PHY 208 - wave-optics

25
Wave Optics 1. Light as a wave 1. Huygens' Princinple 2. Refraction 3. Law of Refraction 4. The light from the sun 5. Chromatic Dispersion 2. Diffraction 3. The double slit experiment 4. Waves and Reflections 5. Interferometer 6. The diffraction of light 1. Single Slit 2. Multiple Slits 3. Circular Aperture Diffraction 1. Light as a wave We've spent some time developing a powerful set of tools for analyzing the physics of waves. So far, we've treated cases like waves on a string, or sound waves as they propagate through air. But, there are many more phenomena in the natural world that can be explained and analyzed using wave physics. A major one that persists throughout the development of science and human history has been light. From ancient texts to modern communication technology, the quest to understand light has been a driving force in science. We'll take a look now at how light can be understand as a wave. In the early years of scientific thought, the study of light was very problematics. Several of the conveniences we have now didn't exists, and this made light a rather difficult subject to study. For example, we know now the speed of light to be 186,000 miles per second. (Or 300,000,000 m/s) So, imagine trying to measure something that moved this fast using only pendulum clocks or sundials. It would be hard. Also, when we study light now, we use lenses and other tools to shape it and make it behave. Such things were not available in the beginning of natural science. So, most of the work on light was done using reasoning and deduction, rather then measurements. Of course, some experiments were done, but they were often hard to interpret correctly. A major argument that persisted in the scientific community was weather light was a particle, or a wave. At times, it seems to act like a waves from a pebble on the surface of a pond, other times, like rubber balls moving in straight lines. We'll study both approaches and see how they offer different advantages for understanding the natural world. Huygens' Princinple Christian Huygens [1629-1695] 1. Each point on a wave front is the source of a spherical wavelet that spreads out at the speed of the wave. 2. At a later time, the shape of the wave is the curve that is tangent to all the wavelets. Huygens' Sim PHY 208 - wave-optics updated on 2018-02-19 J. Hedberg | © 2018 Page 1

Transcript of PHY 208 - wave-optics

Page 1: PHY 208 - wave-optics

Wave Optics

1. Lightasawave1. Huygens'Princinple2. Refraction3. LawofRefraction4. Thelightfromthesun5. ChromaticDispersion

2. Diffraction3. Thedoubleslitexperiment4. WavesandReflections5. Interferometer6. Thediffractionoflight

1. SingleSlit2. MultipleSlits3. CircularApertureDiffraction

1. Light as a wave

We'vespentsometimedevelopingapowerfulsetoftoolsforanalyzingthephysicsofwaves.Sofar,we'vetreatedcaseslikewavesonastring,orsoundwavesastheypropagatethroughair.But,therearemanymorephenomenainthenaturalworldthatcanbeexplainedandanalyzedusingwavephysics.Amajoronethatpersiststhroughoutthedevelopmentofscienceandhumanhistoryhasbeenlight.Fromancienttextstomoderncommunicationtechnology,thequesttounderstandlighthasbeenadrivingforceinscience.We'lltakealooknowathowlightcanbeunderstandasawave.

Intheearlyyearsofscientificthought,thestudyoflightwasveryproblematics.Severaloftheconvenienceswehavenowdidn'texists,andthismadelightaratherdifficultsubjecttostudy.Forexample,weknownowthespeedoflighttobe186,000milespersecond.(Or300,000,000m/s)So,imaginetryingtomeasuresomethingthatmovedthisfastusingonlypendulumclocksorsundials.Itwouldbehard.Also,whenwestudylightnow,weuselensesandothertoolstoshapeitandmakeitbehave.Suchthingswerenotavailableinthebeginningofnaturalscience.So,mostoftheworkonlightwasdoneusingreasoninganddeduction,ratherthenmeasurements.Ofcourse,someexperimentsweredone,buttheywereoftenhardtointerpretcorrectly.Amajorargumentthatpersistedinthescientificcommunitywasweatherlightwasaparticle,orawave.Attimes,itseemstoactlikeawavesfromapebbleonthesurfaceofapond,othertimes,likerubberballsmovinginstraightlines.We'llstudybothapproachesandseehowtheyofferdifferentadvantagesforunderstandingthenaturalworld.

