. 1978. Water resources

of the Lake Superior watershed, northeastern Minnesota. Hydrological

Investigations Atlas HA-582. U.S. Geological Survey.

Page, R.D.M., Lee, P.L.M., Becher, S.A., Griffiths, R., and Clayton, D.H. 1998. A

different tempo of mitochondrial DNA evolution in birds and their parasitic lice.

Mal. Phy!. Evol. 9(2): 276-293.

Patterson, C.M., and Burch, J.B. 1978. Chromosomes ofpulmonate molluscs. In:

Gretter, V., Peake, J. (Eds.), Pulmonates. Systematics, Evolution and Ecology,

Vol. 2A. Academic Press, London, 171-217.

Pursglove, S.R., Prestwood, A.K., Ridgeway, T.R., and Hayes, F.A. 1977. Fascioloides

magna infection in white-tailed deer of southeastern United States. J. Amer. Vet.

Med. Assoc. 171: 936-938.

Rafinesque, C. S. 1815. Analyse de la nature, ou tableau de l 'univers et des corps

organises. Palerme. pp. 136-139

Refardt, D., Canning, E.U., Mathis, A., Cheney, S.A.; Lafranchi-Tristem, N.J., and

Ebert, D. 2002. Small subunit ribosomal DNA phylogeny of microsporidia that

infect Daphnia (Crustacea: Cladocera). Parasitology 124(4): 381-389.

Remigio, E.A. 2002. Molecular phylogenetic relationships in the aquatic snail genus

Lynmea, the intermediate host of the causative agent of fascioliasis: insights from

broader taxon sampling. Mal. Biol. Evol., in press.

28

I

Page 36: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Remigio, E.A., and Blair, D. 1997a. Relationships Among Problematic North American

Stagnicoline Snails (Pulmonata: Lymnaeidae) Reinvestigated Using Nuclear

Ribosomal DNA Internal Transcribed Spacer Sequences. Can. J Zoology 75:

1540-1545.

Remigio, E.A., and Blair, D. 1997b. Molecular Systematics of the Freshwater Snail

Family Lymnaeidae (Pulmonata: Basommatophora) Utilising Mitochondrial

Ribosomal DNA Sequences. J Moll. Stud. 63: 173-185.

Roberts, L.S., and Janovy, J. 1996. Foundations in Parasitology. 5th edition. W. C.

Brown: Dubuque, IA

Rudolph, P.H., and Burch, J.B. 1989. Electrophorectic analysis of enzymes in three

species of Stagnicola (Pulmonata: Lymnaeidae). J Med. Appl. Malacol. 1:

57-64.

Schillhom Van Veen, T.W. 1987. Prevalence of Fascioloides magna in cattle and deer

in Michigan. J Amer. Vet. Med. Assoc. 191: 547-48.

Sinitsin, D.F. 1930. A note on the life history of the large american fluke, Fasciola

magna (Bassi). Science N.S. 72: 273-774.

Sinitsin, D.F. 1933. Studien uber die phylogenie der trematoden VI. The life histories

of some american liver flukes. Zeit. Fur Parasitol. 6: 170-191.

Steel, M.A. 1994. Recovering a tree from the Markov leaf colourations it generates

under a Markov model. Appl. N!ath. Lett. 7: 19-23.

Stromberg, B.E., Schlotthauer, J.C., Karns, P.D. 1983. Current status of Fascioloides

magna in Minnesota. Minnesota Veterinarian 23( 1 ): 8-13.

29

Page 37: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Swales, W.E. 1935. The life cycle of Fascioloides magna (Bassi, 1975), Ward, 1917,

the large liver fluke of ruminants, in Canada. Can. J Res. 12: 177-215.

Swiderski, D.L. 1990. Analysis oflymnaeacean relationships using phylogenetic

systematics. Malcologia 31(2): 249-257.

Swofford, D.L. 1998. PAUP* -I. 0: Phylogenetic Analysis Using Parsimony (and other

methods) BetaVers. 4.0. Sinauer Associates, Sunderland.

Swofford, D.L., Olsen, G.J., Waddell, P.J., and Hillis, D.M. 1996. Phylogenetic

Inference. In: Molecular Systematics, 2nd ed. (D.M. Hillis, C. Moritz, and B.K.

Mable, eds), 407-514. Sinauer, Massachusetts.

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.J. 1997.

The ClustalX-Windows interface: Flexible strategies for multiple sequence

alignment aided by quality analysis tools. Nucl. Acids Res. 25: 4876-4882.

Truett, G.E., Reeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A., Warman, M.L. 2000.

Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and

Tris (HotSHOT). Biotechniques 29(1): 52-54.

Walter, H.J. 1968. Evolution, taxonomic revolution, and zoogeography of the

Lymnaeidae. The American Malacological Union, Inc., Annual Reports: 18-20.

Walton, C., Sharpe, R.G., Pritchard, SJ., Thelwell, NJ., and Butlin, R.K. 1999.

Molecular identification of mosquito species. Biological Journal of the Linnean

Society 68(1/2): 241-256.

Weeks, A.J., and Kirkpatrick, C.M. 1976. Adaptations of white-tailed deer to naturally

occurring sodium deficiencies. J Wild Manag. 40: 610-625.

30

Page 38: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Wu, LY., and Kingscote, A.A. 1953. A note on L_vmnea stagnafis (L) as a snail host for

Fascioloides magna (Bassi, 1975) (Trematoda). J. Parasitol. 39: 568.

Wu, LY., and Kingscote, A.A. 1954. Further study on Lymnea stagnafis (L) as a snail

host for Fascioloides magna (Bassi, 1975) (Trematoda). J. Parasitol. 40: 90-93.

Xiao, W., Zhang, Y., and Liu, H. 2001. Molecular systematics ofXenocyprinae

(Teleostei: Cyprinidae): Taxonomy, biogeography, and coevolution of a special

group restricted to east Asia. Mo!. Phylogenet .. Eva!. 18(2): 163-173.

31

Page 39: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Table 1: Lymnaeid snails sampled for infection and phylogenetic studies, with reference to sample location.

seecies Sameled Local it)'. Count!}'. Genbank Accession Number

Lymnea stagnalis Douglas County, MN USA ... Fossaria obrussa rustica Kanabec County, MN USA *

Fossaria parva Crow Wing County, MN USA * Fossaria truncatula Min ho Portugal AJ243018 (Mas-Coma et al., 2001 );

AJ243017 (Barges et al., 2001) Fossaria (Bakerlymnea) sp. Pine County, MN USA *

Stagnicola caperata 7 Mille Lacs County, MN USA * Stagnicola caperata 2 Mille Lacs County, MN USA * Stagnicola caperata 3 Manitoba Canada AFOl 3139 (Remigio and Blair, l 997a)

Stagnico/a el odes· 1 Pine County, MN USA * Stagnico/a elodes 2 Traverse County, MN USA * Stagnicola e/odes 3 Ann Arbor, Ml USA AFOl 3138 (Remigio and Blair, l 997a)

Stagnico/a exilis Mille Lacs County, MN USA * Stagnicola catascopium 1 Crow Wing County, MN USA * Stagnico/a catascopium 2 Ann Arbor, Ml USA AFOl 3143 (Remigio and Blair, l 997a)

Stagnico/a emarginata Ann Arbor, Ml USA AFOl 3141 (Remigio and Blair, l 997a) Phx._sa sp. Kanabec Count;t. MN USA *

* Genbank accession number available from authors

32

Page 40: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

w

w

Tab

le 2

: E

volu

lion

my

dist

ance

s ac

cord

ing

to l

ogde

tenn

inen

t/pa

rali

near

mod

el (

show

n be

low

the

diag

onal

), a

nd p

erce

nt n

ucle

otid

e di

llcn

;ncc

(s

how

n ab

ove

the

diag

onal

) fr

om p

ai1w

ise

com

pari

son

of

pm1i

al I

TS

nrD

NA

seq

uenc

es o

f ly

mna

eid

::;na

ils s

ampl

ed.

LST

A

FRU

S FP

AR

SC

AP1

S

CA

P2

SCA

P3

FTR

U

SE

L03

SE

LO

l SE

XI

SCA

Tl

SC

AT

2 SE

MO

S

El.

02

L

ymn

ea

sta

gn

alis

L

STA

-

33

3

3

21

20

2

0

22

2

6

18

1

8

18

1

8

18

1

8

Fos

sari

a o

bru

ssa

msti

ca

FR

US

0.4

68

45

-

2 3

2

32

3

5

29

2

9

28

2

9

29

2

8

28

2

8

Fos

sari

a p

arv

a

FPA

R

0.4

85

52

0.0

19

70

3

3

33

3

6

31

29

2

9

30

2

9

29

2

9

29

S

tag

nic

o/a

ca

pe

rata

1

SC

AP

l 0

.25

18

5 0

.45

95

7 0

.48

67

4

1 4

17

1

3

12

1

2

12

12

1

2

12

Sta

gn

ico

la c

ap

era

ta 2

S

CA

P2

0.2

44

33

0.4

55

02

0.4

82

37

0.0

05

79

-

4 1

7

13

12

12

12

1

2

12

1

2

Sta

gn

ico

la c

ap

era

ta 3

SC

AP3

0

.26

83

6 0

.51

53

0 0

.54

55

3 0

.04

59

5 0

.04

17

1

-1

6

15

1

4

14

1

4

14

1

4

14

Fos

sari

a tr

un

catu

la

FTR

U

0.3

42

3 5

0.3

85

71

0

.42

51

5 0

.20

50

1

0.1

99

70

0.1

89

13

-

20

2

0

20

2

0

20

2

0

19

Sta

gn

ico

la e

/od

es

3 S

EL

03

0.2

19

86

0.3

86

98

0.4

04

48

0.1

51

27

0.1

49

65

0.1

76

97

0.2

60

07

0

1 1

1 1

1 S

tag

nic

ota

e/o

de

s 1

SE

LO

l 0

.21

72

3 0

.38

10

9 0

.39

83

4 0

.14

51

6 0

.14

35

3 0

.17

06

4 0

.25

06

3 0

.00

51

9

-1

0 0

0 0

Sta

gn

ico

la e

xilis

SE

XI

0.2

17

72

0.3

94

60

0.4

12

10

0.1

47

31

0

.14

56

9 0

.17

27

7 0

.25

66

5 0

.01

49

7 0

.00

96

3

-0

1 1

1 S

tag

nic

o/a

ca

tasc

op

itn

n

1 SC

A T

l 0

.21

01

2 0

.38

93

6 0

.40

69

0 0

.14

46

8 0

.14

30

8 0

.17

03

5 0

.25

48

2 0

.00

94

4 0

.00

41

5 0

.00

55

2

-1

0 1

Sta

gn

ico

/a c

ata

sco

piu

m 2

S

CA

T2

0.21

59

5 0

.3 7

93

9 0

.39

66

1

0.1

46

31

0

.14

46

7 0

.1 7

1 7

7 0

.25

09

3 0

.00

78

3 0

.00

26

2 0

.01

22

9 0

.00

68

1

-0

1 S

tag

nic

ola

em

arg

ina

ta

SEM

A

0.2

18

71

0

.38

46

3 0

.40

19

8 0

.14

64

6 0

.14

48

3 0

.17

19

9 0

.25

29

6 0

.00

62

8 0

.00

10

7 0

.01

07

1

0.0

05

23

0.0

03

69

-

0 S

tag

nic

ola

elo

de

s 2

SE

L02

0

.21

99

5 0

.38

11

3 0

.39

83

8 0

. 14

50

9 0

.14

34

5 0

.17

05

1

0.2

46

91

0

.00

80

1

0.0

02

81

0

.01

1 5

3 0

.00

59

4 0

.00

54

6 0

.00

39

1

-F

oss

ari

a (

Ba

kerl

ymn

ea

) sp

. FB

AK

0

.21

49

8 0

.38

78

3 0

.40

52

5 0

.14

52

1

0.1

43

61

0

.17

06

8 0

.25

26

2 0

.01

02

4 0

.00

49

8 0

.00

63

5 0

.00

08

8 0

.00

58

6 0

.00

60

5 0

.00

78

5

FBA

K

18

2

9

29

12

12

14

2

0

1 0 I 0 1 1 I -P

hysa

sp.

