Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings&...

33
Phase Transi+ons in Random Dyadic Tilings and Rectangular Dissec+ons Sarah Cannon, Sarah Miracle and Dana Randall Georgia Ins4tute of Technology

Transcript of Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings&...

Page 1: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Phase  Transi+ons  in  Random  Dyadic  Tilings  and  Rectangular  Dissec+ons  

Sarah  Cannon,  Sarah  Miracle  and  Dana  Randall    

Georgia  Ins4tute  of  Technology  

Page 2: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Rectangular  Dissec+ons  

Rectangular  dissec4ons  arise  in:  •  VLSI  layout  •  Mapping  graphs  for  floor  layouts    •  Rou4ngs  and  placements    •  Combinatorics  

Rectangular  Dissec4on:    A  par44on  of  a  laDce  region  into  rectangles  whose  corners  lie  on  laDce  points.  

Page 3: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Rectangular  Dissec+ons      

Par44on  n  x  n    laDce  region  into  rectangles  such  that:  

1.  There  are  n  rectangles  each  with  area  n 2.  The  corners  of  rectangles  lie  on  laDce  points  3.   n = 2k for  an  even  integer  k  

The  Edge-­‐Flip  Chain  Repeat:  1.  Pick  an  random  edge  e,  2.  If  e  is  flippable,  flip  edge  e  

with  probability  ½ �1 �2

)

Open  Ques4on:  Does  the  edge-­‐flip  chain  mix  rapidly?  

Page 4: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Talk  Outline  

1.  Background  and  Previous  Work  2.  Our  Results  3.  Proof  Ideas  

Page 5: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Related  Work:  Triangula+ons  

•  Triangula4ons  of  general  point  sets:          Open  

•  Triangula4ons  of  point  sets  in  convex  posi4on:            Fast                                                                  [McShine,  Tetali  ‘98],    [Molloy,  Reed,  Steiger  ‘98]  

•  Triangula4ons  on  subsets  of  Z2:            Open  

•  Weighted  Triangula4ons  on  subsets  of  Z2                                                                    [Caputo,  Mar4nelli,  Sinclair,  Stauffer  ‘13]  

 

The  edge-­‐flip  chain:  )

�1 �2

Page 6: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Related  Work:  Weighted  Triangula+ons  

Weight  (σ) = λ(total length  of  edges)      

[Pietro Caputo, Fabio Martinelli, Alistair Sinclair and Alexandre Stauffer. “Random Lattice Triangulations: Structure and Algorithms.” 45th Symposium on Theory of Computing (STOC), 2013.]

[Caputo,  Mar4nelli,  Sinclair,  Stauffer  ‘13]

E.g.,  for  λ >  1,      

 larger  weight      smaller  weight  

Page 7: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Related  Work:  Weighted  Triangula+ons  

The  edge-­‐flip  chain:  

Weight  (σ) = λ(total length  of  edges)      

Results  [CMSS]:  

[Pietro Caputo, Fabio Martinelli, Alistair Sinclair and Alexandre Stauffer. “Random Lattice Triangulations: Structure and Algorithms.” 45th Symposium on Theory of Computing (STOC), 2013.]

)

�1 �2

[Caputo,  Mar4nelli,  Sinclair,  Stauffer  ‘13]

�c = 1

Polynomial Mixing Exponential Mixing

�:�0

Conjectured

Phase Transition

Page 8: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Previous  Work:  Rectangular  Dissec+ons  

Special  Cases:  

1.  Domino  Tilings  

 

2.    Dyadic  Tilings  

 

The  edge-­‐flip  chain:  

�1 �2

)

Fast:      [Luby,  Randall,  Sinclair  ‘01],    [Randall,  Tetali  ‘00]  

Page 9: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Special  Cases:  2.  Dyadic  Tilings    

A  dyadic  rectangle  is  a  region  R  with  dimensions  

where  a,  b,  s  and  t  are  nonnega4ve  integers.  

A  dyadic  4ling  of  the  2k  x  2k  square  is  a  set  of  2k  dyadic  rectangles,  each  with  area  2k    (whose  union  is  the  full  square).    

Dyadic Not dyadic ,

 Not  a  dyadic  +ling    A  dyadic  +ling    

Page 10: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Previous  Results  –  Dyadic  Tilings  

The  edge-­‐flip  chain  connects  the  set  of  dyadic  4lings.                                                                                                                                                    [Janson,  Randall,  Spencer  ‘02]  

�1 �2

)The  edge-­‐flip  chain:  

Open  Ques4on:  Does  the  edge-­‐flip  chain  converge  quickly?  