Huygens' Princinple

ChristianHuygens[1629-1695]

1.Eachpointonawavefrontisthesourceofasphericalwaveletthatspreadsoutatthespeedofthewave.

2.Atalatertime,theshapeofthewaveisthecurvethatistangenttoallthewavelets.

Huygens'Sim

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 1

Page 2: PHY 208 - wave-optics

plane wave

Oneofthefirstscientiststomakeagoodcasefor'lightasawave'wastheDutchphysicistChristianHuygens.Around1678,hewroteatreatiseaboutlightinwhichhedescribedawavebasedunderstandingaboutthepropagationoflight.Althoughthedetailsofthemechanismheproposedwerenotexactlycorrect,thebasicconceptualunderstandingprovidedbythemodelremainsuseful.Atthispointintime,peopleweren'tsureiflightmovedatinfinitespeed(instaneously)orifithadafinitevelocity.HuygensfirmlybelievedhadafinitespeedandwasconvincedofthisbyastronomicalobservationsprovidedbyOlausRoemer.Healsocouldexplaincertainaspectsbytreatinglightasawave.

Essentially,Huygen'sprinciplestatesthatawavefrontcanbecreatedbymanycloselyspaced,coherentpointsourcesthatareallspreadingoutinasphericalmanner.(Coherentmeanstheyhavethesameinitialphase)

1.Eachpointonawavefrontisthesourceofasphericalwaveletthatspreadsoutatthespeedofthewave.

2.Atalatertime,theshapeofthewaveisthecurvethatistangenttoallthewavelets.

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 2

Page 3: PHY 208 - wave-optics

t = 0 t > 01.Eachpointonawavefrontisthesourceofasphericalwaveletthatspreadsoutatthespeedofthewave.

2.Atalatertime,theshapeofthewaveisthecurvethatistangenttoallthewavelets.

Index of Refraction

Theindexofrefraction(orrefractiveindex)ofamaterialisadimensionlessparameter, ,usedtodescribehowlightmovesinaparticularmedium.

n

n = =speedoflightinvacuum

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 3

Page 4: PHY 208 - wave-optics

Theindexofrefractionofvacuumis andisexactly1.

Medium IndexVacuum 1(exactly)Air(0ºC,1atm) 1.00029Water 1.33Glass 1.52Saphire 1.77Diamond 2.42

[*Noteforlabs:Theindexofrefractioncanchangebasedonthewavelengthofthelight]Waves passing through media

Index of Refraction

Thevelocityofthewaveinamediumisgivenby: .

Fromthepreviousvisualization,wecanseethatthewavelengthwillalsochange.

Thuswecanwrite

Whataboutthefrequency?

Refraction

Refractioninvolvesthebendingoflightataninterfacebetweentwomediumwithdifferentindicesofrefraction.

We'llseethatthefollowingrelationholds:

n = =c

v

speedoflightinvacuumspeedoflightinmaterial

n = 1.000

v = c

n

=λnλ

n

=sinθ1sinθ2

n2

n1

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 4

Page 5: PHY 208 - wave-optics

light

n1

n2vacuum (n = 1)

light

n1

n2vacuum (n = 1)

Refractioncanbeunderstoodasadirectconsequenceofthechangeinvelocityofawaveasitentersanewmediumatanangle.

Law of Refraction

Derive the law of refraction

Implicationsofrefraction

Twolightwavesentertwodifferentmaterials.

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 5

Page 6: PHY 208 - wave-optics

out of phase!

Upon exiting the material:

Thewavesarenolongerinphase!

Yes,butbyhowmuch?

Quick Question 1

Asinglelightbeamissplitintotwoequalbeams,denotedAandB.BeamAtravelsthroughamediumwithahigherindexofrefractionthanthemediumthatbeamBtravelsthrough.Afterbothbeamsexittheirmediaandarebackintotheair,howdotheirwavelengthscompare?