PH

YS

0.4

06

96

0.6

00

25

0.6

41

56

0.3

45

87

0.3

44

77

0.3

66

67

0.5

23

72

0.3

47

41

0

.34

84

2 0

.34

75

7 0

.34

67

7 0

.34

76

5 0

.34

71

5 0

.34

78

2 0

.34

47

0

PHY

S 3

0

39

41

2

7

27

2

8

36

2

7

27

'[

/

27

27

2

1

27

2

7

Page 41: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

w

+:>.

Tab

le 3

: C

odes

use

d to

eva

luat

e ch

arac

ter

evol

utio

n in

lym

naei

d ta

xa.

Sus

cept

ible

sp

ecie

s an

d kn

own

inte

rmed

iate

hos

ts w

ere

code

d w

ith

a va

lue

of o

ne.

Rad

ular

de

ntit

ion

was

cod

ed a

s a

zero

for

bic

uspi

d, o

ne f

or t

ricu

spid

, an

d tw

o fo

r a

mul

ti-c

uspi

d fi

rst

late

ral

toot

h in

the

rad

ula.

S

peci

es w

ere

code

d w

ith

a da

sh i

f no

in

form

atio

n w

as a

vail

able

for

a p

arti

cula

r tr

ait.

Lym

ne

a s

tag

na

lis

Fo

ssa

ria

ob

russ

a r

ust

ica

F

oss

ari

a p

arv

a

Sta

gn

ico

/a c

ap

era

ta 1

S

tag

nic

o/a

ca

pe

rata

2

Sta

gn

ico

la c

ap

era

ta 3

F

oss

ari

a t

run

catu

la

Sta

gn

ico

/a e

lod

es

3 S

tag

nic

o/a

e/o

de

s 1

Sta

gn

ico

/a e

xilis

S

tag

nic

o/a

ca

tasc

op

ium

1

Sta

gn

ico

la c

ata

sco

piu

m 2

S

tag

nic

o/a

em

arg

ina

ta

Sta

gn

ico

la e

lod

es

2 F

oss

ari

a (

Ba

kerl

ymn

ea

) sp

. P

hysa

sp.

t:.x

pen

men

tal

Ho

st c

,d,e

,t,g

? ? 0

Nat

ura

l H

ost

h,•

,j

0 0 1 0 0 0 0 1 0 0

Kad

ula

r d

en

titi

on

a,b

0 0 0 0 1 0 0 0 0 0 0 0 0 2

Ref

eren

ces:

a)

Bur

ch,

19

82

; b)

Cla

rke,

19

73

; c)

Dut

son

et

al.,

19

67

; d)

Grif

fiths

, 1

95

9;

e) G

riff

iths,

19

73

; f)

Kru

ll, l

933

a; g

) K

rull,

l 9

33

b;

h) S

inits

on,

19

30

; I)

Sin

itson

, 1

93

3;

and,

j)

Sw

ales

, 1

93

5.

Page 42: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Figure 1: Life cycle of Fascioloides magna courtesy of Stromberg et al. (1983) that

describes each stage in the development of the parasite: a) eggs are shed in feces of

infected deer, b) miracidia hatch from eggs in an aquatic environment, c) miracidia

penetrate snails and undergoes larval amplification, d) cercaria emerge from snail, and, e)

encyst to become metacercaria, a stage infective to deer and domestic livestock.

35

Page 43: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

"' "' 0

Ui Cl ..c: "C

03 c:

u Ill

"C ell ~

0

36

Page 44: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Figure 2: Map adapted from Griffiths (1962) documenting the occurrence of

Fascioloides magna in white-tailed deer in the United States.

37

Page 45: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...
Page 46: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Figure 3: One of 250 minimum-length trees produced by parsimony analyses employing

a heuristic search (100 replicates) and a tree-bisection-reconnection branch-swapping

algorithm. Trees were 900 steps, with a consistency index of 0.8778 and a retention

index of 0.8503. Bootstrap values (500 replicates) are shown above branches, while

branch-length values are below branches.

39

Page 47: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

224 L stagnalis

100 5 S. caperata 1

85 20 100

58 1

S. caperata 2

64 120 22 S. caperata 3

62 F. truncatu!a

73 5 S. e!odes3

46 0 0 S. e!odes1

1 3 S.e!odes2

2 1 S. emarginata

100 2 S. catascopium 2

135

5 s . exilis

1 74 0 S. catascopium 1

2

0 F. Bakerfymnea sp.

100 1 F. o. rustica

14 F. parva

-15::. Physasp.

40

Page 48: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Figure 4: Neighbor-joining dendrogram inferred using the log-determinent/paralinear

model, with bootstrap values (500 replicates) shown above branches.

41

Page 49: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

42

Page 50: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Figure 5: Topology from neighbor-joining analyses examining the evolution of radular

dentition. Tricuspid lymnaeid snails are located on dashed branches.

43

Page 51: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

.-----------L stagnalis

• - - - F. (o.} rusfica 1--~ I I ___ F. pa!Ycl I I L - - - - - • F. fnrlcatu/a

s. capt:Jrata 1

s. caperata 2

S.~tata3

S. slodes1

S. slodss2

S. sfTl8fginata

s. catascopiJm 1

a slodssS

s. sxi/is

S. catascopiJm 2

F. Bakslfymnsa sp.

Physasp.

44

OJ --1-· ro n ro s:: .-+ (fJ ::r-0.

0..

Page 52: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Figure 6: Topology from neighbor-joining analyses coded for known intermediate

hosts of Fascioloides magna. Host species are shown in boxes.

45

Page 53: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

.---------- L str:f}nafis

F. (o.) f1JStica

F.:pam

.....__-of F. tuncatuta•

$capeafa1

~eaB.6-

......__~s.~~

.-----1••"s.••.~•1u•••••••• •••:S.•IJkJ,dtis•4:·· y••·

Sema,gnata

.._ ___ s catascopiumi

-----~••S.•SkXles3>••• ....---- s. exilis

s. casscophm 2

F. Baketlymnea sp.

L---------- Ptffsa sp.

46

Page 54: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Appendix 1: Aligned data set of internal transcribed spacer sequences for lymnaeid

snails sampled that was used in parsimony and distance analyses.

47

Page 55: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

&

lltJE

i<U'

.3

!Cre

ated

by

Se-

All

B

EGH

l D

ATA

; OIME~3IONS

NTA

X=1

6 tlC

HA

R=1

368;

FO

Rt1A

T tl

I SS

I tiG

=?

GA

P=-

OA

TA

H'f'

E=o

tiA;

t1A

TR!i<

L.

stag

nali

s F

. o

. ru

sti

ca

F

. p

arl)

Q

s.

cap

era

ta

s.

cap

era

ta

2 s.

cap

era

ta

3 F.

tr

w1

catu

la

s.

elo

des

3 s.

el o

des

1 s.

ex

ilis

s.

ca

tasc

op

ium

s.

catascopiL~m

2 s.

em

arg

ina

ta

s.

elo

des

2 F.

b

. b

uli

mo

ides

P

hy

sa

sp.

L.

stag

nali

s F

. o

. rL~stica

F.

pa

rva

s.

ca

pera

ta

~

o,

cap

era

la

2 s.

ca

per

ata

3

F.

tru

ncalu

la

~

~-

elo

des

3 s.

el

od

es

1 s.

ex

ilis

s.

ca

tasc

op

ium

s.

ca

tasc

op

ium

2

s.

ema

rgin

ata

s.

elo

des

2 F

. b

. b

uli

mo

ides

P

hy

sa

sp.

L.

stag

nali

s F

. o

. ru

sli

ca

F.

pa

rva

ATT

--TTG

GTC

AG

TCTC

-AG

TCTC

AG

TCA

GTA

NC

TCC

ATG

-TC

CTT

--60-

TCC

CG

CG

GC

AG

GC

GTG

-CA

TGA

AG

CG

CTG

TC

AG

TTG

CTCC

TCG

TCTC

GTC

ACT

TGTC

AG

TCA

GTC

AG

TCA

GTC

TCG

TTG

&G

GCC

CCG

CGG

CAG

GCA

AD

JCA

TGA

AG

CGCT

GTC

A

GTT

GCT

CCTC

GTC

TCG

TCA

CTTG

TCA

GTC

AG

TCA

GTC

AG

TCTC

GTT

OO

GG

CCCC

GCG

GCA

GG

CAA

CGCA

TGA

AG

CGCT

GTC

A

GA

AA

AG

GG

AA

GA

AA

AC-

ATC

CTA

ACT

CAG

TCA

N-G

TCT-

-CA

GCT

C-G

G-C

CCCG

CGA

CAG

ACG

CG-C

ATG

AA

GCG

CCG

TC

AG

AA

AA

GG

GA

AG

AA

AA

C-A

TCCT

AA

GTC

AG

TCA

--GTC

T--C

AG

TT-G

GCC

CCCG

CGA

CAG

ACG

CG-C

ATG

AA

GCG

CCG

TC

ag

aaaag

gg

aag

aaaac-a

tccta

ag

tcag

tca--

gtc

t--c

ag

tt·-

gg

-ccccg

cg

acag

acg

cg

-catg

aag

cg

ccg

tc

aaccg

ag

cg

ttg

acla

ctt

lglt

gtc

tcag

tca--

gtc

ag

tcag

t·cag

g-c

cccg

cg

gcag

gcacg

-calg

aag

cg

ctg

tc

ag

cag

cta

ctg

lgtt

tttc

gtc

tcag

tcag

tctc

tgtc

cg

ctc

tct-

-gg

-ccccg

tgg

tcg

gcacg

-catg

aag

cg

tcg

cc

AGCAGCTACTGTGTTTTTCGTCTCAGTCAGTCTCTGTCCGCTC~:T--GG-CCCCGTGGTCGGCACG-CATGAAGCGTCGCC

NG

AC

GC

AC

CTG

TGTT

TT-C

GTC

TCA

GTC

AG

TCTC

TGTC

CG

CTc

;cT-

-GG

-CC

CC

GTG

GTC

GG

CA

CG

-CA

TGA

AG

CG

TCG

CC

A

GCA

GCT

ACT

GTG

TTTT

-CG

TCTC

AG

TCA

GTC

TCTG

TCCG

CTCT

CT--G

G-C

CCCG

TGG

TCG

GCA

CG-C

ATG

AA

GCG

TCG

CC

ag

cag

cta

ctg

tgtt

tl-c

glc

tcag

tcag

tctc

tgtc

cg

ct2

cct-

-gg

-ccccg

tgg

lcg

gcacg

-catg

aag

cg

lcg

cc

ag

cag

cta

ctg

tgtt

tt-c

gtc

tcag

tcag

tctc

tgtc

cg

cb

:tct-

-gg

-ccccg

tgg

tcg

gcacg

-catg

aag

cg

tcg

cc

AG

CAG

CCA

CTG

TGTT

TTTC

GTC

TCA

GTC

AG

TCTC

TGTC

CGT7

CTCT

--GG

-CCC

CGTG

GTC

GG

CACG

-CA

TGA

AG

CGTC

GCC

A

GC

AG

CTA

CTG

TGTT

TT-C

GTC

TCA

GTC

AG

TCTC

TGTC

CG

CfC

TCT-

-GG

-CC

CC

GTG

GTC

GG

CA

CG

-CA

TGA

AG

CG

TCG

CC

??

