Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and...

44
Lecture 1 Periodicity and Spatial Confinement Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory and effective mass Theory of invariants Heterostructures J. Planelles

Transcript of Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and...

Page 1: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Lecture 1

Periodicity and Spatial ConfinementPeriodicity and Spatial ConfinementCrystal structureTranslational symmetryEnergy bandsk·p theory and effective mass Theory of invariantsHeterostructures

J. Planelles

Page 2: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

SUMMARY (keywords)

Lattice → Wigner-Seitz unit cell

Periodicity → Translation group → wave-function in Block form

Reciprocal lattice → k-labels within the 1rst Brillouin zone

Schrodinger equation → BCs depending on k; bands E(k); gaps

Gaps→ metal, isolators and semiconductorsGaps→ metal, isolators and semiconductors

Machinery: kp Theory → effective mass J character table

Theory of invariants: ΓΓΓΓƒ ΓΓΓΓœA1; H = ΣΣΣΣ NiΓΓΓΓ k i

ΓΓΓΓ

Heterostructures: EFA

QWell QWire QDotoffsetbandVtconfinemen

ipk

c

ˆ

====→→→→∇∇∇∇−−−−====→→→→

Page 3: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Crystal structure

A crystal is solid material whose constituent atoms, molecules

or ions are arranged in an orderly repeating pattern

+ +

Crystal = lattice + basis

Page 4: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Bravais lattice: the lattice looks the same when seen from anypoint

a1

P’ = P + (m,n,p) * (a1,a2,a3)

P

a1

a2

integers

P

a1a2

Page 5: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory
Page 6: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Unit cell: a region of the space that fills the entire crystal by translation

Primitive: smallest unit cells (1 point)

Page 7: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Wigner-Seitz unit cell: primitive and captures the point symmetry

Centered in one point. It is the region which is closer to that point than to any other.

Body-centered cubic

Page 8: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

How many types of lattices exist?

C ?4

Page 9: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

How many types of lattices exist?

C ?6

Page 10: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

How many types of lattices exist?

14 (in 3D)

C ?5

Page 11: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Bravais Lattices

Page 12: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

We have a periodic system.

Is there a simple function to approximate its properties?

a

)(xρ

Translational symmetry

)()(|)(||)(|)()( 22 xfenaxfnaxfxfnaxx iφρρ =+⇒+=⇔+=

→+= )()( naxfxfTn GroupnTranslatioTn →GroupAbelianTT mn 0],[ →=

q

q

qpnai

n pq

naieT ˆ

!

) (ˆ ∑== )()(!

)()()( ˆ anxf

dx

fdi

q

ianxfexfT

q

qq

q

qpian

n ++++====−−−−======== ∑∑∑∑

Page 13: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Eigenfunctions of the linear momentum

basis of translation group irreps

ikxiankikxpianikxn eeeeeT == ˆ

MLMLMM

LL nTE

q

q

qpnai

n pq

naieT ˆ

!

) (ˆ ∑∑∑∑========

MLMLMM

LL

MLMLMMikxikna eek 1

Page 14: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Range of k and 3D extension

irrep A symmetricfully thelabels 0k ; ],[ 1=−∈aa

kππ

3D extension → rx

Bloch functions as basis of irreps:

iknam]na

a

πi[k

ee =+ 2

same character:Zmma

kkk ∈+= ,2

'~π

3D extension

→ kkBloch functions as basis of irreps:

)()( );()( rarrr rkk uuuei ====++++==== ⋅⋅⋅⋅ΨΨΨΨ

)()()( ( rarr rkaka)rkka ueeueT i

character

ii ⋅⋅+⋅ =+=Ψ

Page 15: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Reciprocal Lattice

1 :2

''~ :1 ===−→ iKaea

πKkkkkD

vectors) (lattice eD i c b,a,aKkk'k'k iaK i ===−→ ⋅ ,1 :~ :3

Z∈××

=++= i321 p ,)(

)( 2 ,ppp ?

ikj

kji321 aaa

aakkkkKK π

ipπ 2=⋅ iaK ,, lattice l reciproca →kkk

First Brillouin zone: Wigner-Seitz cell of the reciprocal lattice

ipπ 2=⋅ iaK ,, lattice l reciproca →321 kkk

(-1/2,1/2) zy, x,,zy x ,0 : ∈++==Γ 321 kkkkk

Page 16: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Solving Schrödinger equation: Von-Karman BCs

Crystals are infinite... How are we supposed to deal with that?