1. BeamAhasalongerwavelength2. BeamBhasalongerwavelength3. Bothbeamshavethesamewavelength

Basedonthelengthofthematerials,theindicesofrefraction,andthewavelengthofthelightinvacuum,wecandeterminethephasedifference(actuallythedifferenceinnumberofwavelengths)betweenthetwolightwaves.

Wecangetthisrelationinthefollowingway.

Thewavelengthinthemediumwillbedifferentbywavelengthinvacuum:

Also,ifthemediumhasalength ,thentherewillbe wavelengthspresentinthemedium:

Similary,forthewavesinmedium2:

Subtracting - givesusthedesiredrelation.

Color

Thecoloroflightthatweperceiveisbasedonthefrequency(orwavelength)ofthelight.

− = ( − )N2 N1L

λn2 n1

=λn1

λ

n1

L N1

= =N1L

λn1

Ln1

λ

= =N2L

λn2

Ln2

λ

N2 N1

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 6

Page 7: PHY 208 - wave-optics

10141018

10-10 10-610-7 10-2 1

1081010

radi

o/tv

mic

row

ave

x ra

ysfrequency of wave [Hz]

wavelength of wave [m]

780 Terahertz 400 Terahertz

~400 nm ~700 nm~500 nm

Thehumaneyehasthreetypesofcellsthataresensitivetodifferentfrequenciesoflight.Thetriggeringofthesecellsbythedifferentfrequenciesresultsincolorperceptions.Theyareresponsivetoonlyaverynarrowsetoffrequencieshowever.Thecompletespectrumoflightcontainfrequenciesandwavelengthsthatdonottriggerthecellsoureyes.We'llseethisspectrumagain,afterwegothroughelectricityandmagnetism,sincethosetopicswillcontainthematerialtoreallyunderstandwhatlightis.

The light from the sun

ThephysicalprocesseshappeningintheSuncreatelightofmanydifferent

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 7

Page 8: PHY 208 - wave-optics

n > 1

Theimplicationsarethattheangleofrefractionisnowdependentonthewavelengthofthelightbecause carriesthisdependence: .

Fig.1

frequencies.Thischartshowstheintensitiesemittedfrequenciesasafunctionofwavelength.Itisanotherexampleofaspectrum.Wesawaspectrumgraphwhenwecoveredsoundwaves.Thereweplottedtheintensityofthesoundwavesasafunctionofthefrequency(pitch)ofthesound.Thisgraphcontainssimilarinformation.Fromit,wecanseethemostofthelightthatthesunproducesisaround500nmwavelength.Fortunately,thisisaroundthefrequencythatoureyesareverysensitivetoo.

Chromatic Dispersion

n = 1.55

n = 1.45

200 nm 400 nm 600 nm 800 nm 1000 nm 1200 nm 1400 nm wavelength

inde

x of

refra

ctio

n

Hereisaqualitativeplotoftheindexofrefractionforahypotheticalmaterialasafunctionofthewavelengthoftheincidentlight.

Whenlightentersamedium,theindexofrefractionitencounterswilldependslightlyonthewavelengthofthelight.ThiseffectiscalledChromaticDispersion.

Dispersion

2. Diffraction

Diffraction

Diffraction

n n → n(λ)

sin (λ) = sin (λ)θ1n1 θ2n2

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 8

Page 9: PHY 208 - wave-optics

point 1

point 2

crest

trough

L1L2

L2L1

Thespreadingoutofthewavesafterpassingthroughtheopeningiscalleddiffraction.

Diffractionisageneralpropertiesofallwavephenomenon.Waterwavesareparticularlyeasytoseediffractioneffectsbecausethewavelengthsareaboutasbigastheobstacleswhichcausethediffraction.

CheckoutthePanamacanalentrance:LinktoMap

Thereweretwocompetingtheoriesaboutwhatexactlylightwas.Newton'sexperimentsledhimtopostulatethatlightwasaparticle(hecalledthem'corpuscles'.)

