Phase Equilibriain Reactive Distillation Processes...

46
2006/6/21 NTUST 1 Phase Equilibria in Reactive Distillation Processes- Theories and Experiments Ming-Jer Lee Department of Chemical Engineering National Taiwan University of Science and Technology

Transcript of Phase Equilibriain Reactive Distillation Processes...

2006/6/21 NTUST 1

Phase Equilibria in Reactive Distillation Processes- Theories and Experiments

Ming-Jer LeeDepartment of Chemical Engineering

National Taiwan University of Science and Technology

2006/6/21 NTUST 2

Outline

n Introductionn Phase Equilibrium Criterian Thermodynamic Models

u Equations of Stateu Activity Coefficient Models

n Parameter Determinationsn Thermodynamic Properties from Literaturen Experiments

u VLE, LLE, VLLEn Concluding Remarks

2006/6/21 NTUST 3

Reactive Distillation Processes

n Reactionsu Esterification, hydrolysis,

transesterification,….u Kinetic models (ai = xi γi)

« Pseudo-homogeneous« Langmuir-Hinshelwood« Eley-Rideal

n Phase equilibriau VLE, VLLEu Thermodynamic models

« φ−φ (Equations of state)« γ−φ (Activity coefficient models)

A

B

C

D

Reaction + VLE

VLE

VLE

VLLE

2006/6/21 NTUST 4

Phase Behavior in an Esterification, Hydrolysis, or Transesterification Reactive Distillation Column

n Components: Alcohol/Acid/Ester/Water

n Partially miscible: (two liquid phases)u Water + Alcohols (C4 or higher)u Water + Estersu Water + Alcohols + Estersu Water + Alcohols + Esters + Acids

n One liquid phase: Vapor-liquid equilibrium (VLE)n Two liquid phases: Vapor-liquid-liquid equilibrium (VLLE)

2006/6/21 NTUST 5

Phase Equilibrium Criterian At phase equilibria:

u TI = TII = TIII = … = Tu PI = PII = PIII = … = Pu fiI (T, P, xi

I) = fiII (T, P, xiII) = fiIII (T, P, xi

Iii) = .. for i = 1, 2,.., c

n Criteria for systems at VLE:

u fiv = fiL for i = 1, 2,…, c

u φ-φ method:PxfPyf i

Li

Lii

Vi

Vi φφ ===

Both the vapor phase and liquid phase fugacities are calculated from an equation of state.

u γ-φ method:oL

iiiL

iiVi

Vi fxfPyf γφ ===

Vapor phase fugacity is calculated from an equation of state and liquid phase fugacity from an activity coefficient model.

2006/6/21 NTUST 6

Phase Equilibrium Criterian Criteria for systems at LLE

u fiLI = fiLII for i = 1, 2,…, cu Using EOS

IIi

LIIi

Ii

LIi

IIi

LIIi

Ii

LIi xxPxPx φφφφ =⇒=

IIi

IIi

Ii

Ii

oLi

IIi

IIi

oLi

Ii

Ii xxfxfx γγγγ =⇒=

n Criteria for systems at VLLE u fiv = fiLI = fiLII for i = 1, 2,…, c

u φ-φ method

u Using activity coefficient model

u γ-φ method

PxPxPy IIi

LIIi

Ii

LIii

Vi φφφ ==

oLi

IIi

IIi

oLi

Ii

Iii

Vi fxfxPy γγφ ==

2006/6/21 NTUST 7

Fugacity and Fugacity Coefficient

n Definition of fugacity (fi)

−=

RT)y,P,T(G)y,P,T(Gexp)Py(f i

IGMiii

ii

−==

RT)y,P,T(G)y,P,T(Gexp

)Py(f i

IGMiii

i

iiφ

n Definition of fugacity coefficient (φi)

( )

−= ∫ dPVV

RTexp

P IGMii

0

1

EOS

ZlnVdNPN

VRT

RTln

P/ZRTV

VN,V,Ti

i

ij

∂∂

−= ∫=

∞=≠

2006/6/21 NTUST 8

Fugacity Coefficient in Vapor Phase

n fiV = φiV P yi

n Gases at very low pressures:u EOS: Ideal gas lawu φi

V = 1, fiV = P yi = Pi

n Gases at low to moderate pressures (up to 10 –20 bar):u EOS: Two-term virial equation

∑∑==+=i j

ijjiimixmiximix )T(Byy)y,T(Bwhere,Z

V)y,T(B

RTVP 1

++=−= ∑

= RTPBZwhere,Zln)T(By

Vln mix

mixmix

c

jijj

Vi

411212

u B(T): Second virial coefficientu Non-association: Tsonopoulos (1974, 1975), Lee and Chen (1998)u Association: Hayden and O’Connell (1975)u Input variables: critical properties, ω, µ, Rg, association parameters,.