We use periodic boundary conditions

Group of translations:k is a quantum number due to

translational symmetry

We solve the Schrödinger equation for each k value:

The plot En(k) represents an energy band

],[ ),2/()2/(

)( )(

ππππππππφφφφΨΨΨΨΨΨΨΨ

ΨΨΨΨΨΨΨΨφφφφ −−−−

⋅⋅⋅⋅

∈∈∈∈====

====

aea-

rerT

ki

k

kaki

ka

1rst Brillouin zone

Page 17: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

How does the wave function look like?

0]ˆ,ˆ[ =HT Hamiltonian eigenfunctions are basis of the Tn group irreps

We require Ψ=Ψ tkieTrr

ˆ

)()( ruer krki

k

rr rr

=Ψ Bloch function

Periodic (unit cell) partEnvelope part

)()( rutru kk

rrr =+

Envelope part

Periodic part

Page 18: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Energy bands

How do electrons behave in crystals?

quasi-free electrons

ions

)(xVc

Page 19: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

)()()(2

2

xxxVm

pkkkc Ψ=Ψ

+ ε

)(xVck >>ε Empty lattice

xkik eNx =Ψ )(

a

pk

π2= Plane wave

)(Ψ )(Ψ: xeaxBC k

ika

k ====++++

)(xVc

)()(ˆ xkxp kk Ψ=Ψ hm

kk 2

22h=ε

Page 20: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

FεT=0 K

Fermi energy

m

kk 2

22h=ε

k

FkFk−

Fermi energy

Page 21: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

m

kk 2

22h=ε

)(Ψ )(Ψ: xeaxBC k

ika

k ====++++

Band folded into the first Brillouin zone

ε (k): single parabola

1 :2

''~ ============−−−−→→→→ iKaea

πKkkkk

folded parabola

Page 22: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

)()()(2

2

xxxVm

pkkkc Ψ=Ψ

+ ε

Znnka ∈= ,2π

Bragg diffraction

ka/2π0

a

gap

a/4πa/2π−

Page 23: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

)()()(2

2

xxxVm

pkkkc Ψ=Ψ

+ ε

Page 24: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

fraction eV

Types of crystals

Fermi

levelgap

Conduction Band

few eV

Valence

Band

k

Semiconductor

• Switches from conducting

to insulating at will

k

Metal

• Empty orbitals

available at low-energy:

high conductivity

k

Insulator

• Low conductivity

Band

Page 25: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory
Page 26: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

k·p Theory

How do we calculate realistic band diagrams?Tight-binding

Pseudopotentials

k·p theory

)()( ruer krki

k

rr rr

+= )(

2

rVm

pH c

rr

)()(ˆ rerHe krki

kkrki rr rrrr

Ψ=Ψ −− ε

)()(2

)(2

222

rurum

pk

m

krV

m

pkkkc

rrrr

hhr

r

ε=

⋅+++

The k·p Hamiltonian

Page 27: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

MgO

k=Γk=0

CB

HH

LH

Split-off

uCBk

uHHk

uLHk

uSOk

k

)()(2

)(2

222

rurum

pk

m

krV

m

pkkkc

rrrr

hhr

r

ε=

⋅+++

k=Γ

)()( 0 rucru n

nnk

nk

rr∑∞

=

'00',

22

0'

00 2

||ˆ nnnn

nnkp

n upum

k

m

kuHu

rr

h

rh +

+= δε

gapKane

parameter

Page 28: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

CB

HH

LH

uCBk

uHHk

uLH

)()( 0 rucru n

nnk

nk

rr∑∞

=

4-band H

1-band H

'00',

22

0'