WhileHuygens'andothershaddoneworkwhichseemedtoshowthatlightactedasawave.

ThomasYoungwasanEnglishScientist.Around1801hedidsomeexperimentswithlightwiththegoalofdemonstratingitswave-likenature.

Wave interference

Twospeakers?

Thephysicsoflightborrowsmuchfromthetreatmentofsoundwaves.Wefiguredouthowtocalculatewhereloadandquitespotsshouldbeinthecaseoftwointerferingsoundwaves.Asimilarapproachwillgiveusinformationabouttheinterferenceoflight.

Thomas Young

3. The double slit experiment

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 9

Page 10: PHY 208 - wave-optics

single slit (hole)

incident light

diffracted waves

Fig.2

double slit (hole)

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 10

Page 11: PHY 208 - wave-optics

double slit (hole)

max

max

max

max

max

max

min

min

min

min

min

min

screen

Thebasicsetupisasfollows.Light(monochromaticsandcoherent)passesthroughtwosmallslits.Fromeachslightemergesadiffractedbeam.Thesebeamsundergowaveinterferenceandtheresultinglightthatappearsonascreenawayfromtheslitsshowstheinterferencepattern.

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 11

Page 12: PHY 208 - wave-optics

r1

r2 Lslits

screen

P

m = 0

m = 1

m = 1

m = 2

m = 2

m = 3

m = 3

y0

y1 y’0

y’1

y’2y2

y3+y

r2

r1

path length r1

path length r2

L

slits

screen

P

y = 0

y = L tan

d

∆r = path length difference

Whenconstructive:

andfordestructive:

Quick Question 2

Abeamofmonochromaticlightwithawavelengthof660nmisdirectedatadoubleslit.Considerthefivelocationslabeledinthedrawing,(thecentralmaximumislabeled“B.”)Whichoneofthesefringesisproducedwhenthepathdifferenceis1320nm?

LightfromaLaserhasawavelengthof633nm.Thisispassedthroughtwosmallslitsspaced.4mmapart.Aviewingscreenis2.0mbehindtheslits.Whatarethedistancesbetweenthetwom=2brightfringesandbetweenthetwom=2darkfringes,onthescreen?

ΔL = d sinθ

d sinθ = mλform = 0,1,2

d sinθ = (m + 1/2)λform = 0,1,2

Example Problem #1:

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 12

Page 13: PHY 208 - wave-optics

Quick Question 3

Alaboratoryexperimentproducesadouble-slitinterferencepatternonascreen.Ifthescreenismovedfartherawayfromtheslits,thefringesmarkedBandCwillbe:

1. Closertogether.2. Inthesamepositions.3. Fartherapart.4. Fuzzyandoutoffocus.

Adoubleslitinterferencepatternisobservedonascreen1.0mbehindtwoslitsspaced0.30mmapart.Tenbrightfringesspanadistanceof1.7cm.Whatisthewavelengthofthelight?

I

image data

Intensity plot

y

Ofcourse,asscientists,wewouldratherhaveourdatainamoreuseableform.Tothisend,wecanconvertour'screen'imagesofdarkandlightspotstoanintensityplot.Thisletsusputunits,like forintensityasafunctionofdistance,andusefunctionstodesribetheplot.

Thesameinformationispresent--it'sjusteasiertoworkwith.

Quick Question 4

Alaboratoryexperimentproducesadouble-slitinterferencepatternonascreenusingredlight.Ifgreenlightisused,witheverythingelsethesame,thebrightfringeswillbe:

1. Closertogether.2. Inthesamepositions.3. Fartherapart.4. Fuzzyandoutoffocus.

4. Waves and Reflections

Wesawwhathappenedwhenawaveonastringreflectedoffaboundary.

Boundary is not perfect

Example Problem #2:

W/m2

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 13

Page 14: PHY 208 - wave-optics

incident wave

reflected wave

transmitted wave

Dependingonifthelightisreflectingoffahigherindexoralowerindex,wewillobtainthefollowingphaseshiftsforthereflectedwaves.