2006/6/21 NTUST 9

Fugacity Coefficient in Vapor Phase

where kij: binary interaction parameter

( )( )( )

−+

++

−−

−−−=

RTbPZRTbPZ

lnbb

a

ay

bRTa

RTbPZlnZ

bbln

V

V

ijijj

VViVi

21

212

221φ

)bV(b)bV(V)T(a

bVRTP

−++−

−=

( ) i

c

ji

c

i

c

jjjiiijji

c

i

c

jijji byb;aakyyayya ∑∑∑∑∑

== == =

=−==11 11 1

1

n Gases at high pressures:u EOS: e.g., Peng-Robinson EOS

Mixing Rules:

n Input variables: Tc,i, Pc,i, ωi

n Parameters: kij’s

2006/6/21 NTUST 10

Fugacity Coefficient in Liquid Phase

( )( )( )

−+

++

−−

−−−=

RTbPZRTbPZ

lnbb

a

ax

bRTa

RTbPZlnZ

bbln

L

L

ijijj

LLiLi

21

212

221φ

)bV(b)bV(V)T(a

bVRTP

−++−

−=

( )

i

c

ji

c

i

c

jjjiiijji

c

i

c

jijji

bxb

aakxxaxxa

∑∑∑∑

=

= == =

=

−==

1

1 11 1

1

n fiL = φiL P xi

n Fugacity coefficient calculated from an EOS: Peng-Robinson EOS

Mixing rules:

2006/6/21 NTUST 11

Fugacity in Liquid Phase

n If pressures are sufficiently low (no greater than a few bars),

)T(Px)x,T()x,P,T(f satiiiii

Li γ=

oLiii

Li fxf γ=

= ∫

P

P

Li

sati

sati

oLi sat

i

dPVRT

exp)T()T(P)P,T(f 1φ

n Fugacity calculated from an activity coefficient model

fioL: fuagcity of liquid i at the defined standard state; pure liquid i at system T & P, as usual.

)T(P)P,T(f sati

oLi ≈

then,

Poynting pressure correction factor

2006/6/21 NTUST 12

Correlative Activity Coefficient Models

u Margules modelu van Laar modelu Redlich-Kister model

n Example: Margules model for binary systems:

n Random mixing assumption (Wohl’s expansion):

.....zzzazzaxqRT

Gkji

i j kijk

i jjiij

iii

ex

++= ∑∑∑∑∑∑

RT/Glnexii =γ ∑=

iii

ex lnxRT/G γ

( )[ ] ( )[ ]22112212121122112

221 22 xAAAxln;xAAAxln −+=−+= γγ

Parameters: A12, A21

2006/6/21 NTUST 13

Correlative Activity Coefficient Modelsn Non-random mixing assumption (Wilson’s local composition)

u Wilson model (Wilson, 1964)« For binary systems:

u Input variables: V1L, V2

L

u Parameters: (λ12 – λ11 ), (λ21 – λ22)u Note:

• Good for a variety of miscible mixtures containing polar or association components

• Only require binary parameters for multi-component systems• Invalid to LLE systems

( )

+

−+

−+−=2211

21

1221

12121122 xxxx

xxxlnlnΛ

ΛΛ

ΛΛγ

( )

+

−+

++−=2211

21

1221

12212211 xxxx

xxxlnlnΛ

ΛΛ

ΛΛγ

−−=

−−=

RTexp

VV;

RTexp

VVwhere L

L

L

L2221

2

121

1112

1

212

λλΛ

λλΛ

2006/6/21 NTUST 14

Correlative Activity Coefficient Modelsu NRTL model (Non-Random Two-Liquid; Renon and Prausnitz, 1968)

« For binary systems:

( )

++

+

= 21212

1212

2

2121

2121

221 Gxx

GGxx

Gxln ττγ

( )

