Phospholipid polymers & new haemocompatible materials

10
Die Angewandte Makromolekulare Chemie 166/167 (1989) 169-1 78 (2800) Department of Protein & Molecular Biology & *Academic Department of Surgery, Royaf Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, U.K. PEOSPHOLIPID POLYMERS C l4EH IUEHOCOMPATIBLE Ul'BlUALS + Brenda Ball, *Richard le B. Bird, Dennis Chapman Summary : When blood comes into contact with an artificial surface, a number of events OCCUK which include protein adsorption, platelet activation and the activation of the intrinsic pathway of blood coagulation. With the increased application of blood containing artificial devices, there is a great demand to develop new biomaterials which retard thrombus formation. Our new approach to solving this problem is t o mimic the non-thrombogenic surface of natural biological membranes at least in a simple form. We have developed a polymerisable phospholipid and polyesters based on the major phospholipid polar head group present on the erythrocyte outer membrane surface. The coagulation of blood exposed to these polymers was examined by the technique of Material Thrombelastography, a relatively simple test for the in vitro screening of polymer thrombogenicity. We present results which indicate that the polymerised phospholipid and polyesters show reduced thrombogenicity, and may therefore have potential for future biomaterials. +Paper presented at the meeting of t h e GDCh-Fachgruppe "Makromole k u l a r e Chemie" on "Polymers and biological Functions" i n Bad Nauheim (West Germany) on April 18/19, 1988. @ 1989 Hilthig & WcpiVerlag. Buel 0003-3146/89/$03.W 169

Transcript of Phospholipid polymers & new haemocompatible materials

Page 1: Phospholipid polymers & new haemocompatible materials

Die Angewandte Makromolekulare Chemie 166/167 (1989) 169-1 78 (2800)

Department of Pro te in & Molecular Biology & *Academic Department of Surgery, Royaf Free Hospital School of Medicine, Rowland H i l l S t r ee t , London NW3 2PF, U.K.

PEOSPHOLIPID POLYMERS C l4EH IUEHOCOMPATIBLE Ul'BlUALS +

B r e n d a Bal l , *Richard le B. B i r d , Dennis Chapman

Summary :

When blood comes i n t o contac t wi th an a r t i f i c i a l sur face , a number of events OCCUK which include p ro te in adsorption, p l a t e l e t ac t iva t ion and the ac t iva t ion of the i n t r i n s i c pathway of blood coagulation. With t h e increased appl ica t ion of blood containing a r t i f i c i a l devices, there is a g rea t demand t o develop new b i o m a t e r i a l s which r e t a r d thrombus format ion . Our new approach t o so lv ing t h i s problem is t o mimic the non-thrombogenic sur face of na tu ra l b io log ica l membranes a t l e a s t i n a s i m p l e form. We have developed a p o l y m e r i s a b l e phospholipid and polyes te rs based on the major phospholipid polar head group present on the erythrocyte outer membrane surface. The coagulation of blood exposed t o t h e s e polymers was examined by t h e t echn ique of M a t e r i a l Thrombelas tography, a r e l a t i v e l y s i m p l e t e s t f o r t h e i n v i t r o s c r e e n i n g of polymer thrombogenic i ty . We p r e s e n t r e s u l t s which i n d i c a t e t h a t t h e polymerised phospholipid and polyes te rs show reduced thrombogenicity, and may therefore have po ten t i a l f o r fu tu re biomaterials.

+Paper p r e s e n t e d a t t h e meet ing of t h e GDCh-Fachgruppe "Makromole k u l a r e Chemie" on "Polymers and b io logica l Functions" i n Bad Nauheim (West Germany) on April 18/19, 1988.

@ 1989 Hilthig & WcpiVerlag. Buel 0003-3146/89/$03.W

169

Page 2: Phospholipid polymers & new haemocompatible materials

During o u r s t u d i e s of t h e b i o p h y s i c a l c h a r a c t e r i s t i c s o f t h e l i p i d s of biomembranes, eg t h e i r phase t r a n s i t i o n charac te r i s t ic , ’ t h e i r f l u i d i t y and i ts modu la t ion by c h o l e s t e r o l [Chapman e t a l l , Ladbrooke e t a 1 2 ] we began t o consider how the l i p i d mat r ix of biomembranes might be modulated by chemical processes eg. hydrogenation, ox ida t ion o r polymerisation. Because many of t he l i p i d s of biomembranes a r e unsaturated i n charac te r , we thought i t worthwhile t o a t t e m p t t o hydrogena te t h e doub le bonds which a r e p r e s e n t i n t h e l i p i d m a t r i x of biomembranes, i n o r d e r t o a r t i f i c a l l y modula te t h e biomembrane f l u i d i t y . To accomplish t h i s we developed a water so luble homogeneous c a t a l y s t [Chapman and Quinn3]. Using t h i s approach we were ab le t o s a t i s f a c t o r i l y hydrogenate the l i p i d s of biomembranes and a l s o serum l ipopro te ins [Katagi r i e t a14] . I n t h e c a s e of l i p o p r o t e i n s , we were a b l e t o show t h a t o n l y t h e ou te r phospholipid monolayer was hydrogenated.

