Perturbation theory, linear response, and finite …VASP: Dielectric response Perturbation theory,...

37
VASP: Dielectric response Perturbation theory, linear response, and finite electric fields University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

Transcript of Perturbation theory, linear response, and finite …VASP: Dielectric response Perturbation theory,...

  • VASP:DielectricresponsePerturbationtheory,linearresponse,

    andfiniteelectricfields

    UniversityofVienna,FacultyofPhysicsandCenterforComputationalMaterialsScience,

    Vienna,Austria

  • Outline

    ● Dielectricresponse

    ● Frequencydependentdielectricproperties

    ● Thestaticdielectricresponse

    ● ResponsetoelectricfieldsfromDFPT

    ● Themacroscopicpolarization

    ● SCFresponsetofiniteelectricfields

    ● Ioniccontributionstodielectricproperties

  • Experiment: Staticandfrequencydependentdielectricfunctions:measurementofabsorption,reflectanceandenergylossspectra.(Opticalpropertiesofsemiconductorsandmetals.)

    • Thelong-wavelengthlimitofthefrequencydependentmicroscopicpolarizabilityanddielectricmatricesdeterminetheopticalpropertiesintheregimeaccessibletoopticalandelectronicprobes.

    Theory: Thefrequencydependentpolarizabilitymatrixisneededinmanypost-DFTschemes,e.g.:

    • GW)frequencydependentmicroscopicdielectricresponseneededtocomputeW.)frequencydependentmacroscopicdielectrictensorrequiredfortheanalyticalintegrationoftheCoulombsingularityintheself-energy.

    • Exact-exchangeoptimized-effective-potentialmethod(EXX-OEP).• Bethe-Salpeter-Equation(BSE)

    )dielectricscreeningoftheinteractionpotentialneededtoproperlyincludeexcitonic effects.

  • Frequencydependent

    • Frequencydependentmicroscopicdielectricmatrix)IntheRPA,andincludingchangesintheDFTxc-potential.

    • Frequencydependentmacroscopicdielectrictensor)Imaginaryandrealpartofthedielectricfunction.)In- orexcludinglocalfieldeffects.)IntheRPA,andincludingchangesintheDFTxc-potential:

    Static

    • Staticdielectrictensor,Borneffectivecharges,andPiezo-electrictensor,in- orexcludinglocalfieldeffects.)Fromdensity-functional-perturbation-theory(DFPT).LocalfieldeffectsinRPAandDFTxc-potential.)Fromtheself-consistentresponsetoafiniteelectricfield(PEAD).LocalfieldeffectsfromchangesinaHF/DFThybridxc-potential,aswell.

  • Macroscopiccontinuumconsiderations• Themacroscopicdielectrictensorcouplestheelectricfieldinamaterialto

    anappliedexternalelectricfield:

    E = ✏�1Eext

    where𝜖 isa3⨉3tensor

    • Foralongitudinalfield,i.e.,afieldcausedbystationaryexternalcharges,thiscanbereformulatedas(inmomentumspace,inthelong-wavelengthlimit):

    vtot

    = ✏�1vext

    vtot

    = vext

    + vind

    with

    • Theinducedpotentialisgeneratedbytheinducedchangeinthechargedensity𝜌#$%.Inthelinearresponseregime(weakexternalfields):

    ⇢ind

    = �vext

    ⇢ind

    = Pvtot

    where𝜒 isthereducible polarizability

    whereP istheirreducible polarizability

    • Itmaybestraightforwardlyshownthat:

    ✏�1 = 1 + ⌫� ✏ = 1� ⌫P � = P + P⌫� (aDysoneq.)

    where𝜈 istheCoulombkernel.Inmomentumspace: ⌫ = 4⇡e2/q2

  • MacroscopicandmicroscopicquantitiesThemacroscopicdielectricfunctioncanbeformallywrittenas

    E(r,!) =

    Zdr0✏�1

    mac

    (r� r0,!)Eext

    (r0,!)

    orinmomentumspaceE(q,!) = ✏�1

    mac

    (q,!)Eext

    (q,!)