Reflection PhaseshiftReflectsoffalowerindex 0Reflectsoffahigherindex 0.5

incident wave

reflected wave

transmitted wave

incident wave

reflected wave

transmitted wave

n1 > n2

n1 < n2

Herewehaveawaveonaropetravelingtowardsapartiallyreflectingboundary.The'boundary'isreallyaconnectionbetweenalowdensityandhighdensitysectionofrope.

Wecanseethatmostofthewaveisreflected,andinverted,attheboundary,however,someoftheenergyofthewaveistransmittedacrosstheboundaryandcontinuesintothehigherdensityregion.Additionally,since ,thewavespeedisdifferentforthereflectedandthe

transmittedwaves.

Boundary is not perfect

Likewise,ifthewavetravelsfromahigherdensityregiontoalowerdensityregion,mostofthewave'senergywillbetransmitted,whilesomewillbereflected.

Again,thelowerdensitysectionofropewillhaveahigherwavespeedthanthehighdensityregion.Thistime,thereisnoamplitudeinversion.vid

Phase change due to reflection

Sincetheindexofrefractionofamaterialissomewhatanalogoustothedensityofastring,asfaraswavesgo,(theybothareparametersthataffectthespeedofthewaves),wewouldexpectasimilarphenomenawithlightasitreflectsfromboundaries.

v = τ

μ

−√

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 14

Page 15: PHY 208 - wave-optics

n = 1 n = 1.5 n = 1.3

incident ray

reflected ray

1 2

incident wave

reflected wave (from first surface)

reflected wave (from glass surface)

transmitted wave

air thin film glass

t

nair= 1 nglass= 1.5nx= 1.33

incident ray

r1

n1

r2

n2 n3

12

3

Quick Question 5

Bluelaserlightistravelingthroughasandwichofmaterialsasshown.Ateachinterface,somelightwillbereflected.Comparingtheoriginalincidentraywiththefinalreflectedray,whatisthephaseshiftsduetoreflection?

1. 0rad2. rad

3. rad4. rad5. rad

Phase Shift Sources

Wenowhave3sourcesofphaseshiftsforalightwave:

1. Reflection:dependingonthe ofthetwomedia,thereflectedwavemayormaynotbephaseshifted

2. PathLength:Theanalysisofthedoubleslitshowedthatpathlengthdifferencecanalsoleadtoaphaseshift.

3. IndexofRefraction:Lighttravelingthroughmediawithdifferent canundergoaphaseshift.

Thin Film Interference

Thin Film Interference

①Theoriginalincidentrayisbothreflectedandtransmittedatthefirstboundary.Thisreflectionbecomes .Thetransmittedwavegoesuntilthenextboundary,②,whereitisalsotransmittedandreflected.Thereflectedrayproceedsbackthroughmaterial2,anditthentransmittedthroughtheboundaryat③.Thislasttransmittedrayis .

Byfiguringoutallthephaseshiftsalongtheway,wecantellifrays and willbeinphaseoroutofphase.Thatis,willtheyconstructivelyinterfereordestructivelyinterfere?

Constructive interference

Inthissituation,wehave .

π/2π

3π/22π

n

n

r1

r2

r1 r2

< >n1 n2 n3

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 15

Page 16: PHY 208 - wave-optics

incident ray

r1

air

r2

air

12

3

n2

incident ray

r1

air

r2

air

12

3

n2

incident ray

r1

r2

12

3

n2n1 n3

t < .1 l

Sinceattheinterface①therayisreflectingoffalarge ,thereflectedray willhaveaphaseshiftof

.

willhaveapathlengthdifferencecomparedtoof2L.Thustogetconstructiveinterferencebetweenand ,weneed

Destructive Interference

Ifwewherelookingtohavedestructiveinterferencebetweenthetworeflectedrays,wewouldneed:

.