The s u c c e s s of t h e s e s t u d i e s encouraged u s t o c o n s i d e r f u r t h e r chemica l m o d i f i c a t i o n s of biomembrane l i p i d s , i n p a r t i c u l a r whe the r i t would be poss ib le t o polymerise biomembrane s t ruc tures . Polymerising the mat r ix of na tu ra l biomembranes o r r econs t i t u t ed model membranes (liposomes) would enable us t o produce immobilized membrane enzyme systems. Liposomes (phospholipid v e s i c l e s ) c u r r e n t l y have many a p p l i c a t i o n s i n b io t echno logy as c a r r i e r v e s i c l e s i n t h e t r a n s p o r t of b i o l o g i c a l mo lecu le s , and i n medic ine as p o t e n t i a l d r u g d e l i v e r y s y s t e m s and r e d c e l l s u r r o g a t e s . However, c o n v e n t i o n a l l i posomes a r e u n s t a b l e and a r e a f f e c t e d by p r o c e s s e s such a s l y o p h i l i z a t i o n and f r e e z i n g ( v i t a l f o r long t e r m s t o r a g e of l iposomes) . Polymerised liposomes could have the p o t e n t i a l f o r s t a b i l i s i n g the liposome s t r u c t u r e s i n t h e s e v a r i o u s s i t u a t i o n s . Our main o b j e c t i v e t h e r e f o r e i n developing polymerisable phospholipids w a s t o make s y n t h e t i c p h o s p h o l i p i d s , which while r e t a in ing a s i m i l a r s t r u c t u r e t o conventional phospholipids, a r e capable of producing model membranes and n a t u r a l biomembranes of more s t a b l e s t ruc tu re .

W e s y n t h e s i z e d p o l y m e r i s a b l e p h o s p h o l i p i d s by t h e i n t r o d u c t i o n o f photosens i t ive d i ace ty l en ic groups i n t o one o r both acyl chains [Johnston e t a 1 5961. We a l s o i n t r o d u c e d d i a c e t y l e n e f a t t y a c i d s t o mutan t s which would i n c o r p o r a t e t h e s e f a t t y a c i d s b i o s y n t h e t i c a l l y i n t o t h e c e l l membrane s t r u c t u r e of t h e s e p a r t i c u l a r c e l l s [Leve r e t al’]. The p h o s p h o l i p i d s p o l y m e r i s e upon i r r a d i a t i o n w i t h UV-light fo rming a c r o s s - l i n k e d l i n e a r s t r u c t u r e c o n s i s t i n g of a l t e r n a t e conjugated double- and triple-bonds [Fig. 11. This was confirmed by 13C-NMR and Raman spectroscopic s t u d i e s [Pons e t a 1

D i a c e t y l e n i c p o l y m e r i s a t i o n is f a c i l i t a t e d when the s t r u c t u r e of the monomer most c l o s e l y r e s e m b l e s t h a t of t h e polymer l a t t i c e , i.e. i n t h e g e l s t a t e [Baugham and Yeel’]. UV-irradiation is performed a t temperatures wel l below the gel-to-liquid-crystall ine phase t r a n s i t i o n temperature (T,) of t he l i p i d , u s u a l l y a t O°C o r 4OC, i n a n oxygen-free envi ronment . The polymer a b s o r b s i n t h e v i s i b l e r e g i o n of t h e spec t rum and p o l y m e r i s a t i o n is accompanied by a c h a r a c t e r i s t i c red colouration, the i n t e n s i t y of which is an ind ica t ion of the amount of monomer t o polymer conversion [Johnston e t a 1 51. Diacetylenic polymerisation was demonstrated not only i n the s o l i d s t a t e and t h e aqueous s t a t e , i.e. as l i posomes , b u t a l s o i n monolayers a t a i r - w a t e r i n t e r f a c e s , i n m u l t i l a y e r s , and a f t e r i n c o r p o r a t i o n i n t o t h e membranes of

170

Page 3: Phospholipid polymers & new haemocompatible materials

l i v i n g cells [Hayward and Chapman ‘‘1.

c.