++

+

= 22121

2121

2

1212

1212

212 Gxx

GGxx

Gxln ττγ

−=

−=RT

ggexpG;RT

ggexpGwhere 11211221

22121212 αα

u Parameters: (g12 - g22), (g21 - g11), α12

u Note: • Good for both miscible and partially miscible systems• Only require binary parameters for multi-component

systems

2006/6/21 NTUST 15

Correlative Activity Coefficient Modelsu UNIQUAC (Abrams and Prausnitz, 1975)

« For binary systems:

( )++−

−++= 212112

2

112

1

11

1

11 2

τθθΦΦθΦ

γ '''**

*

lnqlrrllnqz

xlnln

+

−+ 1212

12

2121

2112 τθθ

ττθθ

τθ ''''

'' q

( )++−

−++= 121221

1

221

2

22

2

22 2

τθθΦΦθΦ

γ '''**

*

lnqlrrllnqz

xlnln

+

−+ 2121

21

1212

1221 τθθ

ττθθ

τθ ''''

'' q

102121

1212 =

−=

−= z;

RTuexp;

RTuexpwhere ∆τ∆τ

u Input variables: molecular structure (constituent groups)u Parameters: (∆u12), (∆u21)u Note:

• Good for both miscible and partially miscible systems• Only require binary parameters for multi-component

systems

2006/6/21 NTUST 16

Predictive Activity Coefficient Modelsn Regular solution model

u For binary systems:

u Input variables: solubility parameter (δi), liquid molar volume (Vi

L)u Note: γi always greater than 1 (positive deviation)

( )221

22

11 δδΦγ −=

RTVln

L

( )221

21

22 δδΦγ −=

RTVln

L

)fractionvolume(Vx

Vxwhere c

j

Ljj

Lii

i

∑=

=

1

Φ

2006/6/21 NTUST 17

Predictive Activity Coefficient Modelsn Group-contribution approach:

u ASOG (Analytic Solutions of Groups, Wilson and Deal, 1962)

u UNIFAC (UNIQUAC Functional Group Activity Coefficients, Fredenslund et al., 1975)

u Input variables: molecular structure (constituent groups)

CH3-C-CH2-CH-CH3

CH3

CH3 CH3

CH3-OH

Mixtures of 2,2,4-trimethyl pentane + methanol

u - CH3 group: 1u -OH group: 1

u -CH3 group: 5u -C- group: 1u -CH2 group: 1u -CH group: 1

2006/6/21 NTUST 18

Parameter Determination (Data Reduction)n VLE data reduction (γ-φ method)

u Bubble-P calculation« Given T, xi => Calculate P, yi from fiV = fiL

c....,,i,fxPy oLiiii

Vi 1== γφ

Vi

oLiii

iifxPyP

φγ

==

∑∑==

==c

iVi

oLiii

c

ii

calc fxPP11 φ

γ

( ) ( ) ( )∑=

−+

−=

N

kky

texpi

calci

P

texpcalc

i

yyPPparametersbinarymin1

2

2

2

2

σσπ

where N: number of data points.σ: standard deviation of measurement.

Objective function π defined on the basis of themaximum-likelihood principle:

Activity coefficient model

Vapor pressure

Two-term virial equation

2006/6/21 NTUST 19

Parameter Determination (Data Reduction)n LLE data reduction

u Flash calculation:Given T, zi (feed composition) => Calculate xi

I, xiII from

fiLI = fiLII and material balance equations

c....,,i,xx IIii

Iii 1== γγ

( )( ) 0111

11

=+−

− ∑=

N

i i

i

K/z:equationFlash

β

IIi

Ii

IIi

IIii /x/xKwith γγ==

where β : fraction of phase I

( ) ( ) cn/xxparametersbinaryminn

k j

c

i

texp,jk,i

calc,jk,i 2

1

2

1 1

2

−= ∑∑∑

= = =

π

where n: number of tie-lines; c: number of components.

Activity coefficient model

( ) ( )( )i

icalc,IIi

i

icalc,Ii K/

zx;K

zx1111 +−

=−+

=βββ

2006/6/21 NTUST 20

Parameter Determination (Data Reduction)n VLLE data reduction via a flash calculation:

Given T, zi (feed composition) => Calculate xiI, xi

II, yi, P from fiV= fiLI = fiLII

and material balance equations

c....,,i,fxfxPy oLi

IIii

Li

Iiii

Vi 10 === γγφ

( )( ) ( )[ ] 0

1111

1

=−+−+

−∑=

N

iIIi

Ii

Ii

iIi

K/KKzK:equationFlash

ββαα

Vi

oLi

IIi

IIii

IIi

Vi

oLi

Ii

Iii

Ii P/fx/yK,P/fx/yKwith φγφγ ====

Activity coefficient model

( )( )[ ] 0

1112

1=

−+−+−∑

=

N

iIi

IIi

IIi

iIIi

K/KKzK:equationFlash

ββαα

Solve α (fraction of vapor phase) and β (fraction of liquid phase I) from flash eqs. 1 and 2, simultaneously.

