Photons in the universewolle/TELEKOLLEG/KERN/LECTURE/...Lorentz factor: 𝛾𝛾= 1...

30
Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar Photons in the universe

Transcript of Photons in the universewolle/TELEKOLLEG/KERN/LECTURE/...Lorentz factor: 𝛾𝛾= 1...

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Photons in the universe

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Photons in the universe

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Element production on the sun

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Spectral lines of hydrogen

absorption

hydr

ogen

gas

absorption spectrum

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Element production on the sun

5

Hydrogen emission spectrum

wave length nm

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Spectral analysis

6

H

Spectral analysis Kirchhoff und Bunsen: Every element has a characteristic emission band

Max Planck

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Nuclear Resonance Fluorescence

Nuclear Resonance Fluorescence (NRF) is analogous to atomic resonance fluorescence but depends upon the number of protons AND the number of neutrons in the nucleus

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Photon-nuclear reactions with MeV Ξ³-rays

pure electromagnetic interaction spin selectivity (mainly E1, M1, E2 transitions)

Ξ³-ray

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Photon-nuclear reactions with MeV Ξ³-rays Ξ³-ray pure electromagnetic interaction

spin selectivity (mainly E1, M1, E2 transitions)

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Low energy photon scattering at S-DALINAC

β€œwhiteβ€œ photon spectrum wide energy region examined

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Absorption processes

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Principle of measurement and self absorption

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

First Ξ³Ξ³-coincidences in a Ξ³-beam

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

First Ξ³Ξ³-coincidences in a Ξ³-beam

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

First Ξ³Ξ³-coincidences in a Ξ³-beam

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Compton scattering and inverse Compton scattering

Compton scattering:

Elastic scattering of a high-energy Ξ³-ray on a free electron. A fraction of the Ξ³-ray energy is transferred to the electron. The wave length of the scattered Ξ³-ray is increased: Ξ»β€˜ > Ξ».

β„Žπœˆπœˆ β‰₯ π‘šπ‘šπ‘’π‘’π‘π‘2

𝐸𝐸𝛾𝛾′ =𝐸𝐸𝛾𝛾

1 +πΈπΈπ›Ύπ›Ύπ‘šπ‘šπ‘’π‘’π‘π‘2

βˆ™ 1 βˆ’ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Inverse Compton scattering:

Scattering of low energy photons on ultra-relativistic electrons. Kinetic energy is transferred from the electron to the photon. The wave length of the scattered Ξ³-ray is decreased: Ξ»β€˜ < Ξ».

πœ†πœ†β€² β‰ˆ πœ†πœ† βˆ™1 βˆ’ 𝛽𝛽 βˆ™ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛾𝛾1 + 𝛽𝛽 βˆ™ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿

πœ†πœ†β€² βˆ’ πœ†πœ† =β„Žπ‘šπ‘šπ‘’π‘’π‘π‘

βˆ™ 1 βˆ’ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛾𝛾

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Inverse Compton scattering

Electron is moving at relativistic velocity Transformation from laboratory frame to reference frame of e- (rest frame):

in order to repeat the derivation for Compton scattering

𝐸𝐸𝛾𝛾 = 𝛾𝛾 βˆ™ 𝐸𝐸𝛾𝛾 1 βˆ’π‘£π‘£π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘’π‘’βˆ’π›Ύπ›Ύ

Doppler shift

Lorentz factor: 𝛾𝛾 = 1 βˆ’ 𝛽𝛽2 βˆ’1/2 = 1 + 𝑇𝑇𝑒𝑒𝑀𝑀𝑒𝑒𝑀𝑀

931.5βˆ™0.00055

𝐸𝐸𝛾𝛾′ =𝐸𝐸𝛾𝛾

1 +πΈπΈπ›Ύπ›Ύπ‘šπ‘šπ‘’π‘’π‘π‘2

βˆ™ 1 βˆ’ π‘π‘π‘π‘π‘π‘πœ™πœ™ Compton scattering in rest frame

𝐸𝐸𝛾𝛾′ = 𝛾𝛾 βˆ™ 𝐸𝐸𝛾𝛾′ 1 +π‘£π‘£π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘’π‘’βˆ’π›Ύπ›Ύβ€²

Limit 𝐸𝐸𝛾𝛾 β‰ͺ π‘šπ‘šπ‘’π‘’π‘π‘2

𝐸𝐸𝛾𝛾′ β‰ˆ 𝛾𝛾2 βˆ™ 𝐸𝐸𝛾𝛾 1 βˆ’π‘£π‘£π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘’π‘’βˆ’π›Ύπ›Ύ 1 +