CCA

TGA

ACA

ATG

AA

ACG

TATC

AA

AA

CGTC

TCG

TCCG

ATG

TCTG

CCCG

GTC

GG

GA

CTT-

-GG

C--C

GCA

CGA

AG

CGCG

GTC

----

GC

GG

GG

C-T

GTG

AA

CG

C--

---T

ATG

TCTT

T-C

GG

GG

TAC

CTA

T---

CA

CTG

Ttltl

TCG

ATG

CG

AC

CC

AC

GG

TGA

CG

GC

GA

CAGC

GGGG

CCTG

C TA

TGTG

TCCG

CTTC

GTC

T TT

-CG

GG

GTA

CCTA

C---

TACT

GTC

CTCG

ATG

CGA

CCCA

C1JG

TGA

CGG

C G

ACA

GCG

GG

GCC

TGCT

ATG

TGTC

CGCT

TCG

TCTT

T-CG

GG

GTA

CCTA

C---T

ACT

GTC

CTCG

ATG

CGA

CCCA

CGG

TGA

CGG

C ---

-TC

GG

GG

C-T

GTG

AC

CG

C---

---A

TGTC

TTTG

CG

GG

GTA

CC

TATA

CTT

AC

TGTC

CTC

GA

TGC

GA

CC

CA

CG

GTG

GC

GG

C

----G

CG

GG

GC

-TG

TGA

CC

GC

------

ATG

TCTT

T-C

GG

GG

TAC

CTA

T-C

TTA

CTG

TCC

TCG

ATG

CG

AC

CC

AC

GG

TGG

CG

GC

--

--tc

gg

gg

c-t

gtg

accg

c--

----

atg

tctt

t-cg

gg

gta

ccta

t-ctl

actg

tcctc

gatg

cg

acccacg

gtg

gcg

gc

----

gcg

gg

gc-t

gtg

tccg

c--

---t

lcg

tctl

t-cg

gg

gta

ccta

t---

tactg

tcctc

galg

cg

acccacg

glg

acg

gc

----

gcg

gg

gc-t

gcg

accac--

----

atg

tctt

t-cg

gg

gta

ccla

t-cacaclg

lcclc

galg

cg

acccacg

gtg

acg

gc

----G

CG

GG

GC

-TG

CG

AC

CA

C---

---A

TGTC

TTT-

CG

GG

GTR

CC

TAT-

CA

CA

CTG

TCC

TCG

ATG

CG

RC

CC

RC

GG

TGA

CG

GC

---

-GC

GG

GG

C-T

GC

GA

CC

AC

------

ATG

TCTT

T-C

GG

GG

TRC

CTA

T-C

AC

AC

TGTC

CTC

GA

TGC

GA

CC

CR

CG

GTG

AC

GG

C

----G

CG

GG

GC

-TG

CG

RC

CA

C---

---A

TGTC

TTT-

CG

GG

GTA

CC

TAT-

CA

CA

CTG

TCC

TCG

ATG

CG

AC

CC

AC

GG

TGA

CG

GC

--

--g

cg

gg

gc-l

gcg

accac--

----

atg

tctl

t-cg

gg

gta

ccta

t-cacaclg

tcclc

gatg

cg

acccacg

gtg

acg

gc

----

gcg

gg

gc-t

gcg

accac--

----

alg

tctt

t-cg

gg

gla

ccta

t-cacactg

tcctc

gatg

cg

acccacg

glg

acg

gc

----G

CG

GG

GC

-TG

CG

RC

CA

C---

---A

TGTC

TTT-

CG

GG

GTR

CC

TRT-

CA

CA

CTG

TCC

TCG

RTG

CG

AC

CC

AC

GG

TGA

CG

GC

---

-GC

GG

GG

C-T

GC

GA

CC

AC

------

ATG

TCTT

T-C

GG

GG

TAC

CTR

T-C

AC

AC

TGTC

CTC

GA

TGC

GR

CC

CA

CG

GTG

AC

GG

C

TCG

ATC

GG

CTC

--G--R

CC

GC

TCC

CC

----T

GTT

T-C

GG

GG

TAC

CTA

G--T

GC

ATG

TCC

TCG

ATG

CG

AC

CC

AC

GG

TGA

CG

GC

TT

AG

AG

CC

CG

-TG

TG

CT

CG

CC

GG

G-T

CG

C--

-GA

C--

----

GG

TT

CA

AR

GR

GT

GG

CC

GG

CC

TC

AC

G--

----

----

----

-­TT

AG

AG

-CC

AG

TGTG

CTC

GC

CG

GG

-TC

GC

---G

AC

----

--G

GTT

CA

AA

GA

GTG

GC

CTG

C-T

C-G

GC

CTC

--C

TCG

GC

CTC

C

TTA

GA

G-C

CA

GTG

TGC

TCG

CC

GG

G-T

CG

C--

-GA

C--

----

GG

TTC

AA

AG

AG

TGG

CC

TGC

-TC

-GG

CC

TC--

CTC

GG

CC

TCC

Page 56: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

s.

cap

era

ta

s.

cape

rc1t

a 2

s.

cap

era

ta 3

F.

tr

un

catu

la

s.

elo

des

3 s.

elo

des

1 s.

ex

ilis

s.

cc

i tas

cop

i um

s.

ca

tasc

op

i Llm

2

s.

emar

gin

ata

s.

elo

des

2 F.

b

. b

uli

mo

ides

P

hy

sa s

p.

L.

stag

n•:

ilis

F.

o

. r1

Jsti

ca

F.

pc:1

rvG

s.

c:

aper

ata

1 .-. "·

cap

era

ta

2 C

· ._..

cap

era

ta 3

F.

tr

i.m

ca t1

J 1 a

s. e

lod

es

3 .j:

:..

s.

elo

des

1 \0

s.

ex

ilis

s.

ca

tasc

op

i w

n 1

s.

ca la

se op

i Llm

2

s.

emar

gin

ata

.-. .:>

. elo

des

2 F.

b

. b

uli

mo

ides

P

hy

sa s

p.

L.

sta9

nal is

F.

o.

ru

stic

a

F.

parv

ci

,.. .:>

. cap

era

ta

1 s.

C

•:ip

erat

a 2

C· ·--'·

cape

r•:i

lci

3 F.

tr

un

ca tt

i la

.-. ·=>·

elo

des

3 s.

el o

des

1

s.

e)d

1 is

s.

c•

:i t.

:isc

op i

Llm

s.

c:at

asc:

opiu

m

2 :3

. em

m··g

i n

a ta

.~ "'·

elo

des

2 F.

b

. b

uli

mo

ides

TTA

GA

GC

CC

GA

TGTG

CTC

GC

CG

GG

-TC

GC

---G

AC

------

GG

TAC

AA

FDA

GTG

GC

CG

GC

-TC

-GA

C-T

CG

GC

TC-A

GC

TA­

TTA

GA

GC

CC

GT-

GTG

CTC

GC

CG

GG

-TC

GC

---G

AC

------

GG

TTC

AA

AG

AG

TGG

CC

GG

C-T

C-G

AC

-TC

GG

CTC

-AG

CT-

­t

tcig

cigc

:cc:

g t-

g tg

c: tc

:gc:

c:gg

g-tc

gc-

--gc

ic:-

---

--gg

t tc

:mug

ag tg

9 c:

c:9•

;ic-t

c:-g

ac:-

tc:-

---

--ag

e t -

-ttagagcccgt-gtgctcgccggg-tcgc---gac------ggttca~agagtggccggc-tt-ggc-tc------agcl-­

t ta

gag

cccg

a-g

tgc

tc:•

;iccg

gg-

tcg

c---

gm::-

---

--g

g t

tco:

iag•

:ig t

gg

ccg

ac--

aaag

c-

tc-

---

----

---

-TTAGAGCCCGA-GTGCTCGCCGGG-TCGC---GAC------GGTTC~AAGAGTGGCCGAC--AAAGC-TC-----------­

TT

AG

RG

CC

CG

R-G

TG

CT

CG

CC

GG

G-T

CG

C--

-GR

C--

----

GG

TT

CA

AA

GA

GT

GG

CC

GR

C--

AA

AG

C-T

C--

----

----

-­TT

AG

AG

CCCG

A-G

TGCT

CGCC

GG

G-T

CGC-

--G

AC

----

--G

GTl

CAA

AG

AG

TGG

CCG

AC-

, -A

AA

GC

-TC

----

----

----

t l•

:iga

gc:c

cga-

g tg

c tc

gcc

gg

g-lc

gc--

-gac--

----

gg

ttcc

mag

ag tg

9cc:

gm::

--aa

•:ig

c-le

---

----

---

--t t

ag•:

igcc

cga-

g lg

c tc

gcc

gg

g-

tcg

c---

gac--

----

99

! tca

aag

ag lo

;ig c

c9•:

ic--

cma9

c-tc

---

---

---

---

TT

AG

AG

CC

CG

A-G

TG

CT

CG

CC

GG

G-T

CG

C--

-GA

C--

----

GG

fTC

AA

AG

AG

TG

GC

CG

AC

--A

AA

GC

-TC

----

----

---­

TT

AG

AG

CC

CG

A-G

TG

CT

CG

CC

GG

G-T

CG

C--

-GA

C--

----

G6T

TC

AA

AG

AG

TG

GC

CG

AC

--A

AA

GC

-TC

----

----

---­

-TA

GA

GC

------

TGC

GA

A-C

GG

GC

TCG

CC

GG

GTC

GC

GC

TAG

JTTC

AA

AG

AG

TGG

CTC

GG

-TC

CG

GTG

TTT-

CG

CC

------

----

----

----

----

----

----

----

----

----

----

----

GT

CG

GC

GA

CC

GC

CC

CG

CA

C-T

CG

TC

-CT

CG

TC

CA

CG

TC

CA

GCCC

CAGC

TCTC

GGTG

GGTC

GGTC

GGAC

GAG

AG

----

TCA

A-G

CAG

GCG

ACC

GCC

CCG

TTG

-TCJ

:HC-

CACA

CACG

TCCG

CA

GCC

CCA

GCT

CTCG

GTG

GG

TCG

GTC

GG

ACG

AG

TG---

-TCA

A-G

CAG

GCG

ACC

GCC

CCG

TTG

-TCG

TC-C

ACA

CACG

TCCG

C

AG

----

--C

TCTC

CTC

GA

GC

CA

GA

----

GT-

CC

GTG

--TC

A--

GTC

GG

CG

AC

CG

CC

CC

CTG

AC

CC

GTC

----

-GTC

G-A

GA

C

AG

----

--C

TCTC

CTC

GA

GC

CA

GA

----

GT-

CC

GTG

--TC

A--

GTC

GG

CG

AC

CG

CC

CC

CTG

AC

CC

GTC

----

-GTC

G--

GA

ca

get -

cag

e tc

agc

tctc

ccc-g

a--

---

-gcc

-ag

agtc

c9a9

lc•J

atcg

gcg

•:ic

cgcc

ccc

tg•:

icc:

-c:g

tc•;i

tcg

--g

a

c9

----

----

----

----

----

a9

a--

----

----

----

----

-gtc

ag

ccg

gcg

ac:c

9cccc--

----

--g

ccg

tcg

---­

-aaccc-a

cctc

---9

tg--

tgag

t---

-gtg

cct-

----

----

9tc

gg

c:g

cic

cg

ccecg

att

-ttg

tc-c

gala

aet-

c9

a

-AA

CC

C-A

CC

TC--

-GTG

--TG

AG

T---

-GTG

CC

T---

----

--G

TCG

GC

GA

CC

GC

CC

CG

ATT

-TTG

TC-C

GA

TAA

CT-

CG

A

-AA

CC

C-A

CC

TC--

-GA

G--

TGA

GT-

--TG

TGC

CT-

----

----

GTC

GG

CG

AC

CG

CC

CC

GA

TT-T

TGTC

-CG

ATA

AC

T-C

GA

-A

AC

CC

-AC

CTC

---G

AG

--TG

AG

T---

TGTG

CC

T---

----

--G

TCG

GC

GA

CC

GC

CC

CG

ATT

-TTG

TC-C

GA

TAA

CT-

CG

A

-aaecc-a

cclc

---g

tg--

tgag

t---

-gtg

ec:t

----

----

-gtc

:gg

cg

ac:c

gcc:c

cg

att

-ttg

tc:-

cg

ala

act-

cg

a

-aaeec-a

cctc

---g

tg--

tga9

t---

-9tg

cct-

----

----

gtc

:gg

cg

accg

ccc:c

:gatt

-ttg

tc-e

gata

act-

cg

a

-AA

CC

C-A

CC

TC--

-GTG

--TG

AG

T---

-GTG

CC

T---

----

--G

TCG

GC

GA

CC

GC

CC

CG

ATT

-TTG

TC-C

GA

TAA

CT-

CG

A

-AA

CC

C-A

CC

TC--

-GA

G--

TGA

GT-

--TG

TGC

CT-

----

----

GTC

GG

CG

AC

CG

CC

CC

GA

TT-T

TGTC

-CG

ATA

AC

T-C

GA

--

----

----

----

---G

GG

CC

G--

----

----

--G

GC

GA

CC

GC

CC

CG

CT

A--

TG

TC

TC

GA

AA

GT

GC

C--

GTC

CC

AC

AA

AC

TGTC

AG

AA

G-T

CTA

AC

GG

GA

GG

TTA

CG

TCC

GG

GG

TAC

CTA

TGC

CC

TG--C

AC

GC

G-T

-GC

-TTG

C---

--­G

----

----

----

AA

AG

GG

AG

GT

T-T

AT

CA

AA

----

---C

CG

GG

GT

RC

CT

AT

GC

CC

TG

CC

CG

CG

CT

C--

GC

---T

CT

C--

-­G

----

----

----

AA

AG

GG

AG

GT

TG

TA

TC

AA

A--

----

-CC

GG

GG

TA

CC

TA

TG

CC

CT

GC

CC

GC

GC

TC

--G

C--

-TC

TC

---­

AA

ATG

CG

CA

CA

CA

AA

AG

AG

GA

GG

AG

GTT

CG

T----

----C

CG

GG

GTA

CC

TATG

CC

CTG

CC

A---

C---

-GC

-ATG

CTC

---­

AA

ATG

CA

CA

CA

CA

AA

AG

AG

GA

GG

AG

GTT

CG

T----

----C

CG

GG

GTA

CC

TATG

CC

CTG

CC

A---

C---

-GC

-ATG

CTC

---­

aci1

:itgc

:cic

aclla

aaaa

•;ia

ggag

ga9•

;i t l

eg l-

----

---c

cgg

gg

tacc

ta tg

ee e

tgec

ci--

-e--

--g

e-a

tge

le-

--

--c

aacia

cia

cic

--ag

gag

9tt

a9

t---

----

-c:c

gg

gg

tacela

t9eeet9

cc:-

-eg

eg

cte

gc:t

ct-

--eg

e-­

c--

----

----

----

-ag

gag

gtt

----

eg

t---

----

-ce9

gg

gta

ccta

lgecet9

ccl9

elc

gcll

ge-t

tgctc

gctt

C

----

----

----

---A

GG

AG

GT

T--

--C

GT

----

----

CC

GG

GG

TA

CC

TA

TG

CC

CT

GC

CT

GC

TC

GC

TT

GC

-TT

GC

TC

GC

TT

C

----

----

----

---A

GG

AG

GT

T--

--C

GT

----

----

CC

GG

GG

TA

CC

TA

TG

CC

CT

GC

CT

GC

TC

GC

TT

GC

-TT

GC

TC

GC

TA

C

----

----

----

---A

GG

-GG

TT

----

CG

T--

----

--C

CG

GG

GT

AC

CT

AT

GC

CC

TG

CC

TG

CT

CG

CT

TG

C-T

TG

CT

CG

CT

A

c--

----

----

----

-ag

gag

glt

----

cg

t---

----

-cc:g

9g

gta

ccta

lgcect9

cctg

clc

gctt

gc-t

tgctc

gctt

c--

----

----

----

-a9

ga9

9tt

----

cg

t---

----

-ce9

gg

gta

ccta

lgccc:t

gectg

ctc

gctl

gc-t

tgc:t

e9

ctt

C

----

----

----

---A

GG

AG

GT

T--

--C

GT

----

----

CC

GG

GG

TR

CC

TA

TG

CC

CT

GC

CT

GC

TC

GC

TT

GC

-TT

GC

TC

GC

TT

C

----

----

----

---A

GG

AG

GT

T--

--C

GT

----

----

CC

GG

GG

TA

CC

TA

TG

CC

CT

GC

CT

GC

TC

GC

TT

GC

-TT

GC

TC

GC

TA

Page 57: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Ph

yso

sp

.

L.

sto

gn

ali

s F

. o

. ru

stic

o

F. par~va

s.

cap

era

ta

s.

ca

pera

tQ

2 s.

co

pera

ta

3 F

. tr

w1

cotu

lo

s.

elo

des

3 s.

elo

des

1 s.

ex

ilis

s.

co

losc

op

ium

1

s.

colo

sco

piu

m

2 c ~. e~Jrginato

s.

elo

des

2 F

. b

. b

uli

mo

ides

Ph

yso

sp

.

~

L.

sto

gn

ali

s 0

F.

o.

rust

ico

F

. pat~va

c 0.

co

pero

to

1 s.

cap

era

ta

2 s.

co

pero

ta

3 F

. tr

Ltt

1ca

tula

s.

elo

des

3 s.

elo

des

1 s.

ex

ilis

o

. ca

tasc

op

ium

s.

ca

lasc

op

iL'm

2

s.

emar

gin

ato

~-

elo

des

2 F

. b

. b

uli

mo

ides

P

hy

so

sp.

L.

stag

nali

s F

. o

. rL~stica

F.

pat~va

o.

capet~ata

s.

cap

era

ta

2 s.

ca

pera

ta

3 F

. tr

un

catu

la

s.

elo

des

3 s.

el

od

es

l

----

----

--G

OT

---

----

-CA

AG

GG

GT

AC

CT

GC

GT

CT

CG

TC

CC

GC

GA

GG

GA

----

----

----

------

-----A

TGC

AG

GG

TGG

TAG

CTC

CA

GC

TTA

GC

TAG

CTC

GTC

-AC

TT-T

GG

CC

GC

GA

GG

TTC

AA

AG

AG

TC-G

GC

C-G

T G

CG

CTG

GC

AG

CA

---G

GG

T-G

GTA

GC

TCC

ATC

A---

--AG

CTC

GA

T--C

TT-T

GG

CC

GC

GA

GG

TTC

AA

AG

AG

AC

-GA

CC

-GT

GC

GC

TGG

CA

GC

AT-

-GG

GT-

GG

TAG

CTC

CA

TCA

-----A

GC

TCG

AT-

-CTT

-TG

GC

CG

CG

AG

GTT

CTA

AA

GA

GA

-CG

AC

CG

T GDJ-TGCCTGCA---GGGC-GGTAGCTCCAGCA--------TCGTTTACTTAT~CCGCGAGGTTCAAAGAGTC-GACC-GC

GC

G-T

GC

CTG

CA

---G

GG

C-G

GTA

GC

TCC

AG

C--

----

---T

CG

TTTA

CTT

-TG

GC

CG

CG

AG

GTT

CA

AA

GA

GTC

-GA

CC

-GC

g

cg

-tg

cctg

ca--

-gg

gc-g

glo

gctc

cag

c--

----

---l

cg

ttta

ctt

-tg

gccg

cg

ag

gll

caaag

ag

lc-g

occ-g

c

gcc--

g--

-gca--

-ag

gc-g

gta

gctc

co

gc--

----

---t

cg

ct-

o-t

t-lg

gccg

cg

ag

gtt

co

ao

gag

ac-g

occ-g

t g

cc-t

gcctg

ca--

-gg

gt-

gg

tag

ctc

co

gc--

----

---t

cg

tt--

ctt

-tg

gccg

cg

og

glt

cao

ag

og

tc-g

gcc-g

l GCC-TGCCTGCA---GGGT-GGTAGCTCCAGC---------TCGTT--CT~TGGCCGCGAGGTTCAAAGAGTC-GGCC-GT

GC

C-T

GC

CTG

CA

---G

GG

T-G

GTA

GC

TCC

AG

C--

----

---T

CG

TT--

CTT

-TG

GC

CG

CG

AG

GTT

CR

AA

GA

GTC

-GG

CC

-GT

GC

C-T

GC

CTG

CA

---G

GG

T-G

GTA

GC

TCC

AG

C--

----

---T

CG

TT--

CTT

-TG

GC

CG

CG

AG

GTT

CA

AA

GA

GTC

-GG

CC

-GT

gcc-l

gcctg

ca--

-gg

gl-

gg

lag

ctc

cag

c--

----

---l

cg

lt--

clt

-tg

gccg

cg

ag

glt

caaag

ag

tc-g

gcc-g

t g

cc-t

gcctg

ca--

-gag

t-g

gla

gclc

cag

c--

----

---t

cg

tt--

ctt

-lg

gccg

cg

ag

gtt

caaag

ag

tc-g

gcc-g

t G

CC

-TG

CC

TGC

A--

-GG

GT-

GG

TAG

CTC

CA

GC

----

----

-TC

GTT

--C

TT-T

GG

CC

GC

GA

GG

TTC

AA

AG

AG

TC-G

GC

C-G

T G

CC

-TG

CC

TGC

A--

-GG

GT-

GG

TAG

CTC

CA

GC

----

----

-TC

GTT

--C

TT-T

GG

CC

GC

GA

GG

TTC

AA

AG

AG

TC-G

GC

C-G

T ---

--TG

GG

GC

GG

GA

GC

TCC

AG

CTT

CC

ATA

GC

A---

------

--GG

CC

GC

GA

GG

TTC

AA

AG

AG

TCC

GA

CC

CG

C

-GC

CA

TTC

CC

-GC

TCTC

---G

ATG

GC

AC

CG

-GTC

GC

CG

CC

CC

GG

GC

CTC

CC

AC

AA

----

--TT

TTTT

CC

TTTA

-CG

AA

A--

­T

GC

CC

--A

CT

T--

----

----

----

-GT

CG

-GT

CG

CC

GC

CC

CG

GG

CC

TC

CT

TA

AA

----

--T

TT

7??7

????