    Themicroscopicdielectricfunctionentersas

    e(r,!) =

    Zdr0✏�1(r, r0,!)E

    ext

    (r0,!)

    andinmomentumspace

    e(q+G,!) =X

    G0

    ✏�1G,G0(q,!)Eext(q+G0,!)

    Themicroscopicdielectricfunctionisaccessiblethroughab-initiocalculations.Macroscopicandmicroscopicquantitiesarelinkedthrough:

    E(R,!) =1

    Z

    ⌦(R)e(r,!)dr

  • MacroscopicandmicroscopicquantitiesAssumingtheexternalfieldvariesonalengthscalemuchlargerthattheatomicdistances,onemayshowthat

    E(q,!) = ✏�10,0(q,!)Eext(q,!)

    and

    ✏�1mac(q,!) = ✏�10,0(q,!)

    ✏mac(q,!) =�✏�10,0(q,!)

    ��1

    Formaterialsthatarehomogeneousonthemicroscopicscale,theoff-diagonalelementsof𝜖𝐆,𝐆*

    +, (𝐪, 𝜔),(i.e.,for𝐆 ≠ 𝐆′)arezero,and

    ✏mac(q,!) = ✏0,0(q,!)

    Thiscalledthe“neglectoflocalfieldeffects”

  • Thelongitudinalmicroscopicdielectricfunction

    Themicroscopic(symmetric)dielectricfunctionthatlinksthelongitudinalcomponentofanexternalfield(i.e.,thepartpolarizedalongthepropagationwavevectorq)tothelongitudinalcomponentofthetotalelectricfield,isgivenby

    ✏�1G,G0(q,!) := �G,G0 +4⇡e2

    |q+G||q+G0|@⇢

    ind

    (q+G,!)

    @vext

    (q+G0,!)

    ✏G,G0(q,!) := �G,G0 �4⇡e2

    |q+G||q+G0|@⇢

    ind

    (q+G,!)

    @vtot

    (q+G0,!)

    andwith �G,G0(q,!) :=@⇢

    ind

    (q+G,!)

    @vext

    (q+G0,!)PG,G0(q,!) :=

    @⇢ind

    (q+G,!)

    @vtot

    (q+G0,!)

    ⌫sG,G0(q) :=4⇡e2

    |q+G||q+G0|and

    oneobtainstheDysonequationlinkingP and𝜒

    �G,G0(q,!) = PG,G0(q,!) +X

    G1,G2

    PG,G1(q,!)⌫sG1,G2(q)�G2,G0(q,!)

  • Approximations

    Problem: WeknowneitherP and𝜒

    Problem: ThequantitywecaneasilyaccessinKohn-ShamDFTisthe:“irreduciblepolarizabilityintheindependentparticlepicture”𝜒3 (or𝜒45)

    �0G,G0(q,!) :=@⇢ind(q+G,!)

    @ve↵(q+G0,!)

    AdlerandWiserderivedexpressionsfor𝜒3 which,intermsofBlochfunctions,canbewrittenas(inreciprocalspace):

    �0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q � fn0k)

    ⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G

    0)r0 | n0k+qi✏n0k+q � ✏nk � ! � i⌘

  • Approximations(cont.)

    FortheKohn-Shamsystem,thefollowingrelationscanbeshowntohold

    � = �0 + �0(⌫ + fxc

    )�

    P = �0 + �0fxc

    P

    � = P + P⌫�

    where𝜐 istheCoulombkerneland𝑓89 istheDFTxc-kernel: fxc = @vxc/@⇢ |⇢=⇢0

    ✏�1 = 1 + ⌫� ✏ = 1� ⌫P

    Random-Phase-Approximation(RPA): P = �0

    ✏G,G0(q,!) := �G,G0 �4⇡e2

    |q+G||q+G0|�0G,G0(q,!)

    IncludingchangesintheDFTxc-potential: P = �0 + �0fxc

    P

  • Calculationofopticalproperties

    Thelong-wavelengthlimit(𝐪 ⟶ 𝟎)ofthedielectricmatrixdeterminestheopticalpropertiesintheregimeaccessibletoopticalprobes.