Thus,withthesamesubstitutions,wecanarriveat:

WhatisthethinnestfilmofMgF2(n=1.38)onglassthatproducesastrongreflectionforlightwithawavelengthof600nm.

Two15-cmlongflatglassplatesareseparatedbya10 mthickspaceratoneend,leavingathinwedgeofairbetweentheplates.Amonochromaticlight( nm)fromaboveilluminatestheplates.Alternatingbrightanddarkfringesareobserved.Whatisthespacingbetweentwobrightfringes.

Ifthefilmismuchsmallerthanthewavelengthofthelightpassingthrough,(i.e ),thenwecanignorethepathlengthcreatedbythefilmandonlyconcernouranalysiswiththereflectionsofthelightattheboundaries.

n r1λ/2

r2 r1

r1 r2

2L = ( ) = (m + ) form = 0,1,2,…oddnumber

2λn2

12

λ

n2

2L = integer × λ

2L = (integer) = m form = 0,1,2,…λn2

λ

n2

Example Problem #3:

Example Problem #4:

μ

λ = 589

t < .1λ

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 16

Page 17: PHY 208 - wave-optics

incident

reflected

reflected

transmitted

transmitted

incident

soap filmSincethecriteriaforconstructiveanddestructiveinterferencedependsonwavelength,lightofdifferentcolorswillresponddifferentlytoathinfilm,likeasoapbubbleoroilslick.Somecolorswillexperienceconstructiveinterference,whileotherswillhavedestructiveinterferenceafterthetworeflections.

5. Interferometer

We’veseenthattheamountoflightvisibleisverysensitivetothepathdifferencebetweentworays.Thismeanswecanmakeadevicetomeasureverysmalldistances.

emitters detectorThesmallestlengthwecanmeasureusingthisdevicewillbegivenbythewavelengthofthelightused.

Interferometer

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 17

Page 18: PHY 208 - wave-optics

L1

L2source splittermirror

detector

mirrorWeknowthepathlengthdifferenceis:

When isequaltoawholenumberofwavelengths,ie: ,thentheinterferencebetweenthetwopathswillbeperfectlyconstructive.Anychangeintheamplitudeofthefinal,detectedlight,impliesachangeineitherthewavelengthofthelightduringonearmoftravel,orachangeinthelengthofonearm.

L1

L2source

splittermirror

detector

mirror

Interferometer

Usesofinterferometry:

1. DisprovedtheLuminiferousAether2. Surfacetopographyofsamples.3. MeasuredNewton’sGravitationalConstant,G.4. Maybegravitationalwaves???

(lookupLIGO-http://www.ligo.caltech.edu/)

6. The diffraction of light

Ouruseoftheraymodelreliedontheassumptionthatthelightraysdidn'tinteractwithobjectsthathad

Δr = 2 − 2L2 L1

Δr

Δr = mλ

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 18

Page 19: PHY 208 - wave-optics

ⒶThewaveletsfromeachpointontheinitialwavefrontoverlapandcreateaninterferencepattern

ⒷThesealltravelthesamedistanceandcreatethecentralmaximum

ⒸThesetraveldifferentdistancesandcreatethefringes.

featuresinthesamelengthscaleasthewavelengthofthelight.

Clearly,thislimitstherangeoftopicswecandiscuss,anditlimitsthedepthofphenomenawecanunderstand.

Let’sgobacktothis:Amonochromaticlightsourcepassingthroughasmallslit.

Thewavelengthofthislightisroughlythesamesizeastheslitthroughwhichitispassing.

Single Slit

Thesetupisthesameasthedoubleslit,exceptthereisonlyoneslit.

Again,weseeadiffractionpatternemergeonthescreen.Thisoneisabitdifferenthowever.

Huygens-like analysis of a single slit

A B C

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 19

Page 20: PHY 208 - wave-optics

aa/2

1

2

3

4

5

6∆r

Thepathlengthdifferencebetweenwavelet1and2is:

Whichisanotherwayofsayingthatwavelet2travels moretogetthescreenattheangle .