Fig. 1. Formation of the polyconjugated, phospholipid polymer from the d i ace ty l en ic monomer. PC=phosphorylcholine.

Recent permeabi l i ty s tud ie s [Freeman e t all’] using 6-carboxyfluorescein (CF) and ( 3 H ) i n u l i n have demons t r a t ed t h a t monomeric C Z 5 i d e n t i c a l c h a i n d i ace ty l en ic liposomes a r e permeable t o small molecules such as CF (MW-350) but r e l a t i v e l y impermeable t o l a rge molecules such a s i n u l i n (MW=5200). After UV p o l y m e r i s a t i o n of t h e s e l i posomes a d e c r e a s e i n p e r m e a b i l i t y of t h e s e v e s i c l e s t o s m a l l mo lecu le s was observed. Po lymer i c C 2 5 i d e n t i c a l c h a i n d i ace ty l en ic PC liposomes were a l s o shown t o exh ib i t high r e s i s t ance t o the des t ruc t ive ac t ion of plasma high dens i ty l ipopro te ins (HDL).

Many d i f f e r e n t po lymer i c l i p i d s have now been d e s c r i b e d i n t h e l i t e r a t u r e . These include methacryloylic-substituted l i p i d s [Regen e t a l l 3 , Kusumi e t a1 l 4 I , b u t a d i e n i c l i p i d s [Gros e t a l l 5 , Akimoto e t a 1 16 ] and v i n y l i n i c - subs t i tu ted l i p i d s [Tundo e t a 1 ”I . Polymerization i s i n i t i a t e d e i t h e r by a chemical agent, such a s azob i s i sobu ty ron i t r i l e (AIBN), o r by i r r a d i a t i o n wi th u l t r a v i o l e t (UV) l igh t . Most liposomes formed from these l i p i d s are prepared i n t h e i r monomeric s t a t e and subsequently polymerised.

Many po lymer i c b i o m a t e r i a l s a r e t h r o m b o g e n i c and t h e p r o d u c t i o n o f b i o m a t e r i a l s which a r e haemocompat ib le and non-immunogenic would be a new i n n o v a t i o n . Our a p p r o a c h t o t h i s p r o b l e m i s t h e m i m i c r y o f t h e thromboresistant nature of t he red blood c e l l sur face [Hayward and Chapman”]. Mammalian c e l l s conta in over 100 d i s t i n c t l y d i f f e r e n t l i p i d s due t o va r i a t ions i n the acyl chains and polar head groups. The asymmetric d i s t r i b u t i o n of the phospholipids i n the e ry throcyte and p l a t e l e t membranes has been w e l l reviewed [Zwaal e t al l8, Hayward and Chapman”]. In t he ou te r membrane of these c e l l s , phosphory lcho l ine (PC) i s t h e most prominent head group (88%), fo l lowed by phosphoryle thanolamine (PE). Phosphorylcholine i s present i n sphingomyelin and l e c i t h i n and c o n t r i b u t e s t o t h e i n t e r f a c i a l p r o p e r t i e s and

171

Page 4: Phospholipid polymers & new haemocompatible materials

t h r o m b o r e s i s t a n t n a t u r e of t h e e r y t h r o c y t e o u t e r s u r f a c e [Hayward and Chapman'']. The i n n e r membrane s u r f a c e is main ly composed o f n e g a t i v e l y cha rged l i p i d s eg. p h o s p h o r y l s e r i n e (PS) and is thrombogenic. During t h e s t imu la t ion of p l a t e l e t s the nega t ive ly charged phospholipids become exposed, and i n c r e a s e t h e r a t e of t h rombin f o r m a t i o n [Beve r s e t a1 "1. Zwaal e t a12' demons t r a t ed a marked d i f f e r e n c e i n t h e blood c l o t t i n g a b i l i t y o f t h e i n n e r and o u t e r h a l v e s of t h e r e d c e l l membrane. R igh t - s ide o u t r ed c e l l g h o s t s do n o t r educe t h e b l ank c l o t t i n g t i m e o f t h e Stypven tes t , whereas , non-resea led g h o s t s ( i e t h e i n n e r s u r f a c e ) r educe t h e c l o t t i n g t i m e i n a concent ra t ion dependent manner.