00 2

||ˆ nnnn

nnkp

n upum

k

m

kuHu

rr

h

rh +

+= δε

k=0

LH

Split-off

uLHk

uSOk

k

4-band H

↑s ↓s

↑sm

k

2

2

0

↓s 0

m

k

2

2

1-band H

Page 29: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

k=0

CB

HH

LH

Split-off

uCBk

uHHk

uLHk

uSOk

k

kPkPkPkPkPk

s

ss

210

120

2

1,

2

1

2

1,

2

1

2

3,

2

3

2

1,

2

3

2

1,

2

3

2

3,

2

3

2

−−−↑

−−−↓↑

8-band H

m

kkPkP

m

kkPkP

m

kkP

m

kkPkP

m

kkPkP

m

kkP

kPkPkPkPkPm

ks

kPkPkPkPkPm

ks

z

z

z

z

zz

zz

200000

3

1

3

2

2

1,

2

1

02

00003

2

3

1

2

1,

2

1

002

00002

3,

2

3

0002

003

2

3

1

2

1,

2

3

00002

03

1

3

2

2

1,

2

3

000002

02

3,

2

33

1

3

2

3

2

3

10

20

3

2

3

10

3

1

3

20

2

2

0

2

0

2

0

2

0

2

0

2

0

2

+∆−−−−

+∆−−

+−−

+−−−−

+−−

+−

−↓

−−−↑

+

−−−

−−+

ε

ε

ε

ε

ε

ε

Page 30: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

One-band Hamiltonian for the conduction band

'00',

22

0'

00 2

||ˆ nnnn

nnkp

n upum

k

m

kuHu

rr

h

rh +

+= δε

m

kcbcbk 2

|| 22

0

rh+= εε

This is a crude approximation... Let’s include remote bands perturbationally

∑∑≠= −

++=cbn

ncb

ncb

zyx

cbcbk

upuk

mm

k

00

2

0022

2

,,

22

0 ||2

||

εεεε

αα

α

α hh

1/m*Effective mass

*

22

02 αααα

ααααεεεεεεεεm

kcbcbk

h++++====

Free electron InAs

m=1 a.u. m*=0.025 a.u.

k

CB

negative mass?

22

1

*

1

km

cbk

∂∂= ε

h

Page 31: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Theory of invariants

1. Perturbation theory becomes more complex for many-band models

2. Nobody calculate the huge amount of integrals involved

grup them and fit to experimentgrup them and fit to experiment⇒

Alternative (simpler and deeper) to perturbation theory:

Determine the Hamiltonian H by symmetry considerations

Page 32: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Theory of invariants (basic ideas)

1. Second order perturbation: H second order in k:j

jiiij kkMH ∑

≥=

3

2. H must be an invariant under point symmetry (Td ZnBl, D6h wurtzite)

A·B is invariant (A1 symmetry) if A and B are of the same symmetry

e.g. (x, y, z) basis of T2 of Td: x·x+y·y+z·z = r2 basis of A1 of Td

Page 33: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Theory of invariants (machinery)

1. k basis of T2 2. ki kj basis of ][ 12122 TTEATT ⊕⊕⊕=⊗

3. Character Table:

) (

,,

,2

1

2

22222

2221

tensorsymmetrickkNOT

kkkkkkT

kkkkkE

kkkA

ji

zyzxyx

yxyxz

zyx

−−−→

++→ notation: elements

of these basis: . Γik

) ( 1 tensorsymmetrickkNOT ji→

4.Invariant: sum of invariants:

fitting parameter

(not determined by symmetry)

ΓΓ

Γ

ΓΓ∑ ∑= i

ii kNaH

)dim(

irrep

basis element

Page 34: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Machinery (cont.)How can we determine the matrices?Γ

iN

→→→→ we can use symmetry-adapted JiJj products

11221 , ),,( TTTTandTofbasisJJJ zyx ⊗⊗⊗⊗====⊗⊗⊗⊗

Example: 4-th band model: >−>−>> 2/3,2/3|,2/1,2/3|,2/1,2/3|,2/3,2/3| >−>−>> 2/3,2/3|,2/1,2/3|,2/1,2/3|,2/3,2/3|