7??7

?7??

??

TG

CC

C--

AC

TT

----

----

----

---G

TC

GA

GT

CG

CC

GC

CC

CG

GG

CC

TC

CT

TA

AA

----

--T

TT

?7?7

???

7??

?7

?7??

77

-GC

CA

-TA

CA

TGC

TCTC

---G

TTG

GC

R-C

G-G

TCG

CC

GC

CC

CG

GG

CC

TCC

TAA

AA

----

--TT

T---

CA

TTTA

-CC

AA

AA

AA

-G

CC

A-T

AC

ATG

CTC

TC--

-GTT

GG

CA

-CG

-GTC

GC

CG

CC

CC

GG

GC

CTC

CTA

RA

A--

----

TTT-

--C

ATT

TA-C

CA

AA

AA

A

-gcca-t

acalg

ctc

tc--

-gtg

gg

ca-c

g-g

tcg

ccg

ccccg

gg

cctc

cta

aQ

a--

----

ttt-

--cctt

ta-c

cag

aa--

-gcctl

aaclt

gctc

lctc

cg

lgg

gcaacg

-gtc

gccg

ccccg

gg

cctc

cla

aaa--

----

tll-

--ccll

ta--

----

---

-gccac-a

ctt

gctc

tc--

-gatg

gctt

cg

-gtc

gccg

ccccg

gg

cclc

cta

caa--

----

ttt-

--cctt

tt-c

co

aa--

--G

CC

AC

-AC

TTG

CTC

TC--

-GA

TGG

CTT

CIJ

-GT

CGCC

GCC

CCG

GG

CCTC

CTA

AA

A--

---

-TT

T--

-CC

TTTT

TCC

AA

A--

--G

CC

AC

-AC

TTG

CTC

TC--

-GA

TGG

CTT

CG

-GTC

GC

CG

CC

CC

GG

GC

CTC

CTA

AA

A--

----

TTT-

--C

CTT

TTTC

CA

AA

---

-GC

CA

C-A

CTT

GC

TCTC

---G

ATG

GC

TTC

G-G

TCG

CC

GC

CC

CG

GG

CC

TCC

TAA

AA

----

--TT

T---

CC

TTTT

TCC

AA

A--

--g

ccat-

actt

gctc

lc--

-gatg

gctt

cg

-glc

gccg

ccccg

gg

cctc

cta

aaa--

----

ttt-

--cctl

tttc

caaa--

--g

ccac-a

clt

gctc

tc--

-gatg

gctt

cg

-glc

gccg

ccccg

gg

cclc

cta

aaa--

----

ttt-

--cctt

lllc

caaa--

--G

CC

AC

-AC

TTG

CTC

TC--

-GA

TGG

CTT

CG

-GTC

GC

CG

CC

CC

GG

GC

CTC

CTA

AA

A--

----

TTT-

--C

CTT

TT-C

CA

AA

---

-GC

CA

T-R

CTT

GC

TCTC

---G

ATG

GC

TTC

G-G

TCIJ

CC

GC

CC

CG

GG

CC

TCC

TAA

AA

----

--TT

T---

CC

TTTT

TCC

AA

A--

---

----

----

----

----

----

TC

GC

GT

CG

----

GC

CG

CC

CC

TT

GT

CC

TC

AC

GT

TA

CA

TT

TT

TT

---C

CA

TT

TT

--G

AA

CG

C

CA

CA

AA

A--

--TT

AA

TTTC

AA

AA

AC

GC

-CG

ATT

-AG

G-T

C--

---A

GG

C--

-CA

CG

AA

CA

CG

AC

CA

G--

----

TCG

GC

TGG

T ??

"???

????

"???

????

????

????

????

????

????

????

????

????

"???

????

????

????

????

??'?

????

????

???"

? ??

????

????

????

??"?

????

"???

????

??'?

'???

????

?'??

????

????

????

????

????

????

????

?'??

???"

???'

???'

? C

A-A

AR

A--

---T

A-T

TT

TT

T-A

AT

CA

AT

CG

AC

TC

GG

-TC

G--

--T

GG

C--

AT

AC

GA

-TC

--G

G--

----

---T

CG

---T

GT

C

A-A

AA

A--

---T

A-T

TT

TT

T-A

AT

CA

AT

CG

AC

TC

GG

-TC

G--

--T

GG

C--

AT

AC

GA

-TC

--G

G--

----

---T

CG

---T

GT

ca-a

aat-

----

la-t

tttt

ltaatc

aatc

gactc

gg

-tcg

----

tgg

c--

ata

cg

a-t

c--

gg

----

----

-tcg

---t

gt

ata

aaacg

aaalt

a-t

lltt

laaaaatg

tgtg

-lcg

gclc

gatc

glg

gc--

acac--

----

----

----

----

----

----

­cl-

aaaala

aa-a

latt

t---

--atc

gtt

gaaa--

----

----

----

gc--

ag

tcg

actc

gag

gcaatc

gag

llcg

gtc

tgt

CT

-RA

AA

GA

AA

-TA

-TT

T--

---R

TC

GT

TG

AA

A--

----

----

----

GC

--A

GT

CG

AC

TC

GA

GG

CA

AT

CG

AG

TT

CG

GT

CT

GT

Page 58: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Vi

,__.

S.

exilis

S

. cc

1 l.

asc

op

i um

S

. ca

tasco

piu

m

2 S

. e

ma

rgin

ata

S

. e

lod

es

2 F

. b

. b

ulim

oid

es

Phy

s•:i

sp

.

L.

s lll

•;in

a l is

F.

o

. rl

is ti

ca

F.

p•

:irvc

1 s.

e

clp

erc

lta

s.

c

Gp

erl

J ti

:1

2 s.

ci:

ipe

rlllll

3 F.

tr

un

ea

tula

s ..

e

lod

es

3 s.

el o

des

1

,-.

.::..

e>'.i

l is

S

. ca

l.•:is

cop

iw1

1

S.

ca

tasco

piu

m

2 S

. em

o:irg

in•:

ito:i

~;.

elo

des

2 F

. b

. t~limoides

Phi

,Jsa

sp

.

L.

s l_

o:ig

na l

is

F.

o.

rtis

ti

ca

F.

pa

rva

:3

. e

o:ip

era

l•:i

s.

eape

r·at

.o:i

2 '.:

;. e

•:ip

er•

:ita

3

F.

tru

nc•:

i tu

la

s.

elo

de

s

3 :3

. el o

des

1

:3.

e)d

lis

·=·

co:i

b:is

c:o

p i

um

1 ~"

·=· ~··

c•:i

t•:i

sco

p i

•Jm

2 s.

em

0 :ir9

i n

a t

1 :i

s.

elo

de

s

2 F.

b

. b

ulim

oid

es

f'h•,J

SCl

Sp

.

L.

sto

:ig

na

lis

F.

o.

rusti

ca

F.

p

arv

a

CT-

AA

AA

GA

AA

-TA

-TTT

----

-ATC

GTT

GA

AA

----

----

----

--3C

--A

GTC

GA

CTC

GA

GG

CR

ATC

GA

GTT

CG

GTC

TGT

CT

-AA

AA

GA

AA

-TA

-TT

T--

---A

TC

GT

TG

AA

A--

----

----

----

GC

--A

GT

CG

AC

TC

GA

GG

CA

AT

CG

AG

TT

CG

G--

--­

c t-

acm

ag

aa

a-

ta-

t t t-

--

--a

tc9

t t9

cma

--

--

--

--

--

--

-· g

c--

ag

teg

ae

teg

a•;

ige

a•:

i teg

cl•;J

t_ t

eq

g te

tg t

ct-

aa

aa

ga

aa

-h

1-

t t t-

--

--a

teg

t tg

aa

a-

--

--

--

--

--

---

ge

--a

g le g

ae

teg

ag

ge

a•:

i lcg

ag

t tc

9g

tc t9

t C

T-A

AA

AG

AA

A-T

A-T

TT--

---A

TCG

TTG

AA

A--

----

----

----

GC

--A

GTC

GA

CTC

GA

GG

CA

ATC

GA

GTT

CG

GTC

TGT

CT-

AA

AA

GA

AA

-TA

-TTT

----

-ATC

GTT

GA

AA

----

----

----

--G

C--

AG

TCG

AC

TCG

AG

GC

AA

TCG

AG

TTC

GG

TCTG

T A

TT

GT

GC

R--

----

-TT

TT

TT

CR

CT

TT

TA

CG

AA

-CG

GC

TG

TC

----

-GG

AC

AG

GA

GC

GC

CG

----

----

----

-CG

GT

C--

-

GCA

AG

------

-T-C

AA

ATA

AA

AA

AA

GTC

TATA

ACT

TTG

AG

CGH

GG

ATC

ACT

CGG

CTCG

TGCG

TCG

ATG

AA

GA

GCG

CAG

CC

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

n?

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

?

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

C-

GA

AA

A---

--TA

CAA

A---

---A

AG

TCTA

TAA

CTTT

GA

GCG

GTG

GA

TCA

CTCG

GCT

CGTG

CGTC

GA

TGA

AG

AG

CGCA

GCC

C-

GA

AA

A---

--TA

CAA

A---

---A

AG

TCTA

TAA

CTTT

GA

GCG

GTG

GA

TCA

CTCG

GCT

CGTG

CGTC

GA

TGA

AG

AG

C:G

CAG

CC

e-g

a•:

iaa

---

--

taca

aa

--

--

--

aa

g te

ta ta

ac t

t tg

ag

cgg

tgg

a te

ae

teg

ge

leg

tgcg

tcg

a tg

a•:

iga

gcg

ea

gcc

--

ga

aa

aa

----

--ca

aa

a--

ca

aa

ag

t-ctt

at?