π‘£π‘£π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘’π‘’βˆ’π›Ύπ›Ύβ€²

transformation into the laboratory frame

𝐸𝐸𝛾𝛾′ β‰ˆ 4𝛾𝛾2 βˆ™ 𝐸𝐸𝛾𝛾

electron and Ξ³ interaction π‘π‘π‘’π‘’βˆ’π›Ύπ›Ύ~1800 Ξ³β€˜ emission relative to electron π‘π‘π‘’π‘’βˆ’π›Ύπ›Ύβ€²~00

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Laser Compton backscattering

Energy – momentum conservation yields ~4𝛾𝛾2 Doppler upshift Thomsons scattering cross section is very small (6Β·10-25 cm2)

High photon and electron density are required

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Gamma rays resulting after inverse Compton scattering

A. H. Compton Nobel Prize 1927

photon scattering on relativistic electrons (Ξ³ >> 1)

β„Žπœˆπœˆ = 2.3 eV ≑ 515 π‘›π‘›π‘šπ‘š

𝑇𝑇𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 = 720 𝑀𝑀𝑀𝑀𝑀𝑀 β†’ 𝛾𝛾𝑒𝑒 = 1 +𝑇𝑇𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 𝑀𝑀𝑀𝑀𝑀𝑀

931.5 βˆ™ 𝐴𝐴𝑒𝑒 𝑒𝑒= 1410

𝐸𝐸𝛾𝛾 = 2𝛾𝛾𝑒𝑒21 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿

1 + 𝛾𝛾𝑒𝑒𝑐𝑐𝛾𝛾2 + π‘Žπ‘Ž02 + 4𝛾𝛾𝑒𝑒𝐸𝐸𝐿𝐿

π‘šπ‘šπ‘π‘2βˆ™ 𝐸𝐸𝐿𝐿

4π›Ύπ›Ύπ‘’π‘’πΈπΈπΏπΏπ‘šπ‘šπ‘π‘2

= recoil parameter

π‘Žπ‘ŽπΏπΏ = π‘’π‘’πΈπΈπ‘šπ‘šπœ”πœ”πΏπΏπ‘π‘

= normalized potential vector of the laser field

E = laser electric field strength 𝐸𝐸𝐿𝐿 = β„πœ”πœ”πΏπΏ

𝛾𝛾𝑒𝑒 = πΈπΈπ‘’π‘’π‘šπ‘šπ‘π‘2

= 11βˆ’π›½π›½2

= Lorentz factor

maximum frequency amplification: head-on collision (ΞΈL = 00) & backscattering (ΞΈΞ³ = 00)

𝐸𝐸𝛾𝛾~4𝛾𝛾𝑒𝑒2 βˆ™ 𝐸𝐸𝐿𝐿 β‰… 18.3 𝑀𝑀𝑀𝑀𝑀𝑀

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Scattered photons in collision

Luminosity: 𝐿𝐿 = π‘π‘πΏπΏβˆ™π‘π‘π‘’π‘’4πœ‹πœ‹βˆ™πœŽπœŽπ‘…π‘…

2

π‘ˆπ‘ˆπΏπΏ = 0.5 𝐽𝐽 β„ŽπœˆπœˆπΏπΏ = 2.4 𝑀𝑀𝑀𝑀 = 3.86 βˆ™ 10βˆ’19 𝐽𝐽 ≑ 515 π‘›π‘›π‘šπ‘š

β†’ 𝑁𝑁𝐿𝐿= 1.3 βˆ™ 1018

πœŽπœŽπ‘…π‘… = 15 πœ‡πœ‡π‘šπ‘š

𝑄𝑄 = 1 𝑛𝑛𝑛𝑛

β†’ 𝑁𝑁𝑒𝑒= 6.25 βˆ™ 109

βˆ™ 𝑓𝑓

Ξ³-ray rate: 𝑁𝑁𝛾𝛾 = 𝐿𝐿 βˆ™ πœŽπœŽπ‘‡π‘‡π‘‡π‘‡π‘‡π‘šπ‘šπ‘‡π‘‡π‘‡π‘‡π‘‡π‘‡ πœŽπœŽπ‘‡π‘‡ = 0.67 βˆ™ 10βˆ’24 π‘π‘π‘šπ‘š2