Page 35: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Machinery (cont.)We form the following invariants

Finally we build the Hamiltonian

Luttinger parameters: determined by fitting

Page 36: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Four band Hamiltonian:

Page 37: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Exercise: Show that the 2-bands |1/2,1/2>,|1/2,-1/2> conduction band k·p Hamiltonian reads H= a k2 I , where I is the 2x2 unit matrix, k the modulus of the linear momentum and a is a fitting parameter (that we cannot fix by symmetry considerations)

Hints: 1.2. Angular momentum components in the ±1/2 basis: Si=1/2 σi, with

][ 1211122 TTEATTTT ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕====⊗⊗⊗⊗====⊗⊗⊗⊗

3. Character tables and basis of irreps

yzzyxzzxxyyx

yzzyxzzxxyyx

yxyxz

zyx

kkkkkkkkkkkkT

kkkkkkkkkkkkT

kkkkkE

kkkA

'','',''

,,

,2

1

2

22222

2221

−−−−−−−−−−−−→→→→

++++++++++++→→→→

−−−−−−−−−−−−→→→→

++++++++→→→→

Page 38: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Heterostructures

How do we study this?

Brocken translational symmetry

B A B

z

B A B

z

z

A

quantum well quantum wirequantum dot

Page 39: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Heterostructures

How do we study this?

If A and B have:

...we use the “envelope function approach”

rr rr

• the same crystal structure

• similar lattice constants

• no interface defects

rr rr

B A B

)()( ruer krki

k

rr rr

=Ψ )()()( ruzer krki

k

rr rr

χ⊥⊥=Ψ

Project Hkp onto Ψnk, considering that:

Envelope part

Periodic part

∫∫∫ΩΩ

⋅⋅Ω

≈ drrfdrrudrrurfcellunit

nknk )()(1

)()(

z

Page 40: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Heterostructures

B A B

In a one-band model we finally obtain:

)()(2

)(2

22

2

22

zzm

kzV

dz

d

mχεχ =

++− ⊥hh

0, =kBεz V(z)

0, =kAε

0, =kBε

1D potential well: particle-in-the-box problem

Quantum well

Page 41: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

Most prominent applications:

• Laser diodes

• LEDs

• Infrared photodetectors

Quantum well

Image: CNRS France

Image: C. Humphrey, Cambridge

Page 42: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

B A B

zImage: U. Muenchen

Quantum wire

Most prominent applications:

• Transport

• Photovoltaic devices

),(),(2

),()(2

2222

2

zyzym

kzyV

mx

zy χεχ =

++∇+∇−hh

Image: U. Muenchen

Page 43: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

),,(),,(),,(22

zyxzyxzyxV χεχ =

+∇− h

z

A

Quantum dot

Most prominent applications:

• Single electron transistor

• LEDs

• In-vivo imaging

• Cancer therapy

• Photovoltaics

• Memory devices

• Qubits?

),,(),,(),,(2

2 zyxzyxzyxVm

χεχ =

+∇− h

Page 44: Periodicity and Spatial Confinementplanelle/APUNTS/7thIIC-EMTCCM/T1.pdfLecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory

SUMMARY (keywords)

Lattice → Wigner-Seitz unit cell

Periodicity → Translation group → wave-function in Block form

Reciprocal lattice → k-labels within the 1rst Brillouin zone

Schrodinger equation → BCs depending on k; bands E(k); gaps

Gaps→ metal, isolators and semiconductorsGaps→ metal, isolators and semiconductors

Machinery: kp Theory → effective mass J character table

Theory of invariants: ΓΓΓΓƒ ΓΓΓΓœA1; H = ΣΣΣΣ NiΓΓΓΓ k i

ΓΓΓΓ

Heterostructures: EFA

QWell QWire QDotoffsetbandVtconfinemen

ipk

c

ˆ

====→→→→∇∇∇∇−−−−====→→→→