If ,thensoarealltheother∆rvalues,andtheinterferenceatthescreenwillbedestructive,meaningtherewillbeadarkspotthere.Thelocationsofthedarkspotsarethen:

or,

Theotherminimumscanbefiguredoutinasimilarway.Wegetthefollowingfortheangularlocationsofthedarkregions.

Thewidthofthecentralmaximumiseasilyfiguredbylookingatthedistancebetweenthefirstminimums.

thus:

a

centralmaximum

m = 1

m = 1m = 2

m = 2

w

single slit screen y

LQuick Question 6

Lightofwavelength illuminatesasingleslitsothatthewidthofthecentraldiffractionmaximais .Theslitwidthisthendecreasedto .Whatisthewidthofthecentraldiffractionmaxima?

1.2.3.4.5.

Δ = sinθr12a

2

Δr θ

Δ = λ/2r12

sinθ =a

2

a sinθ = λ

a sinθ = mλ

y =mλL

a

w = + =1λL

a

1λL

a

2λL

a

λ

l a/2

l/22l

l/44l

l

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 20

Page 21: PHY 208 - wave-optics

d

d towards screen

plane wavesapproaching from left

d

y1

y2

y1

0

y2

screen

5 slit grating

m = 2

m = 2

m = 1

m = 1

m = 0

Quick Question 7

Thistimeyoukeepthesameslitwidth,butuseanothermonochromaticlightofwavelength500nm.Howdoesthebroadness(width)ofthecentralbrightfringechangecomparedtothatproducedbythe600nmwavelength?

1. Increases2. Decreases3. Staysthesame4. Dependsontheexactvalueofslits

Multiple Slits

Whathappenswhenweincreasethenumberofslits?

Thissystemiscalledadiffractiongrating.Wecanthinkofitasamulti-slitdevice.

Wecanincreasethenumberofslitsperinch.Here's5slitsandasampleofwhatthediffractionpatternwouldlooklike.

Usingthesameanalysisasbefore,wecanfindthelocationsonthescreenwherethepathlengthdifferenceleadstoconstructiveinterference.

Again,notethatthisvalueisdependentonthewavelength.

Thequality(sharpnessandintensity)ofthediffractionpatternisdeterminedbythenumberofslitsinthegrating.Asthenumberofslits,n,increases,thewidthofthefringesdecreases,buttheirintensityincreases.

Δr = d sinθ = mλ

(form = 1,2,3)

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 21

Page 22: PHY 208 - wave-optics

Differentwavelengthswillhavemaximumsatdifferentpositionsalongthescreen.

Awesome Tool: The spectrometer

Buildyourown:DIYspectrometerkithereCircular Aperture Diffraction

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 22

Page 23: PHY 208 - wave-optics

D

circularaperture

screen

light intensity

incident light

L

Monochromaticlightwhichpassesthroughaverysmallcircularaperturewillcreateacirculardiffractionpatternlikethis.

Thelocationofthefirstminimumcanbefoundby:

The lens as an aperture

Alenscanbeconsideredatypeofaperture.Therewillbediffractionofthelightwavesasitpassesthrough.

Two distant stars

D

= 1.22θ1λ

D

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 23

Page 24: PHY 208 - wave-optics

Rayleigh's Criterion

Twopointsourcescanonlyberesolvediftheirangularseparation, isgreaterthan:

Twolightbulbsare1.0mapart.Fromwhatdistancecantheselightbulbsberesolvedbyasmalltelescopewitha4.0cmdiameterobjectivelens.Assumethatthelensisdiffractionlimitedand =600nm.

ResolvingPower:Ingeneral,wecansaytheresolutionforanyopticalinstrumentislimitedbythewavelengthsofthelightused.

GuesswhatcolorthelightfromaBlu-rayplayerlaseris?Why?

α

= ≈θR sin−1 1.22λ

D

1.22λ

D

Example Problem #5:

λ

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 24

Page 25: PHY 208 - wave-optics

PHY 208 - wave-optics

updated on 2018-02-19 J. Hedberg | © 2018 Page 25