To produce non-thrombogenic su r faces we synthesized and f u r t h e r inves t iga ted t h e d i a c e t y l e n i c p h o s p h o l i p i d s c o n t a i n i n g a phosphory lcho l ine head group [ J o h n s t o n e t a151. C l o t t i n g s t u d i e s u s i n g t h e Stypven c l o t t i n g a s s a y , which determines the procoagulant a c t i v i t y of l i p i d d ispers ions , demonstrated t h a t d i a c e t y l e n i c phospho l ip id l i p o s o m e s a r e non-thrombogenic i n b o t h t h e i r monomeric and polymeric s t a t e s [Hayward and Chapman'']. This prothrombinase assay involves the a c t i v a t i o n of c l o t t i n g f a c t o r s X and V by Russell 's v iper venom, and is s e n s i t i v e t o b o t h phospho l ip id s t r u c t u r e and c o n c e n t r a t i o n [Schiffman e t alZ21. The rate of coagulation was s i g n i f i c a n t l y increased i n t h e p re sence o f b r a i n l i p i d e x t r a c t ( an e x t r a c t c o n s i s t i n g l a r g e l y o f n e g a t i v e l y charged p h o s p h o l i p i d s ) and a l s o i n t h e p re sence of c e r t a i n c o n c e n t r a t i o n s of p h o s p h a t i d y l c h o l i n e : p h o s p h a t i d y l s e r i n e m i x t u r e s . D i a c e t y l e n i c m o n o m e r i c a n d p o l y m e r i c l i p o s o m e s , a l o n g w i t h dimyristoylphosphatidylcholine liposomes had neg l ig ib l e e f f e c t s on the r a t e of c l o t f o r m a t i o n , s u g g e s t i n g t h a t t h e s e p o l y m e r i s a b l e v e s i c l e s a r e t h r o m b o r e s i s t a n t , mimicking t h e t h r o m b o r e s i s t a n t s u r f a c e s of r ed c e l l membranes [Hayward and Chapman "1.

Ju l i ano e t a lZ3 examined the e f f e c t s of conventional phospholipid liposomes and polymerised methacryolic liposomes containing PC head groups on p l a t e l e t aggrega t ion . These p r e l i m i n a r y s t u d i e s ind ica ted t h a t both non polymerised and polymerised PC liposomes had n e g l i g i b l e e f f e c t on p l a t e l e t agg rega t ion . However charged ves i c l e s can i n t e r a c t e i t h e r d i r e c t l y or i n d i r e c t l y t o reduce t h e p l a t e l e t r e sponse t o a g o n i s t s such a s ADP and thrombin. Bonte e t a l Z 4 a l s o recent ly demonstrated t h a t liposomes made from a conventional l i p i d and a d i l i p o y l l i p i d which c o n t a i n e d t h e PC p o l a r head group bound l e s s serum p ro te ins than liposomes wi th nega t ive ly charged l i p ids .

To i n v e s t i g a t e t h e th rombogen ic i ty of phospho l ip id s u r f a c e s w e r e c e n t l y e x p l o r e d t h e t e c h n i q u e o f m a t e r i a l t h r o m b e l a s t o g r a p h y (MTEG). The th rombe las tog raph is a mechan ica l ly o p e r a t e d sys t em which p r o v i d e s a continuous dynamic measure of blood coagulation. This technique w a s designed and developed by Hartert i n t h e l a t e 1940's [ H a r t e r t Z 5 ] . S ince then i t h a s been w i d e l y used i n many c l i n i c a l s e t t i n g s f o r t h e d i a g n o s i s of blood d i so rde r s [Franz and Coetzee'']. The thrombelastographic technique was l a t e r developed t o test the inf luence of ma te r i a l s on blood coagulation - Mater ia l Thrombelastography (MTEG) [Affeld e t alZ7, Carr e t a1 Bird e t alZ9, Hall e t a 1 "I. We have shown t h e v a l u e of d e t a i l e d s t a t i s t i c a l a n a l y s i s of t h e MTEG technique [Bird e t a 1 291.