β‰… 2.9 βˆ™ 1032 βˆ™ 𝑓𝑓 π‘π‘π‘šπ‘šβˆ’2π‘π‘βˆ’1

β‰… 2 βˆ™ 108 βˆ™ 𝑓𝑓 π‘π‘βˆ’1 (full spectrum)

Yb: Yag J-class laser

10 Peta (1015) Watt

repetition rate: 𝑓𝑓 = 3.2 π‘˜π‘˜π‘˜π‘˜π‘˜π‘˜

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Thomson Scattering

J. J. Thomson Nobel prize 1906

Thomson scattering = elastic scattering of electromagnetic radiation by an electron at rest βˆ’ the electric and magnetic components of the incident wave act on the electron βˆ’ the electron acceleration is mainly due to the electric field β†’ the electron will move in the direction of the oscillating electric field β†’ the moving electron will radiate electromagnetic dipole radiation β†’ the radiation is emitted mostly in a direction perpendicular to the motion of the electron β†’ the radiation will be polarized in a direction along the electron motion

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Thomson Scattering

J. J. Thomson Nobel prize 1906

π‘‘π‘‘πœŽπœŽπ‘‡π‘‡ 𝑐𝑐𝑑𝑑Ω

=12π‘Ÿπ‘Ÿ02 βˆ™ 1 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝑐𝑐

π‘Ÿπ‘Ÿ0 =𝑀𝑀2

4πœ‹πœ‹πœ€πœ€0π‘šπ‘šπ‘’π‘’π‘π‘2= 2.818 βˆ™ 10βˆ’15 π‘šπ‘š

πœŽπœŽπ‘‡π‘‡ = οΏ½π‘‘π‘‘πœŽπœŽπ‘‡π‘‡ 𝑐𝑐𝑑𝑑Ω

𝑑𝑑Ω =2πœ‹πœ‹π‘Ÿπ‘Ÿ02

2οΏ½ 1 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝑐𝑐 π‘‘π‘‘π‘π‘πœ‹πœ‹

0

=8πœ‹πœ‹3π‘Ÿπ‘Ÿ02 = 6.65 βˆ™ 10βˆ’29 π‘šπ‘š2 = 0.665 𝑏𝑏

differential cross section

classical electron radius

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Scattered photons in collision

ΞΈ = 0 ΞΈ = Ο€

𝐸𝐸𝛾𝛾 = 2𝛾𝛾𝑒𝑒21 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿

1 + 𝛾𝛾𝑒𝑒𝑐𝑐𝛾𝛾2 + π‘Žπ‘Ž02 + 4𝛾𝛾𝑒𝑒𝐸𝐸𝐿𝐿

π‘šπ‘šπ‘π‘2βˆ™ 𝐸𝐸𝐿𝐿

𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐 = 1/𝛾𝛾

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Inverse Compton scattering of laser light

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Extreme Light Infrastructure – Nuclear Physics

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Nuclear Resonance Fluorescence

Widths of particle-bound states: Ξ“ ≀ 10𝑀𝑀𝑀𝑀

Breit-Wigner absorption resonance curve for isolated resonance:

πœŽπœŽπ‘™π‘™ 𝐸𝐸 = πœ‹πœ‹οΏ½Μ…οΏ½πœ†22𝐽𝐽 + 1

2Ξ“0Ξ“

𝐸𝐸 βˆ’ πΈπΈπ‘Ÿπ‘Ÿ 2 + Ξ“ 2⁄ 2 ~ Ξ“0 Γ⁄

Resonance cross section can be very large: 𝜎𝜎0 β‰… 200 𝑏𝑏 (for Ξ“0 = Ξ“, 5 MeV)

Example: 10 mg, A~200 β†’ Ntarget = 3Β·1019, NΞ³ = 100, event rate = 0.6 [s-1]

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Nuclear Resonance Fluorescence

Count rate estimate 104 Ξ³/(s eV) in 100 macro pulses 100 Ξ³/(s eV) per macro pulse example: 10 mg, A ~ 200 target resonance width Ξ“ = 1 eV 2 excitations per macro pulse 0.6 photons per macro pulse in detector pp-count rate 6 Hz 1000 counts per 3 min

8 HPGe detectors 2 rings at 900 and 1270

Ξ΅rel(HPGe) = 100% solid angle ~ 1% photopeak Ξ΅pp ~ 3%

narrow band width 0.5%

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Nuclear Resonance Fluorescence

narrow bandwidth allows selective excitation and detection of decay channels

Hans-JΓΌrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Deformation and Scissors Mode

Decay to intrinsic excitations