2006/6/21 NTUST 21

Parameter Determination (Data Reduction)n VLLE data reduction via a flash calculation (continued):

( ) ( )[ ]IIi

Ii

Ii

icalc,Ii K/KK

zxββαα −+−+

=11

where α: fraction of vapor phase; β : fraction of liquid phase I

∑ ∑ ∑= = =

===c

i

c

i

c

i

oLi

IIi

IIi

oLi

Ii

Iii

calc fxfxPyP1 1 1

γγ

( )[ ]ββαα −+−+=

11 Ii

IIi

IIi

icalc,IIi K/KK

zx

( ) ( ) cn/xxparametersbinaryminn

k j

c

i

texp,jk,i

calc,jk,i 3

1

3

1 1

2

−= ∑∑∑

= = =

π

calcoLi

IIi

calc,IIi

calcoLi

Ii

calc,Ii

calc,IIIi

calci P/fxP/fxxy γγ ==≡

2006/6/21 NTUST 22

Thermodynamic Properties Needed in Phase Equilibrium Calculationsn Pure components:

u Critical properties:Tc, Pc, Vc, Zc

u Acentric factor, dipole moment,..u Vapor pressuresu Density,….

n Mixtures: (to determine binary interaction parameters, kij, Aij, α, ..)

u VLE datau LLE datau VLLE data

2006/6/21 NTUST 23

Thermodynamic Properties of Pure Fluids from Literaturen NIST Chemistry Webbook (National Institute of

Standards and Technology, USA)u http://webbook.nist.gov/chemistry/

n “TRC Thermodynamic Tables, Hydrocarbons”, Thermodynamics Research Center, The Texas A&M University System, College Station, TX.

n “TRC Thermodynamic Tables, Non-Hydrocarbons”, Thermodynamics Research Center, The Texas A&M University System, College Station, TX.

n Reid, R.C.; Prausnitz, J.M.; Poling, B.E., “The Properties of Gases and Liquids,” 4th ed., McGraw-Hill, NY (1987).

n Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P., “The Properties of Gases and Liquids,” 5th ed., McGraw-Hill, NY (2001).

2006/6/21 NTUST 24

Phase Equilibrium and Other Thermodynamic Properties of Mixtures from Literature

DECHEMA-- Chemistry Data Series

Vol. I Vapor-Liquid Equilibrium Data CollectionVol. II Critical Data of Pure SubstancesVol. III Heats of Mixing Data CollectionVol. IV Recommended Data of Selected Compounds and Binary MixturesVol. V Liquid-Liquid Equilibrium Data CollectionVol. VI Vapor-Liquid Equilibria for Mixtures of Low Boiling SubstancesVol. VIII Solid-Liquid Equilibrium Data CollectionVol. IX Activity Coefficients at Infinite DilutionVol. X Thermal Conductivity and Viscosity Data of Fluid MixturesVol. XI Phase Equilibia and Phase Diagrams of ElectrolytesVol. XII Electrolyte Data CollectionVol. XIV Polymer Solution Data Collection

Thermodynamic property database: DETHERM

2006/6/21 NTUST 25

VLE Data of Mixtures from Literature

Volume 1: Vapor-Liquid Equilibrium Data CollectionJ. Gmehling, U. Onken, W. Arlt, P. Grenzhauser, U. Weidlich, B. Kolbe, J. Rarey

Part Title Published

1 Aqueous-Organic Systems 1991 1a Supplement 1 1998 1b Supplement 2 1988 2a Alcohols 1986 2b Alcohols and Phenols 1990 2c Alcohols Supplement 1 2001 2d Alcohols and Phenols Supplement 2 1982 2e Alcohols and Phenols Supplement 3 1988 2f Alcohols and Phenols Supplement 4 1990 3/4 Aldehydes, Ketones, Ethers 1979 3a Aldehydes, Supplement 1 1993 3b Ketones, Supplement 1 1993 4a Ethers, Supplement 1 1996 4b Ethers, Supplement 2 1999