172

Page 5: Phospholipid polymers & new haemocompatible materials

The thrombelastograph measures the e l a s t i c p rope r t i e s of whole blood c l o t s as t h e y a r e formed. It u s e s a s t e e l (V2A) p i s t o n p l aced i n a c u v e t t e (hav ing a l m m c l e a r a n c e be tween t h e s u r f a c e s ) which c o n t a i n s t h e blood. The c u v e t t e o s c i l l a t e s t h rough 4' 45' (1 /12 r a d i a n ) i n a 10 second cyc le . Th i s g i v e s a s h e a r ra te of 0.28 p e r second. The p i s t o n is suspended by a t o r s i o n w i r e which is l i n k e d t o a r e c o r d i n g c h a r t . The t o r q u e o f t h e c u v e t t e is t r a n s m i t t e d t o t h e p i s t o n v i a t h e f i b r i n s t r a n d s i n t h e blood c l o t as coagulation proceeds. The r e su l t i ng t r ace , the thrombelastogram, records the e l a s t i c i t y of t h e blood c l o t . A normal TEG is shown i n f i g . 2 , w i t h t h e standard TEG parameters [ N i ~ o l a ~ ~ ] . Hypocoagulation produces a prolonged r and k t i m e , and a reduced ma, e and A'. Each pa rame te r r e f l e c t s a d i f f e r e n t component of whole blood c o a g u l a t i o n , and t h e TEG c o n t a i n s a d d i t i o n a l i n f o r m a t i o n compared t o t h e s t a n d a r d l a b o r a t o r y t es t s [Zuckerman e t a13']. The advantage o f t h e TEG is t h a t i t keeps t h e blood a t 37OC, and due t o t h e pa ra f f in f i l m covering the blood, the sample is not exposed t o the atmosphere and r e s u l t a n t changes o f pH. It is a dynamic t e s t i n which t h e m a t e r i a l sur faces a r e i n in t ima te contact wi th blood.

- 30 min 1

.

Fig. 2. A typ ica l thrombelastogram. S l s t a r t , r-reaction time, k= c l o t t i n g speed, mawiaximum amplitude, e- lOOma/ lOO-ma, - Ao=rate of c l o t formation.

I f t h e b lood samples a r e k e p t c o n s t a n t t hen t h e c o a t i n g o f t h e p i s t o n and c u v e t t e on one channe l of t h e TEG can be v a r i e d and i t s th rombogen ic i ty s tud ied - the technique of ma te r i a l thrombelastography MTEG [Affeld e t a127, Car r e t a l Z 8 , B i rd e t a l Z 9 , H a l l e t a130]. The r a t i o of t h e TEG p a r a m e t e r s from t h e t r e a t e d and t h e u n t r e a t e d channe l s p r o v i d e s t h e b a s i s f o r t h e compar ison of t h e d i f f e r e n t m a t e r i a l s . An i d e a l non-thrombogenic s u r f a c e would cause minimal ac t iva t ion of c l o t t i n g shown as an extended r and k t ime

173

Page 6: Phospholipid polymers & new haemocompatible materials

w i t h a low A', ma and e. The r a t i o s a r e expres sed a s t e s t ( t ) s u b s t a n c e ove r the con t ro l ( 0 ) and such a sur face would have an rt/ro and kt/ko approaching i n f i n i t y while Aot/Aoo, mat/mao, and et/eo approach zero. The changes i n the t e s t channe l TEG shape i n d i c a t e which component h a s been a c t i v a t e d o r l e f t u n a f f e c t e d . The use o f t h e r a t i o e x c l u d e s e x t r a n e o u s e f f e c t s , and i t ' s d e v i a t i o n away from u n i t y i n d i c a t e s b o t h t h e component of whole b lood coagulation a f f ec t ed and the ex ten t of ac t iva t ion .

Fig. 3. Thrombelastography of biomembrane l i p ids .

We used t h e MTEG t echn ique t o d e m o n s t r a t e t h e r e l a t i o n s h i p be tween l i p i d asymmetry and haemocompatibility (Fig. 3).

Our s tud ie s ind ica t e t h a t t he predominant po lar head group on the erythrocyte o u t e r membrane s u r f a c e , PC when c o a t e d o n t o t h e s u r f a c e of t h e p i s t o n and cuvet te shows good haemocompatibility. The observations f o r DPPC can not be