There  is  a  different  Markov  chain  that  converges  quickly.    [JRS]  

Page 11: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Talk  Outline  

1.  Background  and  Previous  Work  2.  Our  Results  3.  Proof  Ideas  

Page 12: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Our  Results:  Connec+vity  

The  Edge-­‐Flip  Chain  Repeat:  1.  Pick  an  random  edge  e,  2.  If  e  is  flippable,  flip  edge  e  

with  probability  ½ �1 �2

)

Theorem  1:  The  Edge-­‐Flip  Chain  connects  the  set  of  all  dissec4ons  of  the  n  x  n  laDce  region  into  n  rectangles  of  size  n.  

Page 13: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

 Weighted  Rectangular  Dissec+ons  

Given  an  input  parameter  λ > 0,  

Weight  (σ) = λ(total length  of  edges).      

smaller weight larger weight

For  λ < 1,  

smaller weight larger weightsmaller weight larger weight

For  λ > 1,  

smaller weight larger weight

Page 14: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

�1 �2

)

 Weighted  Rectangular  Dissec+ons  

Given  an  input  parameter  λ > 0,  

Weight  (σ) = λ(total length  of  edges).      

The  Weighted  Edge-­‐Flip  Chain  Repeat:  1.  Pick  a  random  edge  e  and  p  ∈  𝑢  (0,1)  2.  If  e  is  flippable,  let  e’  be  the  new  edge  it  can  be  flipped  to.  3.  Flip  edge  e  with  probability  ½  if  p < λ(|e’| - |e|).

�1�2

)

Page 15: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

The  Mixing  Time      Defini4on:    The  total  varia4on  distance  is    

               ||Pt,π||    =    max      __          ∑      |Pt(x,y)  –  π(y)|.  x∈  Ω    y∈ Ω                2  

       1  

A  Markov  chain  is    polynomial  mixing  if  τ(ε)    is    poly(n,  log(ε-­‐1)).                                    (n  is  the  number  of  rectangles)  

Defini4on:    Given  ε,  the  mixing  4me  is  

τ(ε)  =  min  {t:  ||Pt’,π||    <  ε,              t’  ≥  t}.      A  

A  Markov  chain  is  exponen4al  mixing  if  τ(ε)    is    at  least  exp(n).                                            

Page 16: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Our  Results:  Dyadic  Tilings  

λ = 0.80 λ = 1.00 λ = 1.03

Rigorous  proofs  all  the  way  to  the  cri4cal  point  λc= 1 !

?

�c = 1

Polynomial Mixing

�:Exponential Mixing

Page 17: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Our  Results:  Rectangular  Dissec+ons  

λ = 0.80 λ = 1.00 λ = 1.03

Exponen4al  mixing  for  very  different  reasons  

?

� = 1

Exponential Mixing

�:Exponential Mixing

Page 18: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Talk  Outline  

1.  Background  and  Previous  Work  2.  Our  Results  3.  Proof  Ideas  

a.  (General)  The  edge-­‐flip  chains  connects.  b.  (Dyadic)  When  λ  <  1,  the  edge-­‐flip  chain  is  poly.  c.  (Both)  When  λ  >  1,  the  edge-­‐flip  chain  is  exp.  d.  (General)  When  λ  <  1,  the  edge-­‐flip  chain  is  exp.  

Page 19: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Proof  Sketch:  Connec+vity  

Thm  1:  The  Edge-­‐Flip  Chain  connects  the  set  of  dissec4ons  of  the  n  x  n  laDce  region  into  n  rectangles  of  area  n.  

It’s  not  immediately  obvious  that  a  single  valid  move  even  exists!  Proof  sketch:    Double  induc4on  on  “h-­‐regions”:  

•  Simply-­‐connected  subset  of  rectangles  from  a  dissec4on  •  All  rectangles  have  height  at  most  h  •  All  ver4cal  sec4ons  on  the  boundary  have  height  c.h        (for  some  integer  c)  

For  n  =16,  an  8-­‐region  and  a  4-­‐region.  

Page 20: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

) ) )

Proof  Sketch:  Connec+vity  

Thm  1:  The  Edge-­‐Flip  Chain  connects  the  set  of  dissec4ons  of  the  n  x  n  laDce  region  into  n  rectangles  of  size  n.  

It’s  not  immediately  obvious  that  a  single  valid  move  even  exists!  

Proof  sketch:    Double  induc4on  on  “h-­‐regions”:     •  Prove  can  4le  every  h-­‐region  with  all  rectangles  of  height  h  

•  Inside  every  h-­‐region,  find  an  h/2-­‐region  or  an  h-­‐region  with  smaller  area  

 

I.H.

h/2

h

h/2

Page 21: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Proof  Sketch:  Connec+vity  

Thm  1:  The  Edge-­‐Flip  Chain  connects  the  set  of  dissec4ons  of  the  n  x  n  laDce  region  into  n  rectangles  of  size  n.  