2006/6/21 NTUST 26

VLE Data of Mixtures from Literature

Volume 1: Vapor-Liquid Equilibrium Data CollectionJ. Gmehling, U. Onken, W. Arlt, P. Grenzhauser, U. Weidlich, B. Kolbe, J. Rarey

5 Carboxylic Acids, Anhydrides, Esters 2001 5a Carboxylic Acids, Anhydrides, Supplement 1 2002 5b Esters, Supplement 2 2002

6a Aliphatic Hydrocarbons C4-C6 (2nd Ed. with minor changes) 1997

6b Aliphatic Hydrocarbons C7- C18 (2nd Ed. with minor changes) 1997 6c Aliphatic Hydrocarbons Supplement 1 1983 6d+e Alipatic Hydrocarbons C4- C30 1999 7 Aromatic Hydrocarbons (2nd Ed. with minor changes) 1997 7a/7b Supplement 1 2000

8 Halogen, Nitrogen, Sulfur and other Compounds 1984

8a Halogen, Nitrogen, Sulfur and other Compounds, Supplement 1 2001

2006/6/21 NTUST 27

Phase Equilibrium Data from Experimentsn VLE Apparatus:

u Static type

u Semi-flow type

Vapor sample

Liquid sample

P

Vapor sample

Liquid sample

P

2006/6/21 NTUST 28

Phase Equilibrium Data from Experiments

u Flow type

n VLLE Apparatus:u Static type

Vapor sample

Liquid sample

P

Vapor sampleLiquid I sample

P

Liquid II sample

2006/6/21 NTUST 29

Static VLE Apparatus

2006/6/21 NTUST 30

Vapor Pressures of Dimethyl Adipate (賴政海,2003)

0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.0031/T (K-1)

0.1

1

10

100

1000

P (k

Pa)

Expt. Calc. (Antoine eq.)

ln P (kPa) = 16.7683 – 6166.2/T (K)

2006/6/21 NTUST 31

VLE of Isopropyl Acetate (1) + 2-Propanol (2)(Hong et al., Ind. Eng. Chem. Res., 2003)

0.0 0.2 0.4 0.6 0.8 1.0x1 , y1

30

35

40

45

50

120

160

200

240

60

80

100

120

P (k

Pa)

333.15 Kexpt. (liquid phase)expt. (vapor phase)calc. (UNIQUAC)

353.15 Kexpt. (liquid phase)expt. (vapor phase)calc. (UNIQUAC)

373.15 Kexpt. (liquid phase)expt. (vapor phase)calc. (UNIQUAC)

2006/6/21 NTUST 32

Azeotropic Point of Isopropyl Acetate (1) + Isopropanol (2) at 333.15 K(Hong et al., Ind. Eng. Chem. Res., 2003)

-0.1

0.0

0.1

x 1-y1

0.3 0.3 0.4 0.5 0.6 0.7x1

45.0

45.5

46.0

46.5

P (k

Pa)

0.98

1.00

1.02∆

P y / ∆

P x

2006/6/21 NTUST 33

VLE of 1-Octanol + 1,2-Dimethoxybenzene + 2-Methoxyphenol at 433.15 K (Hwang et al., Ind. Eng. Chem. Res., 2001)

1-octanol

1,2-dimethoxybenzene 2-methoxyphenol0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.50

0.75

1.0

0

0

0.25

0.5

1.0

0.75

liquid

vaporternary azeotrope

2006/6/21 NTUST 34

LLE Phase Behavior

2006/6/21 NTUST 35

LLE Apparatus

T Top sample

Bottom sample

L1

L2

To circulating thermostatic bath

From circulating thermostatic bath

Stir bar

2006/6/21 NTUST 36

LLE of Water + Ethanol + Ethyl Acetate with Glycerol, KAc, or CaCl2 at 313.15 K(Lee et al., Fluid Phase Equilibria, 2005)

ethyl acetate0.0 0.2 0.4 0.6 0.8 1.0

ethanol

0.0

0.2

0.4

0.6

0.8

1.0

water

0.0

0.2

0.4

0.6

0.8

1.0

ternary with glycerol (20 wt%)with KAc (20 wt%)with CaCl2 (20 wt%)