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

?

cg•;

i•:ia

---

--

--

taca

a0 :i

---

-a•

J•:ia

g t

t ta

la•:

ic t_

t_ tg

og

c9

g tg

ga

tca

c I.

cg g

c tc

g l.

gc9

tci;i

o:i t

9a•:

igo:

igcg

c1:ig

cc

CGG

AA

------

-TA

CAA

A--A

AA

AA

AG

TTTA

TAA

CTTT

G'IG

CGG

TGG

ATC

ACT

CGG

CTCG

TGCG

TCG

ATG

AA

GA

GCG

CRG

CC

CGG

AA

------

-TA

CAA

A---

AA

AA

AG

TTTA

TAA

CTTT

GA

GCG

GTG

GA

TCA

CTCG

GCT

CGTG

CGTC

GA

TGA

AG

AG

CGCA

GCC

---

AA

------

-TA

CAA

A---

AA

AA

AG

TTTA

TAA

CTTT

6AG

CGG

TGG

ATC

ACT

CGG

CTCG

TGCG

TCG

ATG

AA

GA

GCG

CAG

CC

co;ig

•:ia

---

--

--

to:ic

o:io

:i•:i-

-o:io

:io:ia

o:ia

g t

t to

:i ta

act

t tg

o:ig

cgg

tggo

:i l.

cac

tcg

gc tc

o;i t

9c9

tcg

•:i t

9oog

i:igc

gco:

i1;ic

c cg

ga

0 :i--

--

--

-ta

0 :m1

a--

ao:io

:iao:

io:ig

t t_ ta

to:ia

c t

t tg

ag

c9

g t9

9a

tco

c tc

g •;J

C tc

g tg

cg

tcg

o t9

o:ia

g1:i9

cgc1

:igcc

CA

GA

A---

----T

ACA

AA

----A

AA

AG

TTTA

TAA

CTTl

GA

GCG

GTG

GA

TCA

CTCG

GCT

CGTG

CGTC

GA

TGA

AG

AG

CGCA

GCC

CG

GA

A---

----T

ACA

AA

-AA

AA

AA

AG

TTTA

TAA

CTTl

GA

GCG

GTG

GA

TCRC

TCG

GCT

CGTG

CGTC

GA

TGA

AG

AG

CGCA

GCC

--G

AA

AA

AA

AA

ATC

CAA

A---

------

--TA

CAA

CTTT

GG

GCG

GTG

GA

TCA

CTCG

GCT

CGTG

CGTC

GA

TGA

AIJ

AG

CGCA

GCC

AGCT

GCGT

GAAT

TAAT

GTGA

ATTG

CAGA

RCAC

ATTG

RRCA

TCGA

TATC

TTGA

ACGC

ATAT

GGCG

GCCT

CGGG

TCAA

TCCC

GG

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

???"

? AG

CTGC

GTGA

ATTA

ATGT

GAAT

TGCA

GAAC

ACAT

TGAA

CATC

GATA

TCTT

GAAC

GCAT

ATGG

CGGC

CTCG

GGTC

AATC

CCGG

AG

CTGC

GTGA

ATTR

ATGT

GAAT

TGCA

GAAC

ACAT

TGAA

CATC

GATA

TCTT

GAAC

GCAT

ATGG

CGGC

CTCG

GGTC

AATC

CCGG

o

gctg

cg

lgo

:io

:itt

aa

tgtg

o:i

ollg

co

:ig

aa

ca

ca

ll9

aq

ca

tcg

ato

:itc

ttg

aa

cg

ca

to:i

t9g

cg

gcctc

gg

9tc

o:i

ol.

cccg

g

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

?•/

o

:ig

ct9

c9

tgo

:ia

tto

o:i

t9tg

o:i

ott

gco

go

oco

ca

ltg

oo

cq

lc9

o:i

to:i

tclt

go

:io

c9

co

:ilo

:itg

gcg

9cclc

gg

gt_

ca

o:i

tcccg

g

AGCT

GCGT

GAAT

TAAT

GTGA

RTTG

CAGA

ACAC

ATTG

AACA

TCGA

TATC

TTGA

ACGC

ATAT

GGCG

GCCT

CGGG

TCAA

TCCC

GG

AGCT

GCGT

GAAT

TART

GTGA

ATTG

CRGR

ACAC

ATTG

AACA

TCGA

TATC

TTGA

ACGC

ATAT

OGCG

GCCT

CGGG

TCAA

TCCC

GG

AGCT

GCGT

GAAT

TAAT

GTGA

ATTG

CAGA

ACAC

ATTG

AACA

TCGA

TATC

TTGA

ACGC

ATAT

GGCG

GCCT

CGGG

TCAA

TCCC

GG

IJl;;J

c l•;

JC9

lgC

lCl l

lo

o t_

g l.g

o:io:

i t t9

CoJ

•;J•J

aCQ

CO

t t

90::1

aca

tcgo

:i lC

l le

t tg

1J1J

CQ

C•J

lq

l_g

gcg

gcc

lc9g

1;;1

lcQ

oJ lc

cc9

g

•:ig

c t•

;icg

l•;JC

l•J t_

lo•J

t•;J

tga•

:i I_

tgca

•;ia

o:ic

o:ic

a t

tg•:

ioco

k:•

;i•:it

a tc t

tgao

:ic•;

ica

to lo

;i•;ic

ggcc

teo;

Jg•J

tco

•J tc

cc•;J

•;J

AGCT

GCGT

GRAT

TAAT

GTGA

ATTG

CAGR

ACAC

ATTG

AACA

TCGA

TATC

TTGA

ACGC

ATAT

GGCG

GCCT

CGGG

TCAA

TCCC

GG

AGCT

GCGT

GAAT

TAAT

GTGA

ATTG

CAGA

RCAC

ATTG

AACA

TCGA

TATC

TTGR

ACGC

ATAT

IJGCG

GCCT

CIJG

GTCA

ATCC

CGG

AGCT

GCl3

TGAA

TTAA

TGTG

AATT

GCAG

AACA

CATT

GAAC

ATCG

ATAT

CTTG

AACl

3CAC

ATIJG

CGGC

CTCG

GGTC

CATC

CCGG

GG

CCA

CGCC

CGTC

TGRG

GG

TCG

GCT

RGTC

ACR

A-G

CAA

TCG

TGTC

CCG

TTTG

C---T

CTCR

CGA

AA

CCG

G-A

GCC

TTTT

CTC

????????????????????????????????????????????????????????????????"?

?????????????????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

??

Page 59: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

s.

cop

er a

tc1

1 s.

cc

1p

erat

a 2

s.

cop

era

lo 3

F.

lr

un

co lL

l lo]

c:

.;

.,,

elo

des

3 s.

elo

des

1 s.

e:

:<i 1

is

s.

C•]

tosc

op

i '-H

TI

1 ,,. .::

>.

coto

sco

piu

m 2

s.

em

ar•;

i in•

] ta

:3.

elo

des

2 F.

b

. b

ul

imo

ides

P

hy

sa

sp.

L.

s to

•;in

o l i

s

F.

o.

nis

tiea

F.

por·<

)O

s.

cap

era

la

1 s.

C

l]pe

ra lo

] 2

s.

cap

era

ta 3

F.

tn

mcatu

la

s.

elo

des

3 V

t s.

elo

des

1 1

0

,.-.

ex

ilis

.::

>,

,.-. ·=>·

co

tase

op

i um

1

s.

co] t

asco

p i

um

2 s.

em

arg

ino

ta

s.

elo

des

2 F.

b

. bt

ll i

mo

ides

Ph

•ois

a sp

.

L.

stag

nali

s F.

o

. rt

lSti

Co]

F.

pm

-·o.Ja

.-

co]p

eral

o]

·=-·

s.

co]p

erat

a 2

s.

c•]p

er•]

ta

3 F.

tr

1.m

catu

lo

s.

elo

des

3 :;

. elo

des

1 s.

ex

ilis

·=

CO:l l

o]SC

Op

i 1.HT

I s.

C•

] tas

cop

i um

2

s.

emar

•;i i

no

lo]

s.

elo

des

m

2 F.

b

. b

uli

mo

ides

GG

CCA

CGCC

CGTC

TGA

GG

GTC

GG

CTA

GTC

ACA

AA

GCA

ATC

GTG

TCC-

---TG

TAG

CTCT

CGCA

AA

ACT

GG

-AG

CCG

TCTC

-C

GG

CCA

CGCC

CGTC

TGA

GG

GTC

GG

CTA

GTC

ACA

AA

GCA

ATC

GTG

TCC-

---TG

TAG

CTCT

CGCA

AA

ACT

GG

-AG

CCG

TCTC

-C

ggcc

:acg

cc:c

g tc

tgag

gg

tcg

gc

tog

tc:a

co:m

agca

a tc

:g lg

tcc--

--t_g

tag

c tc

tcg

cacm

oc

tgg

-a9

ccg

tc tc

:-c

????

????

????

????

????

??g

c to

g tc

aecm

ag

ea t

lco;

i tg

tee--

-t

tgeo

Jge

tc tc

o;ic

aoaa

oecg

o]Q

o;JC

C t_

t_--

--g

g

gceacg

cccg

tctg

og

gg

lcg

gcla

gtc

aeaaag

caalc

gtg

tec--

-tt9

co

9ctc

tcg

ca9

gaceg

9-a

gectt

----

c

GG

CCA

CGCC

CGTC

TGA

GG

GTC

GG

CTA

GTC

ACA

AA

GCA

ATC

GTG

TCC-

--TTG

CAG

CTCT

CGCA

GG

ACC

GG

-AG

CCTT

----C

G

GCC

ACG

CCCG

TCTG

AG

GG

TCG

GCT

AG

TCA

CAA

AG

CAA

TCG

TGTC

C---T

TGCA

GCT

CTCG

CAG

GA

CCG

G-A

GCC

TT---

-C

GG

CCA

CGCC

CGTC

TGA

GG

GTC

GG

CTA

GTC

ACA

AA

GCA

ATC

GTG

TCC-

--TTG

CAG

CTCT

CGCA

GG

ACC

GG

-AG

CCTT

----C

g

gec

acg

cccg

le tg

agg

g tc

g9

c ta

g tc

oca

a o

gca

o le

g tg

tee:

---

t t•;

icag

c tc

tcgc

aggo

]cco

;i9-

og

cc t

t --

--c

•;

igcc

ac9c

ccg

tc lo

;io9g

g tc

gg

e la

gtc

acao

og

caa

lc9

lg tc

e--

-t.