It’s  not  immediately  obvious  that  a  single  valid  move  even  exists!  Proof  sketch:    Double  induc4on  on  “h-­‐regions”:          

n-­‐region  

•  Prove  can  4le  every  h-­‐region  with  all  rectangles  of  height  h          

Page 22: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

1.  Background  and  Previous  Work  2.  Our  Results  3.  Proof  Ideas  

a.  (General)  The  edge-­‐flip  chains  connects.  b.  (Dyadic)  When  λ  <  1,  the  edge-­‐flip  chain  is  poly.  c.  (Both)  When  λ  >  1,  the  edge-­‐flip  chain  is  exp.  d.  (General)  When  λ  <  1,  the  edge-­‐flip  chain  is  exp.  

Talk  Outline  

Page 23: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Fast  Mixing  for  Dyadic  Tilings  

Proof  Technique:    Path  coupling  with  an  exponen4al  metric  

         [Kenyon,  Mossel,  Perez  ‘01][Greenberg,  Pascoe,  Randall  ‘09]  

Thm:  For  any  constant  λ < 1 ,  the  edge-­‐flip  chain  on  the            set  of  dyadic  4lings  converges  in  4me  O(n2 log n).  

For  two  configura4ons  differing  by  flipping  edge    f    to  edge    e,  let        the  distance  between  them  be    λ|f|-|e|.

�c = 1

Polynomial Mixing

�:Exponential Mixing

Page 24: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

1.  Background  and  Previous  Work  2.  Our  Results  3.  Proof  Ideas  

a.  (General)  The  edge-­‐flip  chains  connects.  b.  (Dyadic)  When  λ  <  1,  the  edge-­‐flip  chain  is  poly.  c.  (Both)  When  λ  >  1,  the  edge-­‐flip  chain  is  exp.  d.  (General)  When  λ  <  1,  the  edge-­‐flip  chain  is  exp.  

Talk  Outline  

Page 25: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Slow  Mixing  when  λ>1  

Proof  idea:  Show  that  a  “boxleneck”  exists.  

Thm:  For  any  constant  λ > 1 ,  the  edge-­‐flip  chain  requires                            4me  exp(Ω(n2)).  

S S

Page 26: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

The  “Boxleneck”  

At  least  one        1  x  n  rectangle    

No  1  x  n  or  n  x  1  rectangles  

At  least  one        n  x  1  rectangle    

Page 27: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

1.  Background  and  Previous  Work  2.  Our  Results  3.  Proof  Ideas  

a.  (General)  The  edge-­‐flip  chains  connects.  b.  (Dyadic)  When  λ  <  1,  the  edge-­‐flip  chain  is  poly.  c.  (Both)  When  λ  >  1,  the  edge-­‐flip  chain  is  exp.  d.  (General)  When  λ  <  1,  the  edge-­‐flip  chain  is  exp.  

Talk  Outline  

Page 28: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Slow  Mixing  when  λ<1  

Proof  idea:    Show  that  a  “boxleneck”  exists.  

Thm: For  any  constant  λ < 1 ,  the  edge-­‐flip  chain  on      rectangular  dissec4ons  requires  4me  exp(Ω(n log n)).  

Key  Ideas:  1.  In  order  to  remove  a  “bar”  you  need  

two  bars  next  to  each  other.  2.  If  you  have  2  bars  you  must  also  have  

lots  of  other  thin  rectangles.  

 

� = 1

Exponential Mixing

�:Exponential Mixing

Page 29: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

The  “Boxleneck”  

Separa4on  ≥  n/2  +  2   Separa4on  <  n/2  +  2    

At  least  4  bars  and  separa4on  =  n/2  +  2    

•  Pair  up  the  bars  le|  to  right  •  The  separa2on  is  the  sum  of  the  “gaps”  

Separa4on = g1 + g2 + 4 g1 g2

Page 30: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

The  “Boxleneck”  

       At  least  4  bars  and  separa4on  =  n/2  +  2    

g1 = d1 = n/2 -2

= 0111 . . . 1110 (in  binary)  g1 d1

Page 31: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

The  “Boxleneck”  

       At  least  4  bars  and  separa4on  =  n/2  +  2    

g1 = d1 = n/2 -2

= 0111 . . . 1110 (in  binary)  . . . d1

Page 32: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Summary  and  Open  Problems  

1. What  happens  when  λ  =  1  for  dyadic  and  general  4lings?  

2. When  does  bias  speed  up  or  slow  down  a  chain?      

3.  Is  there  a  MC  that  is  polynomial  when  the  EF  chain  is  not?  

Dyadic  Tilings:  

General  Rectangle  Dissec4ons:  

?

?

�c = 1

Polynomial Mixing

�:Exponential Mixing

� = 1

Exponential Mixing

�:Exponential Mixing

Page 33: Phase&Transi+ons&in&Random&Dyadic&Tilings& … · Phase&Transi+ons&in&Random&Dyadic&Tilings& and&Rectangular&Dissec+ons& Sarah%Cannon,%Sarah%Miracle%and%DanaRandall% GeorgiaIns4tute%of%Technology%

Thank  you!