    Themacroscopicdielectrictensor𝜖

  • Frequencydependent(neglectinglocalfieldeffects)

    LOPTICS=.TRUE.q̂ · ✏1(!) · q̂ ⇡ lim

    q!0✏0,0(q,!)

    Theimaginarypartof 𝜖

  • First-orderchangeintheorbitals

    Expandinguptofirstorderinq

    |unk+qi = |unki+ q · |rkunki+ ...

    andusingperturbationtheorywehave

    |rkunki =X

    n 6=n0

    |un0kihun0k|@[H(k)�✏nkS(k)]@k |unki✏nk � ✏n0k

    whereH(k)andS(k)aretheHamiltonianandoverlapoperatorforthecell-periodicpartoftheorbitals.

  • ExamplesGajdoš etal.,Phys.Rev.B73,045112(2006).

    ThefrequencydependentdielectricfunctioniswrittentotheOUTCAR file.Searchfor

    frequency dependent IMAGINARY DIELECTRIC FUNCTION (independent particle, no local field effects)

    frequency dependent REAL DIELECTRIC FUNCTION (independent particle, no local field effects)

    and

  • Frequencydependent(includinglocalfieldeffects)

    FortheKohn-Shamsystem,thefollowingrelationscanbeshowntohold

    � = �0 + �0(⌫ + fxc

    )�

    P = �0 + �0fxc

    P

    � = P + P⌫�

    where𝜐 istheCoulombkerneland𝑓89 istheDFTxc-kernel: fxc = @vxc/@⇢ |⇢=⇢0

    ✏�1 = 1 + ⌫� ✏ = 1� ⌫P

    Random-Phase-Approximation(RPA): P = �0

    ✏G,G0(q,!) := �G,G0 �4⇡e2

    |q+G||q+G0|�0G,G0(q,!)

    IncludingchangesintheDFTxc-potential: P = �0 + �0fxc

    P

  • IrreduciblepolarizabilityintheIPpicture:𝜒3

    ThequantitywecaneasilyaccessinKohn-ShamDFTisthe:“irreduciblepolarizabilityintheindependentparticlepicture”𝜒3 (or𝜒45)

    �0G,G0(q,!) :=@⇢ind(q+G,!)

    @ve↵(q+G0,!)

    AdlerandWiserderivedexpressionsfor𝜒3 which,intermsofBlockfunctions,canbewrittenas

    �0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q � fn0k)

    ⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G

    0)r0 | n0k+qi✏n0k+q � ✏nk � ! � i⌘

  • AndintermsofBlockfunctions𝜒3 canbewrittenas

    �0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q � fn0k)

    ⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G

    0)r0 | n0k+qi✏n0k+q � ✏nk � ! � i⌘

    TheIP-polarizability:𝜒3

    W = ⌫ + ⌫�0⌫ + ⌫�0⌫�0⌫ + ⌫�0⌫�0⌫�0⌫ + ... = ⌫ (1� �0⌫)�1| {z }✏�1

    Oncewehave𝜒3 thescreenedCoulombinteraction(intheRPA)iscomputedas:

    1.ThebareCoulombinteractionbetweentwoparticles

    2.Theelectronicenvironmentreactstothefieldgeneratedbyaparticle:inducedchangeinthedensity𝜒3𝜐,thatgivesrisetoachangeintheHartreepotential:𝜐𝜒3𝜐.

    3.Theelectronsreacttotheinducedchangeinthepotential:additionalchangeinthedensity,𝜒3𝜐𝜒3𝜐,andcorrespondingchangeintheHartree potential:𝜐𝜒3𝜐𝜒3𝜐.

    andsoon,andsoon…

    geometricalseries

    Expensive:computingtheIP-polarizabilityscalesasN4

  • TheOUTPUT

    • Informationconcerningthedielectricfunctionintheindependent-particlepictureiswrittenintheOUTCAR file,aftertheline

    HEAD OF MICROSCOPIC DIELECTRIC TENSOR (INDEPENDENT PARTICLE)

    • Perdefault,forALGO=CHI,localfieldeffectsareincludedattheleveloftheRPA(LRPA=.TRUE.),i.e.,limitedtoHartree contributionsonly.SeetheinformationintheOUTCAR file,after