174

Page 7: Phospholipid polymers & new haemocompatible materials

a t t r i b u t e d t o t h e d e s o r p t i o n o f t h e l i p i d c o a t i n g f rom t h e s u r f a c e i n t o t h e b lood i n t h e form of l i posomes , and t h e r e b y a c t i n g on t h e b lood d i r e c t l y t o r educe t h e c l o t s t r e n g t h , s i n c e t h e a d d i t i o n of DPPC l iposomes t o t h e blood d i r e c t l y d id not s i g n i f i c a n t l y r e t a rd thrombus formation. However, t o check t h a t w e were obtaining the des i red o r i en ta t ion of t he po la r head groups wi th r e s p e c t t o t h e s u r f a c e ( i e w i t h t h e p o l a r g roups i n c o n t a c t w i t h t h e b lood , and the hydrocarbon chains i n contac t wi th the TEG sur faces and so hidden from t h e b lood) , we examined t h e e f f e c t o f c o a t i n g t h e p i s t o n and c u v e t t e w i t h oc t acosane ( a hydrocarbon). T h i s was thrombogenic [B i rd e t a12']. The reduction i n thrombogenicity observed wi th DPPC i s much l a rge r than t h a t seen w i t h t h e hydrophobic s u r f a c e s ( t h e p l a s t i c and oc tacosane) . Sphingomyelin (Sm) t e s t e d i n d i v i d u a l l y , o r when mixed i n t h e same l i p i d molar r a t i o s a s those present on the ou te r e ry throcyte membrane eg d ipa lmi toyl phosphatidyl- choline (DPPC):dipalmitoylphosphatidylethanolamine (DPPE): Sm (44: 12: 4 4 ) , a l s o show low thrombogenicity l i k e DPPC. DPPC and Sm show an increase i n the M r and Mk t imes ind ica t ing a reduced c l o t formation and a decrease i n the Me, MAo and M m a v a l u e s , i n d i c a t i n g a r e d u c t i o n i n p l a t e l e t a c t i v i t y . By c o n t r a s t t h e ne ga t i ve 1 y c ha r g e d 1 i p i d s d i p a 1 m i t o y 1 p h o s p h a t i d y 1 s e r i n e ( DP P S ) and dimyristoylphosphatidylglycerol (DMPG) which represent l i p i d s found on the e ry throcyte inner membrane sur face showed a increased r a t e of c l o t formation and p l a t e l e t a c t i v a t i o n a s compared t o the outer membrane l i p i d s ( ie lower M r and Mk and g r e a t e r Me, MAo and M m a va lues) . The r e s u l t s ob ta ined f rom o u r MTEG s t u d i e s c o r r e l a t e w e l l w i t h t h e i d e a t h a t once a c t i v a t e d , p l a t e l e t s expose t h e i r negatively charged inner membrane sur face t o the outer sur face and thus increase the r a t e of thrombin formation.

We next ' cons ide red t h e p o t e n t i a l of c o a t i n g p l a s t i c s u r f a c e s w i t h t h e s e a c e t y l e n i c p h o s p h o l i p i d s and p o l y m e r i s i n g them i n s i t u u s i n g UV r a d i a t i o n [Albrecht e t a133 1 and examining t h e i r biocompatibil i ty. We reported [Hall e t a130] a reduced thrombogenicity observed with the p i s ton and cuvet te coated w i t h DPPC ( c o n v e n t i o n a l p h o s p h o l i p i d ) (F ig . 3) and C Z 5 i d e n t i c a l c h a i n DAPC (photopolymerised phospholipid) when compared with the untreated sur face (Fig. 4 ) .

Both DPPC and DAPC showed an extended M r and Mk times and reduced M e , MAo and Mma values. A l l the r e s u l t s c l e a r l y h ighl ight the importance of the PC head group a s t h e e f f e c t i v e p a r t of t h e phospho l ip id molecule i n p r e v e n t i n g t h e a c t i v a t i o n o f c o a g u l a t i o n , r a t h e r t han t h e l i p o p h i l i c s i d e cha in . The TEG p a r a m e t e r s r and k r e f l e c t t h e deg ree of a c t i v a t i o n of c l o t t i n g f a c t o r s and the prolongation of M r and Mk impl ies reduced ac t iva t ion and a reduced rate of thrombin formation by the t e s t surface. DPPC almost doubles the M r , and the Mk v a l u e i s i n f i n i t e i n d i c a t i n g low l e v e l s of a c t i v a t i o n . These r e s u l t s support our e a r l i e r observations t h a t PC containing phospholipid ves i c l e s do n o t a c t i v a t e c l o t t i n g f a c t o r s i n t h e Stypven tes t [Hayward and Chapman'']. S i m i l a r l y t h e r e d u c t i o n of Mma f o r DPPC t o 6 % of normal i s p a r t i c u l a r l y s i g n i f i c a n t s i n c e ma i s l a r g e l y de t e rmined by p l a t e l e t s . Th i s r e s u l t i n d i c a t e s t h a t f e w o f t h e p l a t e l e t s p r e s e n t a r e a c t i v a t e d by t h e phosphory lcho l ine l i p i d coa t ing . A s can be s e e n i n Fig. 3 and Fig. 4 , DPPC and the polymerised l i p i d (DAPC) a r e more blood compatible than the polymer mater ia l Dacron, which i s commonly used f o r vascular prothesis.