tgca

g c

tc tc

•;ic

a•;i

9acc

g9-0

9cc

t_ t_

--

--c

: G

GCC

ACG

CCCG

TCTG

AG

GG

TCG

GCT

AG

TCA

CAA

AG

CAA

TCG

TGTC

C---T

TGCA

GCT

CTCG

CAG

GA

CCO

G-A

GCC

TT---

-C

GG

CCA

CGCC

CGTC

TGA

GG

GTC

GG

CTA

GTC

ACA

AA

GCA

ATC

GTG

TCC-

--TTG

CAG

CTCT

CGCA

GG

ACC

GG

-AG

CCTT

----C

G

GC

CA

CG

TCC

GTC

TGA

GG

GTC

GG

CG

AC

T---

AA

ATC

AA

TCG

AG

CTC

GTC

TGTT

TTTC

CA

CG

----

----

----

----

----

-

GG

----

----

TTC

CTC

CC

ATC

AA

CC

AC

CC

AC

C--

GC

TCG

T---

TGG

GTG

GA

AG

GA

AG

AG

GG

GG

GG

GG

GA

C--

----

----

TG

?GC

CG

TGG

CC

TTG

CG

GC

GG

CG

CC

AG

TCTC

TCC

TCA

AC

GC

TCG

AT-

GG

TGG

GG

OG

------

------

AA

CA

CA

AC

GC

GC

TGTT

?G

CC

GTG

GC

CTT

GC

GG

CG

GG

CG

CA

GTC

TCTC

CTC

A-C

GC

TCG

AT-

GG

TGG

GG

GG

------

-----G

AA

CA

-AA

CG

CG

CTG

TT

CC

CC

CTG

GC

A--

----

-CA

CA

CC

GTC

TCC

GA

CTT

GC

TCG

T---

T-G

GA

GA

CG

CG

AC

GC

T-G

GG

G-G

AG

TA--

----

----

-­C

CC

CC

TGG

CA

----

---C

AC

AC

CG

TCTC

CG

AC

TTG

CTC

GT-

--T-

GG

AG

AC

GC

GA

CG

CT-

GG

GIJ

-GA

GTA

----

----

---­

ccc--

tgg

co

----

---c

ocaccg

tctc

c9

actt

gctc

gt-

--t-

gg

a9

acg

cg

oc9

ct-

gg

9g

9g

a9

to--

----

----

-­cg

gcg

tgag

clc

t---

-cacg

ctg

-ctc

gg

c--

-galg

gt-

--t-

gg

ala

cg

c--

----

----

----

----

----

----

--­

cg

ccg

tgg

actc

tco

tlcacag

cg

cctc

cg

actt

gctc

gtc

g--

-gg

gt-

----

--g

ctt

gg

gg

-gaccc--

----

---g

tc

CG

CC

GTG

GA

CTC

TCA

TTC

AC

AG

CG

CC

TCC

GA

CTT

OC

TCG

TCG

---G

GG

T----

---G

CTT

OG

GG

-GA

CC

C---

------

GTC

C

GC

CG

TGG

AC

TCTT

ATT

CA

CA

GC

GC

CTC

CG

AC

TTG

CTC

GTC

G---

GG

GG

G---

---tJC

TTG

GG

G-G

AC

CC

------

---G

TC

CG

CC

GTG

GA

CTC

TTA

TTC

AC

AG

CG

CC

TCC

GA

CTT

GC

TCG

TCG

---G

GG

GG

------

GC

TTG

GG

G-G

AC

CC

------

---G

TC

cgcc

g tg

gac

tc te

at

tcac

agcg

cc: t

ccg

ac t

tgc

tcg

tcg

---

ggg

t---

----

gc t

t•;i

ggg-

gacc

:c--

---

----

g tc

cg

ccg

tgg

actc

tcatt

cacag

cg

cc:t

c:c

gactt

gcte

gtc

:g--

-gg

gt-

----

--g

ctt

gg

gg

-gaccc--

----

---g

tc

CG

CC

GTG

GA

CTC

TCA

TTC

AC

AG

CG

CC

TCC

GA

CTT

GC

TCG

TCG

---G

GG

T----

---G

CTT

GG

GG

-GA

CC

C---

------

GTC

C

GC

CG

TGG

AC

TCTT

ATT

CA

CA

GC

GC

CTC

CG

AC

TTG

CTC

GTC

G---

GG

GG

G---

---G

CTT

GG

GG

-GA

CC

C---

------

GTC

A

CA

C--

----

----

TC

AA

TCG

G-C

AC

CG

GC

TGG

AC

AC

GC

TCTG

GA

CC

TTC

GC

GG

-----T

TTG

C---

-GC

TGTC

--GC

TGC

AC

TATT

CG

T----

---­

GCT

CGG

-CG

ATG

GCT

GG

ATA

CGCC

TTG

GA

CCCT

CGCG

G---

CCTT

AG

CCG

TTG

CTG

CCTT

GCT

TTTT

TTTT

GG

CTCT

CGG

CA

GCT

CGG

-CG

ATG

OCT

GIJA

TACG

CCTT

GG

ACC

CTCG

CGG

---CC

TTA

GCC

GTC

GCT

GCC

TTG

CTTT

TTTT

TTG

GCT

CTCO

GCA

---

-GG

-CA

CCG

GTT

GG

ACA

CGCC

CTG

GA

CCCT

CGCG

G---

CCT-

ATA

CCG

TCG

TCIJ

CTG

CCG

CTA

GCC

CTTG

CGG

TTG

GTG

---

-GG

-CA

CCG

GTT

GG

ACA

CGCC

CTG

GA

CCCT

CGCG

G---

CCT-

ATA

CCG

TCG

TCG

CTG

CCG

CTA

GCC

CTTG

CGG

TTG

GTG

--

--gg

-cac

c•;i

g t t

gg

acac

gcc

c tg

gac:

cc tc

•;ic

gg--

-cc

t-a ta

ccg

b::g

t cg

ccgc

cgc:

c: t

tccc tg

•;J t

gg

l tg

g tg

--

----

----

c:c

:tg

gaccctc

gcg

g--

-cc:a

-aag

ctg

lcg

ttg

c:-

----

----

--ctg

ctc

g--

----

gtl

cgg

-cac

c:g

gtc

gg

oca

cgcc

c:tg

gac

cctc

gc:

gg

---

cct-

acaccg

tc:g

ctg

ctt

----

----

----

-----

----

­G

TT

CG

G-C

AC

CG

IJT

CG

GA

CA

CG

CC

CT

GG

AC

CC

TC

GC

GG

---C

CT

-AC

AC

CG

TC

GC

TG

CT

T--

----

----

----

----

---­

GTT

CG

G-C

AC

CG

IJTC

GG

AC

AC

GC

CC

TGG

AC

CC

TCG

CG

G--

-CC

T-A

CA

CC

GTC

GC

TGC

TT--

----

----

----

­G

TT

CG

O-C

AC

CG

GT

CG

GA

CA

CG

CC

CT

GG

AC

CC

TC

GC

GG

---C

CT

-AC

AC

CO

TC

GC

TG

CT

T--

----

----

----

----

---­

gtl

cg

g-c

accg

gtc

gg

ac:a

cg

ccctg

go

ccctc

gcg

g--

-cct-

acaccg

tcg

clg

ctt

----

----

----

----

----

-­g

ttcg

g-c

accg

gtc

gg

acacg

c:c

ctg

9accctc

gcg

g--

-cct-

ac:a

c:c

gtc

gctg

ctt

----

----

----

----

----

-­G

TT

CG

G-C

AC

CG

GT

CG

GA

CA

CG

CC

CT

GG

AC

CC

TC

GC

GG

---C

CT

-AC

AC

CG

TC

GC

TG

CT

T--

----

----

----

----

---­

GT

TC

GG

-CA

CC

GG

TC

GG

AC

AC

GC

CC

TG

GA

CC

CT

CG

CG

G--

-CC

T-A

CA

CC

GT

CG

CT

GC

TT

----

----

----

----

----

--

Page 60: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

Ph

ysa

sp

.

L.

st•:

ign

ali

s F.

o

. ru

sti

ca

F.

pc1rvc~

.-. ".

cap

era

tc1

1 ,-.

.:

;i.

cape

r•:i

t•:i

2 .- "'·

co::1

pera

ta

3 F.

tr

un

ca tu

l Cl

:; .

elo

des

3 s.

el o

des

1

s.

e:d

l is

s.

ca

lo:i

scop

i llm

s.

cala

sco

piu

m

2 c "'·

em

m'•

;iin

•:it

a s.

elo

des

2 F.

b

. b

tll

i mo

ides

Ph•J

S•J

sp.

L.

s ta

9n•:

i l i

s

F.

o.

rus ti

ca

F.

pi

:1rv

c1

(11

s.

cape

r1:i

t_q

1 s.

cap

era

ta

2 s.

c•

:iper

•:i t

i::1

3 F.

tr

un

co

tu

1 a

·- "'· elo

des

3 r·

.::

.. elo

des

1 ~3.

e:d

1 is

s.

ca

to:i

scop

i um

1

s.

ca

t•:i

scop

i um

2

.::..

em

arg

inata

s.

elo

des

2 F.

b

. bL

ll i m

o id

es

Phys

c1

sp.

L.

sl•:

i9n

al is

F.

o.

rust ic

a

F.

pi::

:1r1

.,.1i:1

s.

cap

era

ta

1 s.

cap

era

ta

2 s.

cap

era

t.:i

3 F.

tr

•.m

c•:i

lula

s.

elo

des

3 s.

elo

des

1

GTC

GG

GC

TGG

AA

AG

CG

GG

CTC

GC

CC

TGG

AC

CG

TCG

AG

GTT

TCC

T----

----C

GC

TCC

------

----

--A

C

GCG

GTG

ATG

GCA

AC-

---G

GCC

CCG

TGG

TCTT

AA

GT-

ACA

AA

CCG

CGCC

GTT

GTC

CGTT

-CA

TCTC

GTA

ACG

TCTT

-CG

ACG

G

CGG

CGA

CGG

TGA

C----

GG

CCCC

GTG

GTC

TTA

AG

TGC-

-AA

GCC

GC-

-GCC

G---

--ATG

TCCG

TTTC

ACC

TCG

TAA

CGTC

G

CGG

CGA

CGG

TGA

C----

GG

CCCC

GTG

GTC

TTA

AG

TGC-

-AA

GCC

GC-

-GCC

G---

--ATG

TCCG

TTTC

ACC

TCG

TAA

CGTC

G

CGG

TGA

TAG

TGG

TGG

-TG

GCC

CCG

TGG

TCTT

AA

GC-

GCA

AG

CCG

CGCC

GTT

GTC

CGTT

-CA

TCTC

GTA

ACG

TCTT

-CG

ACG

G

CGG

TGA

TAG

TGG

TGG

-TG

GCC

CCG

TGG

TCTT

AA

GC-

GCA

AG

CCG

CGCC

GTT

GTC

CGTT

-CA

TCTC

GTA

ACt

3TCT

T-CG

ACt

3 g

cgg

tga b

:ig l

gg

tgg

g tg

gccccg

tg•;J

le: t

taag

c-g

caag

ccg

cg

cc9

t l.g

tccg

t t-

ca tc

tcg

taacg

tc t

t-cg

acg

g

qig

cg

acg

g tg

•:ic

---

-gg

tc:c

cg tg

g le

: t t

a •J

gc-

gca

•:ig

ccg

cgcc

g l

l•;J t

ccg

t t -

cq

tc tc

9 tm

ic9

tc t.

t -eo

;ic1c

•;J

gc9

9l•

;iac

cig

l•;i

gt-

---g

gcc

ccg

tgg

let

tcia

gc-

gcc

iog

ccg

cgcc

9 l

tgtc

cg

t t-

co

le le

o;il

cioc

g le

t l-

c9m

::•;

i G

CGG

TGA

CAG

TGG

T----

t3G

CCCC

GTG

GTC

TTA

AG

C-G

CAA

GCC

GCG

CCl3

TTG

TCCG

TT-C

ATC

TCG

TAA

CGTC

TT-C

GA

CG

GCG

GTG

ACA

GTG

GT-

---G

GCC

CCG

TGG

TCTT

AA

GC-

GCA

AG

CCG

CGCf

GTT

GTC

CGTT

-CA

TCTC

GTA

ACG

TCTT

-CG

ACG

G

CGG

TGA

CAG

TGG

T----

GG

CCCC

GTG

GTC

TTA

AG

C-G

CAA

GCC

GCG

CCG

TTG

TCCG

TT-C

ATC

TCG

TAA

CGTC

TT-C

GA

CG

gc•;J

•;J t

gacag

tgg

t--

--g

•;ic

cccg

tgg

tc t

laag

c-g

caag

ccg

c9

ccg

t t9

tcc9

t t-

c•J le

leg

l•:io

:icg

tc l

t-c9

•:ic

g

gcg

9tg

•:ic

ag tg

gt-

---,

;ig

ccccg

tgg

tct

taag

c-gc

a•:i

•;ic

cgc•

;icc

gt tg

tccg

t t-

catc

tc•;

it•:

iacg

tc: t

t-c

gac

•;i

GCG

GTG

ACA

GTG

GT-

---G

GCC

CCG

TGG

TCTT

AA

GC-

GCA

AG

CCG

CGCC

GTT

GTC

CGTT

-CA

TCTC

GTA

ACG

TCTT

-CG

ACG

G

CGG

TGA

CAG

TGG

T----

GG

CCCC

GTG

GTC

TTA

AG

C-G

CAA

GCC

GCG

CCG

TTG

TCCG

TT-C

ATC

TCG

TRA

CGTC

TT-C

GA

CG

TCG

GG

CG

G--

----

GG

AT-

-CC

CC

GTG

GTT

TCA

AG

T-C

CA

AG

CTG

CG

CC

GTC

GTC

CT-

---A

TGTC

CT-

----

----

CtJ

ATG

CTG

CC

CTG

CTC

ATG

GC

GG

C---

CTG

TCC

GTT

TTC

TCTA

------

-CC

GC

C---

-AG

GC

AG

GA

CC

CG

GC

TCG

-CTA

CTT

IJA

TT

TT-C

GA

CGCT

GCC

CTG

CTCT

TGG

TGG

CGG

CCTG

TCCG

TTTT

OTC

TCCG

CC-G

CCA

GG

CAG

GA

CCCG

GCT

CG---

-CTT

TATA

TT

TCG

ACG

CTG

CCCT

GCT

CTTG

GTG

GCG

GCC

TGTC

CGTT

TTG

TCTC

CGCC

-GCC

AO

GCA

GG

ACC

CGG

CTCO

----C

TTTA

TA

CTG

CC

CTG

CTC

TTG

GC

GG

CG

GTC

TGTC

CA

TTTT

CTC

TA---

----C

CG

CC

----A

GG

CA

GG

AC

CC

GG

CTC

G---

-CTA

ATC

­C

TGC

CC

TGC

TCTT

GG

CG

GC

GG

TCTG

TCC

ATT

TTC

TCTA

------

-CC

GC

C---

-AG

GC

RG

GA

CC

CG

GC

TCG

----C

TAA

TC­

ctg

cc:c

tgctc

:ttg

gcg

gtg

gtc

tglc

catl

ltclc

la--

----

-ccg

cc--

--ag

gcag

go

cccg

gclc

g--

--clo

ctc

­clg

ccclg

ctc

ttg

gc:g

gc--

-c:t

gtc

cg

tttt

ctc

lo--

----

-ccg

cc--

--ag

gco

gg

occcg

gclc

:g-c

ltactt

tat

c lo

;icc:

c tg

ctc

l b

;ig

cgg

c:--

-ctg

tccc

it t

t_ tc

tctc

i---

----

ccg

cc---

-a•;

igca

g1;i

accc

ggc

tcg

-c tact

l t..:

i 1.­

CTG

CC

CTG

CTC

TTG

GC

GG

C---

CTG

TCC

ATT

TTC

TCTA

------

-CC

GC

C---

-AG

GC

AG

GA

CC

CG

GC

TCG

GC

TAC

TTTA

T­C

TGC

CC

TGC

TCTT

GG

CG

GC

---C

TGTC

CA

TTTT

CTC

TA--

----

-cco

cc--

--A

GG

CA

GG

AC

CC

GG

CTC

G-C

TAC

TTTA

T­C

TGC

CC

TGC

TCTT

GG

CG

GC

---C

TGTC

CA

TTTT

CTC

TA---

----C

CG

CC

----A

GG

CA

GG

AC

CC

GG

CTC

G-C

TAC

TTTA

T­ctg

ccctg

ctc

ttg

gcg

gc--

-ctg

tcco

tttt

ctc

ta--

----

-ccg

cc--

--ag

gcag

gacccg

gctc

g-c

lcic

tlta

t.­

ctg

ccctg

c:t

.ctt

9g

cg

9c--

-ctg

lcco

tttt

c:t

cta

----

---c

cg

cc--

--ag

gca9

go

cccg

9ctc

:g-c

lactt

tat­

CTG

CC

CTG

CTC

TTG

GC

GG

C---

CTG

TCC

ATT

TTC

TCTA

------

-CC

GC

C---

-AG

GC

AG

GA

CC

CG

GC

TCG

-CTA

CTT

TAT­

CTG

CC

CTG

CTC

TTG

GC

GG

C---

CTG

TCC

ATT

TTC

TCTA

------

-CC

GC

C---

-AG

GC

AG

GA

CC

CG

GC

TCG

-CTA

CTT

TAT­

CT

GC

----

---T

TG

CG

CG

G--

----

----

----

TT

TC

A--

----

-CC

GC

CT

GG

CA

GG

AC

----

TC

GG

CT

CG

TG

TA

????

???

AR

TT

TC

TG

GA

GG

CG

AT

-CA

CG

GG

CC

TG

CA

-GT

CC

TC

AT

GG

CA

CA

TC

G-T

CC

---T

TT

--G

CC

----

----

----

----

---­

------

-CTC

GG

CGTA

-CTC

GG

GCC

TGCA

AG

TCC-

-ATG

GCA

--TCC

CAG

CAG

CTCG

T-G

GG

TGG

AG

AG

CGA

ACG

AA

CRCC

G

------

-CTC

GG

CGTA

-CTC

GG

GCC

TGCA

AG

TCC-

-ATG

GCA

--TCC

CAG

CAG

CTCG

T-G

GG

TGG

AG

AG

CGA

ACG

AA

CACC

G

----

----

---G

CG

AT

-CT

CG

GG

CC

TG

CA

-GT

CC

--A

TG

GC

G--

TT

AC

CG

C--

-TC

T-A

GG

GT

GG

AG

A--

----

---

----

----

-GC

GA

T-C

TC

GG

GC

CT

GC

A-G

TC

C--

AT

GG

CG

--T

TA

CC

GC

---T

CT

-AG

GG

TG

GA

GA

----

----

----

----

----

----

-gc:9

gt-

ctc

g9

9cclg

ca-g

lcc--

alg

gc9

--lt

atl

9c--

-lct-

ag

gg

t9g

ag

t---

----

----

---

t_t_

.;it

tatc

gt-

g9

cg

tlctc

:gg

gcctg

ca-g

tcc:-

-atg

gca--

lcg

co

gc--

-t_

c:g

t-g

gg

tgg

ag

a--

----

----

---­

gg

l---

----

-gcg

al-

cacg

99

cctg

ca-g

tcc--

atg

gca--

tcg

clg

c--

-tct-

ag

g9

c9

9ag

o--

----

----

---­

GG

T--

----

--G

CG

AT

-CA

CG

GG

CC

TG

CR

-GT

CC

--R

TG

GC

A--

TC

GC

TG

C--

-TC

T-A

GG

GT

GG

AG

A--

----

----

----

Page 61: Phylogenetics of Lymnaeidae (Mollusca: Gastropoda) with ...

~

S.

ex

ilis

S

. ca

tasc

op

ium

1

S.

cala

sco

piu

m

2 S

. em

arg

inala

S

. elo

des

2 F

. b

. b

uli

mo

ides

~Y= ~·

L.

sta

gn

ali

s

F.

o.

rusti

ca

F.

pat·

·va

s.

cap

era

ta

1 s.

caper~ata

2 s.

cap

era

ta

3 F.

lr

w1

calu

la

s.

elo

des

3 s.

el

od

es

1 s.

ex

ilis

s.

ca

lasc

op

ium

s.

ca

tasc

op

ium

2

c ~.

ema

rgin

ata

S

. elo

des

2 F

. b

. b

uli

mo

ides

F~ysa

sp.

; Etm

;

GG

T--

----

--G

CG

AT

-CA

CG

GG

CC

TG

CA

-GT

CC

--A

TG

GC

A--

TC

GC

TG

C--

-TC

T-A

GG

GT

GG

AG

A--

----

----

---­

GG

T--

----

--G

CG

AT

-CA

CG

GG

CC

TG

CA

-GT

CC

--A

TG

GC

A--

TC

GC

TG

C--

-TC

T-A

GG

GT

GG

AG

A--

----

----

---­

gg

t---

----

-gcg

ac-c

acg

gg

cclg

ca-g

lcc--

atg

gca--

lcg

ctg

c--

-tct-

ag

gg

tgg

ag

a--

----

----

---­

gg

t---

----

-gcg

at-

cacg

gg

cctg

ca-g

lcc--

atg

gca--

tcg

ctg

c--

-lcl-

ag

gg

lgg

ag

a--

----

----

---­

GG

T--

----

--G

CG

AT

-CA

CG

GG

CC

TG

CA

-GT

CC

--A

TG

GC

A--

TC

GC

TG

C--

-TC

T-R

GG

GT

GG

RG

R--

----

----

---­

GG

T--

----

--G

CG

AT

-CR

CG

GG

CC

TG

CR

-GT

CC

--A

TG

GC

A--

TC

GC

TG

C--

-TC

T-R

GG

GT

GG

AG

A--

----

----

---­

?'??

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

??'?

-TC

TG

CC

AG

C-T

CG

TT

CA

TT

GG

TG

GT

----

-RG

GC

GG

GG

GA

????

????

????

???

RC

CG

RA

GR

RC

GTR

R--C

----A

AC

GA

GTG

TGTT

GTC

GG

TCG

GC

GC

CTG

TC---

CA

C

RC

CG

RR

GA

RC

TTA

R--C

----A

AC

GR

-TG

TGTT

GTC

GG

TCG

GC

GC

CTG

TC---

CA

t A

TGA

GG

GCT

C-TC

TTTC

GRG

GA

C-G

A---

--TRC

CTG

RTCG

GCG

CCRG

CCTT

TCA

C A

TGA

GG

GCT

C-TC

TTTC

GRG

GA

C-G

R----

-TA

CCTG

ATC

GG

CIJC

CAG

CCTT

TCA

C tt

gag

gg

ctt

-tcta

tcg

ag

gac-g

a--

---t

acclg

alc

gg

cg

ccag

cclt

lcac

acaag

gg

gcl-

cta

----

--ag

acg

c--

---t

acg

lgg

lcg

gcg

cccg

tcg

ttg

aa

atc

gg

gg

ctc

-tat-

-cg

ag

gaccg

a--

---t

acctg

alc

gg

cg

cccg

tctg

tcac

RTC

GG

GG

CTC

-TA

T--C

GR

GG

RC

CG

A---

--TR

CC

TGR

TCG

GC

GC

CC

GTC

TGTC

AC

A

TCG

GG

GC

TC-T

AT-

-CG

RG

GR

CC

GA

-----R

AC

CTG

ATC

GG

CG

CC

CG

TCTG

TCA

C

ATC

GG

GG

CTC

-TR

T--C

GA

GG

AC

CG

A---

--TA

CC

TGR

TCG

GC

GC

CC

GTC

TGTC

AC

atc

gg

gg

clc

-tat-

-cg

ag

gaccg

a--

---l

acclg

alc

gg

cg

cccg

tclg

tcac

atc

gg

gg

ctc

-ta

t--c

ga

gg

accg

a--

---t

acctg

atc

gg

cg

cccg

tctg

tca

c

RTC

GG

GG

CTC

-TR

T--C

GR

GG

AC

CG

A---

--TR

CC

TGA

TCG

GC

GC

CC

GTC

TGTC

AC

A

TCG

GG

GC

TC-T

AT-

-CG

RG

GA

CC

GR

-----T

RC

CTG

ATC

GG

CG

CC

CG

TCTG

TCA

C

????

???'

????

?'??

????

????

????

????

???'

????

???'

???'

????

??"?

????

??