2006/6/21 NTUST 37

LLE of Water + n-Butanol + n-Butyl Acetate with Glycerol, KAc, or CaCl2 at 313.15 K (葉至恩,2003)

n-butyl acetate

0.0 0.2 0.4 0.6 0.8 1.0

n-butanol

0.0

0.2

0.4

0.6

0.8

1.0

water

0.0

0.2

0.4

0.6

0.8

1.0

ternarywith glycerol (20 wt%)with KAc (20 wt%)with CaCl2 (20 wt%)

2006/6/21 NTUST 38

Static VLLE Apparatus

9

31

3P

45

T

6

8

C7

2

to vac.8

B

10

A

2006/6/21 NTUST 39

VLLE of Water (1) + PGMEA (2) (Hsieh et al., Ind. Eng. Chem. Res., 2006)

UNIQUAC

0.10 0.15 0.20y1

320

330

340

350

360

T (K

)

0.000 0.030 0.060x1

II

0.4 0.6 0.8 1.0x1

I

expt. calc. ( NRTL-HOC )calc. ( UNIQUAC-HOC )

b12 (K) = 2.6262 + 0.1007 T (K)

b21 (K) = -573.2592 +0.3682 T (K)

2006/6/21 NTUST 40

Saturated Pressures at VLLE for Water (1) + PGMEA (2)(Hsieh et al., Ind. Eng. Chem. Res., 2006)

0.0027 0.0028 0.0029 0.003 0.00311 / T (K-1)

10

100

P (k

Pa )

expt.calc. ( NRTL-HOC )calc. ( UNIQUAC-HOC )

2006/6/21 NTUST 41

VLLE of Water + PGME + PGMEA at 343.15 K(Hsieh et al., Ind. Eng. Chem. Res., 2006)

0.00 0.25 0.50 0.75 1.000.00

0.25

0.50

0.75

1.000.00

0.25

0.50

0.75

1.00

PGM

E

liquid phase vapor phase expt. tie-lines NRTL-HOC correlation (liquid) NRTL-HOC correlation (vapor) NRTL-HOC prediction (liquid) NRTL-HOC prediction (vapor)

PGM

EA

Water

2006/6/21 NTUST 42

VLLE of Water + Butyl Propionate + n-Butanol at 363.15 K (Lee et al., Fluid Phase Equilibria, 2004)

n-butanol0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

water

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

butyl propionate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

organic phaseaqueous phasevapor phaseNRTL prediction

2006/6/21 NTUST 43

Prediction LLE Properties from UNIFACLLE of Water + Isopropyl Acetate + 2-Propanol(洪桂彬,2003)

isopropyl acetate

0.0 0.2 0.4 0.6 0.8 1.0

2-propanol

0.0

0.2

0.4

0.6

0.8

1.0

water

0.0

0.2

0.4

0.6

0.8

1.0

expt. UNIFAC-LLEUNIFAC-LyngbyUNIFAC-Dortmund

2006/6/21 NTUST 44

Prediction VLE Properties from UNIFACVLE of Isopropyl Acetate(1) + 2-Propanol (2) (洪桂彬,2003)

0.0 0.2 0.4 0.6 0.8 1.0x1 or y1

0

50

100

150

200

250

P (k

Pa)

expt.UNIFAC-LLEUNIFAC-OriginalUNIFAC-DortmundUNIFAC-Lyngby

333.15 K

353.15 K

373.15 K

2006/6/21 NTUST 45

Key Points to Parameter Determinationn Vapor pressures

u Pure compounds

n Phase compositions and equilibrium pressures

u Binary, ternary

n Existence of azeotropic points

u Binary, ternary, quaternary

n Location of azeotropic points

u Binary, ternary, quaternary

n Existence of phase splitting

u Ternary, quaternary

n Compositions of two-liquid phases (binodal curves)

u Ternary, quaternary

2006/6/21 NTUST 46

Concluding Remarksn For completely miscible systems

u φ-φ method« Equations of State with proper mixing rules

u γ-φ method« φ: Two-term virial equation« γ: Wilson, NRTL or UNIQUAC model

n For partially miscible systemsu γ-φ method

« φ: Two-term virial equation« γ: NRTL or UNIQUAC model

n Vapor pressure data (or Antoine constants) are essentially needed for each constituent.

n For type-1 LLE systems, ternary LLE data are important to determine model parameters.

n For type-2 LLE systems, binary LLE data are crucial to determine model parameters.