175

Page 8: Phospholipid polymers & new haemocompatible materials

DACRON

OAPC

POLYESTER C

POLYESTER D

POLYESTER G

Fig. 4. Thrombelastography of phospholipid polymers and Dacron coating.

We have recent ly begun t o develop new haemocompatible polymers having good r h e o l o g i c a l and p h y s i c a l c h a r a c t e r i s t i c s . T h i s approach i n v o l v e s t h e incorpora t ion of PC groups i n t o the s t r u c t u r e of a polyes te r o r polyurethane polymer. The new p o l y e s t e r s we have developed are s y n t h e s i s e d f rom glycerophosphorylcholine (GPC), e t h y l e n e g l y c o l and p h t h a l i c a c i d l i n k e d randomly v i a e s t e r bonds. The MTEG r e s u l t s of t h e s e p o l y e s t e r s show a n improved h a e m o c o m p a t i b i l i t y compared w i t h t h e r e s u l t s o b t a i n e d w i t h t h e u n t r e a t e d s u r f a c e (F ig . 4). P o l y e s t e r s C and D va ry on ly i n t h e i r GPC conten t , 22.1% and 39.8% respectively. Although polyes te r C has a longer M r ,

176

Page 9: Phospholipid polymers & new haemocompatible materials

i t has a l a r g e r Mma and MAo t h a n p o l y e s t e r D , and t h i s may be r e l a t e d t o t h e h igh GPC c o n t e n t o f p o l y e s t e r D. Note t h a t t h e v a r i a t i o n i n GPC c o n t e n t changes t h e MTEG p a r a m e t e r s a f f e c t e d . For p o l y e s t e r C, c l o t t i n g f a c t o r a c t i v a t i o n i s reduced (Mr = 1.24). For p o l y e s t e r D, p l a t e l e t a c t i v a t i o n i s reduced (Mma = 0.12). while Mr is unchanged.

The r e s u l t s f o r po lyes te r G show low ac t iva t ion of both c l o t t i n g f a c t o r s ( M r =

1.291) and p l a t e l e t s (Mma = 0.139). P o l y e s t e r G has 31.4% GPC and i s s i m i l a r i n s t r u c t u r e t o p o l y e s t e r s C and D, b u t a l s o c o n t a i n s po lyu re thane l i n k s t o form a polyester-polyurethane complex. Clearly f u r t h e r development is needed t o o p t i m i s e t h e r a t i o s o f p o l y e s t e r t o po lyu re thane , and t h e GPC con ten t . Polyes te rs and polyurethanes t h a t have a high molecular weight and incorpora te PC groups may be use fu l e i t h e r f o r sur face coa t ing of ex i s t ing b iomater ia l s o r f o r t he formation of novel b iomater ia l s wi th improved blood compatibil i ty.

Future developments i n t h i s f i e l d should see the production of polymers with v a r y i n g cha rge d i s t r i b u t i o n and of d i f f e r i n g rheologica l c h a r a c t e r i s t i c s t o p rov ide t h e optimum c o n d i t i o n s f o r new b i o m a t e r i a l a p p l i c a t i o n s . C l e a r l y fu r the r i n v i t r o t e s t such a s p ro te in adhesion p l a t e l e t ac t iva t iodaggrega t ion and c e l l adhes ion and a number of i n v i v o a n i m a l s t u d i e s need t o be made. Our concept of mimicking the p rope r t i e s of na tu ra l biomernbranes t o produce new haemocompatible b iomater ia l coa t ings and polymers may prove use fu l f o r various medical and health-care s i t ua t ions .

BH g r a t e f u l l y acknowledges the support of the SERC a s a BB case student. RB g ra t e fu l ly acknowledges the support of the Stanley Thomas Johnson Foundation. DC acknowledges the Wellcome Trus t f o r support. We thank D r L A . Durrani f o r supplying the DAPC phospholipid and D r M. Kojima f o r supplying the polyes te rs f o r t h i s work.

1.

2.

3. 4.

5.

6.

7.

8.

D. Chapman, R.M. W i l l i a m s , B.D. Ladbrooke, Chem. Phys. L i p i d s L ( 1 9 6 7 ) 445-475. B.D. Ladbrooke, R.M. W i l l i a m s , D. Chapman, Biochimica e t b i o p h y s i c a Acta (1968) 333 - 340. D. Chapman, P.J. Quinn , Chem. Phys. L i p i d s C. K a t a g i r i , J.S. Owen, P.J. Qu inn , D. Chapman, Eurpoean J o u r n a l of Biochemistry 118 (1981) 335 - 338. D.S. Johns ton , S . Sanghera , M. Pons, D. Chapman, Biochim. Biophys. Acta - 602 (1980) 57-69. D.S. Johns ton , L.R. McLean, M.A. Whittam, A.D. C la rk , D. Chapman, Biochemistry 2 (1983) 3194-3202. J.Lever, A. Alonso, A. Dur ran i , D. Chapman, Biochemica e t Biophys ica Acta 727 (1983) 327 - 335. M. Pons, D.S. Johns ton , D. Chapman, J. Polym. Sci.Polym. L e t t . Ed. 20

(1976) 363 - 372.