    INVERSE MACROSCOPIC DIELECTRIC TENSOR (including local field effects in RPA (Hartree))

    • ToincludelocalfieldeffectsbeyondtheRPA,i.e.,contributionsfromDFTexchangeandcorrelation,onhastospecifyLRPA=.FALSE. intheINCAR file.InthiscaselookattheoutputintheOUTCAR file,after

    INVERSE MACROSCOPIC DIELECTRIC TENSOR (test charge-test charge, local field effects in DFT)

  • Virtualorbitals/emptystatesProblem:theiterativematrixdiagonalizationtechniquesconvergerapidlyforthelowesteigenstatesoftheHamiltonian.Highlying(virtual/emptystates)tendtoconvergemuchslower.

    • Doagroundstate calculation(i.e.,DFTorhybridfunctional).BydefaultVASPwillincludeonlyaverylimitednumberofemptystates(lookforNBANDS andNELECT intheOUTCAR file).

    • Toobtainvirtualorbitals(emptystates)ofsufficientquality,wediagonalizethegroundstate Hamiltonmatrix(intheplanewavebasis: 𝐆 𝐻 𝐆′ )exactly.Fromthe𝑁FFG eigenstatesofthisHamiltonian,wethenkeeptheNBANDSlowest.

    YourINCAR fileshouldlooksomethinglike:

    ..ALGO = ExactNBANDS = .. #set to include a larger number of empty states..

  • Typicaljobs:3steps1. Standardgroundstate calculation

    2. RestartfromtheWAVECAR fileofstep1,andtoobtainacertainnumberofvirtualorbitalsspecify:

    inyourINCAR file.

    3. Computefrequencydependentdielectricproperties:restartfromtheWAVECAR ofstep2,withthefollowinginyourINCAR file:

    ..ALGO = ExactNBANDS = .. #set to include a larger number of empty states..

    ALGO = CHI or LOPTICS = .TRUE.

    N.B.:InthecaseofLOPTICS=.TRUE. step2and3canbedoneinthesamerun(simplyaddLOPTICS=.TRUE. toINCAR ofstep2).

  • TheGWpotentials:*_GWPOTCARfiles

  • ThestaticdielectricresponseThefollowingquantities:

    • Theion-clampedstaticmacroscopicdielectrictensor𝜖< 𝜔 = 0(orsimply𝜖

  • ResponsetoelectricfieldfromDFPTLEPSILON=.TRUE.Insteadofusingasumoverstates(perturbationtheory)tocompute|𝛻𝐤𝑢?𝐤⟩,onecansolvethelinearSternheimer equation:

    [H(k)� ✏nkS(k)] |rkunki = �@ [H(k)� ✏nkS(k)]

    @k|unki

    for|𝛻𝐤𝑢?𝐤⟩.

    Thelinearresponseoftheorbitalstoanexternallyappliedelectricfield|𝜉?𝐤⟩,canbefoundsolving

    [H(k)� ✏nkS(k)] |⇠nki = ��HSCF(k)|unki � q̂ · |rkunki

    where∆𝐻5QF(𝐤) isthemicroscopiccellperiodicchangeintheHamiltonian,duetochangesintheorbitals,i.e.,localfieldeffects(!):thesemaybeincludedattheRPAlevelonly(LRPA=.TRUE.)ormayincludechangesintheDFTxc-potentialaswell

  • ResponsetoelectricfieldsfromDFPT(cont.)

    • Thestaticmacroscopicdielectricmatrixisthengivenby

    q̂ · ✏1 · q̂ = 1�8⇡e2

    X

    vk

    2wkhq̂ ·rkunk|⇠nki

    wherethesumoverv runsoveroccupiedstatesonly.