177

Page 10: Phospholipid polymers & new haemocompatible materials

(1982) 513-520. M. Pons, D.S. J o h n s t o n D. Chapman, Biochim. Biophys. Acta 693 (1982) 461-465. R.H. Baugham and K.C. Yee, Macromol. Rev. 12 (1978) 219-239. J.A. Hayward, D. Chapman, Biomater ia l s 2 (1984) 135-142. F.J. Freeman, J.A. Hayward, D. Chapman, Biochim. Biophys. Acta 924 (1987) 341-351.

9.

10. 11. 12.

13.

14.

15.

16.

17.

18.

19.

20.

21. 22. 23.

24.

25. 26. 27.

28.

29.

30.

31.

32.

33.

S.L. Regen, A. S ingh , G. Oehme, M. S ingh , J. Am. Chem. SOC. 104 (1982) 791-795 A. Kusumi, M. S ingh , D.A. T i r e l l , G. Oehme, A. S ingh , N.K.P. Samuel, J.S. Hyde, S.L. Regen, 3. Am. Chem. SOC. 105 (1983) 2975-2980. L. Gros, H. R ingsdor f , H. Schupp, Angew. Chem. I n t . Ed. Engl. 20 (1981) 305. A. Akimoto, K. Dorn, L. Gros , H. R i n g s d o r f , H. Schupp, Angew. Chem. 20 (1981) 90-91. P. Tundo, D.J. K ippenbe rge r , P.L. Klahn , N.E. P r i e t o , T.C. J a o , J.H. F e n d l e r , R.F.A. Zwaal, E.M. Bevers , L i p i d s and Membranes: p a s t , p r e s e n t and future. Amsterdam, Elsevier 1986, p. 231-257. J.A. Hayward, D. Chapman, ' B i o c o m p a t i b i l i t y o f t i s s u e ana logues ' . CRC Press , Boca Raton Flor ida , 1985, Vol. 2, p 119-132. E.M. Beve r s , P. Comfur ius , R.F.A. Zwaal, Biochim. Biophys. Acta 736 (1983) 57-66. R.F.A. Zwaal , P.Comfuris, U.M. Van Deenen, Na tu re 268 (1977) 358-360. S. Schiffman, I. Theodor, S.I. Rapaport Biochemistry S (1969) 1397-1405 R.L. J u l i a n o , M.J. HSU, D. P e t e r s o n , S.L. Regen, A. S ingh , Exp. C e l l . Res. 146 (1983) 422-427. F. Bonte, M.J. Hsu, A. Papp, K. Wu, S.L. Regan, R.L. J u l i a n o , Biochim. e t Biophys. Acta 900 (1987) 1-9. H. Har te r t , Klin Wochenscher 26 (1948) 577-583 R.C. Franz , W.J. Coe tzee , Surg. Ann. 13 (1981) 75-107. K. A f f e l d , J. Berge r , R. M u l l e r , E.S. Bucher l , Proc. Eur. SOC. A r t i f . Organs 1. (1974) 26-29. S. Carr, L. Zuckerman, J. C a p r i n i , Res. Comm. Chem. Path. & Pharm. 12 (1976) 507-519. R. l e R. B i rd , B. H a l l , D. Chapman, K.E.F. Hobbs, Throm. R e s . 1988 ( I n press ) . B. H a l l , R. l e R. B i rd M. Kojima and D. Chapman, B i o m a t e r i a l s 1988 ( i n press). P. de Nicola, Thrombelastography, Charles Thomas, Spr ingf ie ld , I l l i n o i s , 1957 L. Zuckerman, E. Cohen, J.P. Vagher, E. Woodward, J.A. C a p r i n i , Thromb. Haemostas. (S tu t tga r t ) (1981) 752-756. 0. A l b r e c h t , D.S. Johns ton , C. V i l l a v e r d e and D. Chapman, B ioch imica e t Biophysica Acta 687 (1982) 165 - 169.

J. Am. Chem. SOC. 104 (1982) 456-461.

178