    • TheBorneffectivechargesandpiezo-electrictensormaybeconvenientlycomputedfromthechangeintheHellmann-Feynmanforcesandthemechanicalstresstensor,duetoachangeinthewavefunctionsinafinitedifferencemanner:

    |u(1)nki = |unki+�s|⇠nki

  • TheOUTPUT• Thedielectrictensorintheindependent-particlepictureisfoundintheOUTCAR

    file,afterthelineHEAD OF MICROSCOPIC STATIC DIELECTRIC TENSOR (INDEPENDENT PARTICLE, excluding Hartree and local field effects)

    ItscounterpartincludinglocalfieldeffectsintheRPA(LRPA=.TRUE.)after:MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects in RPA (Hartree))

    MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects in DFT)

    andincludinglocalfieldeffectsinDFT(LRPA=.FALSE.)after:

    • ThepiezoelectrictensorsarewrittentotheOUTCAR immediatelyfollowing:PIEZOELECTRIC TENSOR for field in x, y, z (e Angst)

    c.q.,PIEZOELECTRIC TENSOR for field in x, y, z (C/m^2)

    • TheBorneffectivechargetensorsareprintedafter:BORN EFFECTIVE CHARGES (in e, cummulative output)

    (butonlyforLRPA=.FALSE.).

  • Examples

    Gajdoš etal.,Phys.Rev.B73,045112(2006).

  • “Moderntheoryofpolarization”(Resta,Vanderbilt,etal.)

    Thechangeinthepolarizationinducedbyanadiabaticchangeinthecrystallinepotentialisgivenby

    �P =

    Z �2

    �1

    @P

    @�d� = P(�2)�P(�1)

    whereP(�) = � fie

    (2⇡)3

    Z

    ⌦k

    dkhu(�)nk |rk|u(�)nk i

    Toillustratethis,consideraWannier function

    k(r) = uk(r)eik·r|wi = V

    (2⇡)3

    Z

    ⌦k

    dk| ki

    withwell-defineddipolemoment

    ehri = eZ

    drhw|r|wi

    =eV 2

    (2⇡)6

    Z

    ⌦k

    dk

    Z

    ⌦k0

    dk0X

    R

    Z

    Vdru⇤k(r)(R+ r)uk0(r)e

    �i(k�k0)·(R+r)

  • =eV 2

    (2⇡)6

    Z

    ⌦k

    dk

    Z

    ⌦k0

    dk0X

    R

    Z

    Vdru⇤k(r)uk0(r)(�irk0)e�i(k�k

    0)·(R+r)

    = �i eV(2⇡)3

    Z

    ⌦k

    dkhuk|rk|uki

    whereweusedintegrationbypartstolet𝛻𝐤R workon𝑢𝐤R insteadofontheexponent,andthefollowingrelation

    X

    R

    e�i(k�k0)·R =

    (2⇡)3

    V�(k� k0)

    Thefinalexpression,proposedbyKing-SmithandVanderbilt,toevaluatethepolarizationonadiscretemeshofk-points,reads:

    Bi ·P(�) =f |e|V

    AiNk?

    X

    Nk?

    ={lnJ�1Y

    j=0

    det|hu(�)nkj |u(�)mkj+1

    i|}

    where

    kj = k? + jBiJ

    , j = 1, ..., J and u(�)nk?+Bi(r) = e�iBi·ru(�)nk?(r)

  • kj = k? + jBiJ

    , j = 1, ..., J and u(�)nk?+Bi(r) = e�iBi·ru(�)nk?(r)

  • Self-consistentresponsetofiniteelectricfields(PEAD)†

    Addtheinteractionwithasmallbutfiniteelectricfieldℇ totheexpressionforthetotalenergy

    E[{ (E)}, E ] = E0[{ (E)}]� ⌦E ·P[{ (E)}]

    where𝑃 𝜓(ℇ) isthemacroscopicpolarizationasdefinedinthe“moderntheoryofpolarization”‡

    P[{ (E)}] = � 2ie(2⇡)3

    X

    n

    Z

    BZdkhu(E)nk |rk|u

    (E)nk i

    AddingacorrespondingtermtoHamiltonian

    H| (E)nk i = H0| (E)nk i � ⌦E ·

    �P[{ (E)}]�h (E)nk |

    allowsonetosolvefor 𝜓(ℇ) bymeansofadirectoptimizationmethod(iterateintil self-consistencyisachieved).

    †R.W.Nunes andX.Gonze,Phys.Rev.B63,155107(2001).‡R.D.King-SmithandD.Vanderbilt,Phys.Rev.B47,1651(1993).

  • PEAD(cont.)

    Lc

    ZEg

    VB

    CB

    L

    Souzaetal.,Phys.Rev.Lett.89,117602(2002).

    e|Ec ·Ai| ⇡ Eg/NiNiAi < LZ

  • PEAD(cont.)Oncetheself-consistentsolution 𝜓(ℇ) hasbeenobtained:• thestaticmacroscopicdielectricmatrixisgivenby

    (✏1)ij = �ij + 4⇡(P[{ (E)}]�P[{ (0)}])i

    Ej• andtheBorneffectivechargesandion-clampedpiezo-electrictensormay

    againbeconvenientlycomputedfromthechangeintheHellman-Feynmanforcesandthemechanicalstresstensor.

    ThePEADmethodisabletoincludelocalfieldeffectsinanaturalmanner(the self-consistency).

    INCAR-tags

    LCALPOL =.TRUE. Computemacroscopicpolarization.LCALCEPS=.TRUE. Computestaticmacroscopicdielectric-,Borneffectivecharge-,

    andion-clampedpiezo-electrictensors,includinglocalfieldeffects.EFIELD_PEAD = E_x E_y E_z ElectricfieldusedbythePEADroutines.

    (DefaultifLCALCEPS=.TRUE.:EFIELD_PEAD=0.010.010.01[eV/Å].)LRPA=.FALSE. Skipthecalculationswithoutlocalfieldeffects(Default).LSKIP_NSCF=.TRUE. idem.LSKIP_SCF=.TRUE. Skipthecalculationswithlocalfieldeffects.

  • Example:ion-clamped𝜖< usingtheHSEhybrid

    J.Paier,M.Marsman,andG.Kresse,Phys.Rev.B78,121201(R)(2008).

  • PEAD:Hamiltonianterms

    TheadditionaltermsintheHamiltonian,arisingfromtheΩℇ V 𝐏 𝜓 ℇ termintheenthalpyareofthefrom

    �P

    j ={ln det|S(kj ,kj+1)|}�u⇤nkj

    =

    � i2

    NX

    m=1

    ⇥|unkj+1iS�1mn(kj ,kj+1)� |unkj�1iS�1mn(kj ,kj�1)

    Snm(kj ,kj+1) = hunkj |umkj+1iwhere

    Byanalogywehave

    @|unkj i@k

    ⇡ 12�k

    NX

    m=1

    ⇥|unkj+1iS�1mn(kj ,kj+1)� |unkj�1iS�1mn(kj ,kj�1)

    i.e.,afinitedifferenceexpressionfor|𝛻𝐤𝑢?𝐤⟩.

  • TheOUTPUT• ThedielectrictensorincludinglocalfieldeffectsiswrittentotheOUTCAR

    file,afterthelineMACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects)

    • ThepiezoelectrictensorsarewrittentotheOUTCAR immediatelyfollowing:PIEZOELECTRIC TENSOR (including local field effects) (e Angst)

    c.q.,PIEZOELECTRIC TENSOR (including local field effects) (C/m^2)

    • TheBorneffectivechargetensorsarefoundafter:BORN EFFECTIVE CHARGES (including local field effects)

    ForLSKIP_NSCF=.FALSE.onewilladditionallyfinf thecounterpartsoftheabove:

    ... (excluding local field effects)

  • Ioniccontributions

    Fromfinitedifferenceexpressionsw.r.t.theionicpositions(IBRION=5 or6)orfromperturbationtheory(IBRION=7 or8)weobtain

    �ss0

    ij = �@F si@us

    0j

    ⌅sil = �@�l@usi

    theforce-constantmatricesandinternalstraintensors,respectively.

    TogetherwiththeBorneffectivechargetensors,thesequantitiesallowforthecomputationof theioniccontributiontothedielectrictensor

    ✏ionij =4⇡e2

    X

    ss0

    X

    kl

    Z⇤sik (�ss0)�1kl Z

    ⇤s0lj

    andtothepiezo-electrictensor

    eionil = eX

    ss0

    X

    jk

    Z⇤sij (�ss0)�1jk ⌅

    s0

    kl

  • TheEnd

    Thankyou!