Periodic Motion and Theory of Oscillations

10
Periodic Motion and Theory of Oscillations m 0 X x F Restoring force F x = -kx is a linear functi displacement x from equilibrium position x= Harmonic oscillator: ma x = - k a x m k x dt x d 2 2 2 2 , 0 ) sin( ) ( 2 1 ) cos( ) ( t A dt dx t v f T t A t x Initial conditions at t=0: sin cos 0 0 A v A x 0 0 2 2 0 2 0 tan , x v v x A Simple harmonic motion: Position, velocity, and acceleration are periodic, sinusoidal functions of time. Oscillator equation:

description

Periodic Motion and Theory of Oscillations. a x. Harmonic oscillator: ma x = - kx. Restoring force F x = -kx is a linear function of displacement x from equilibrium position x=0. m. 0. Oscillator equation:. X. Initial conditions at t=0:. Simple harmonic motion: - PowerPoint PPT Presentation

Transcript of Periodic Motion and Theory of Oscillations

Page 1: Periodic Motion and Theory of Oscillations

Periodic Motion and Theory of Oscillations

m

0 XxFRestoring force Fx = -kx is a linear function ofdisplacement x from equilibrium position x=0.

Harmonic oscillator: max = - kxax

mkx

dtxd

222

2

,0

)sin()(

21)cos()(

tAdtdxtv

fTtAtx

Initial conditions at t=0:

sincos

0

0

AvAx

0

02

202

0 tan,xvvxA

Simple harmonic motion:Position, velocity, andacceleration are periodic,sinusoidal functions of time.

Oscillator equation:

Page 2: Periodic Motion and Theory of Oscillations

Energy in Simple Harmonic MotionTotal mechanical energy E=K+U in harmonic oscillations is conserved:

constkAttk

mkAkxmvE

222

2222

21)(cos)(sin

221

21

Example: Non-adiabatic perturbation of mass(a) M → M + m at x=0 results in a change of velocity due to momentum conservation: Mvi=(M+m)vf, vf= Mvi/(M+m), hence, Ef= MEi/(M+m), Af= Ai[M/(M+m)]1/2, Tf = Ti [(M+m)/M]1/2

(b) M → M + m at x=A (v=0) does not changevelocity, energy, and amplitude;only the period is changed again due to an increase of the total mass Tf = Ti [(M+m)/M]1/2

Page 3: Periodic Motion and Theory of Oscillations

Exam Example 30: A Ball Oscillating on a Vertical Spring (problems 14.69, 14.77)

y

0

y0

y1=y0-A

v0

v1=0

Data: m, v0 , k Find: (a) equilibrium position y0;(b) velocity vy when the ball is at y0;(c)amplitude of oscillations A; (d) angular frequency ω and period T of oscillations.

Unstrained→

Equilibrium

Lowest position

Solution: Fy = - ky(a) Equation of equilibrium: Fy – mg = 0, -ky0 = mg , y0 = - mg/k (b) Conservation of total mechanical energy

20

200

20 2

121

21 mvkymgymvEUUKE yelasticgrav

kmgvmkygyvv y /)/2( 22000

20

(c) At the extreme positions y1,2 = y0 ± A velocity is zero and

2

20

202

0

20

2

2,120

22,12,1 1

21

21

mgkv

kmg

kmvyA

kmv

kmg

kmgymvkymgy

y2=y0+A

(d) kmT

mk

22,

Page 4: Periodic Motion and Theory of Oscillations

Applications of the Theory of Harmonic OscillationsOscillations of Balance Wheel in a Mechanical Watch

ITft

IdtdI zzz

22,)cos(

0,, 2

2Newton’s 2nd law for rotation yields

Exam Example 31: SHM of a thin-rim balance wheel (problems 14.41-14.43)Data: mass m, radius R , period T

R

Questions: a) Derive oscillator equation for a small angular displacement θ from equilibrium position starting from Newton’s 2nd law for rotation. (See above.)b) Find the moment of inertia of the balance wheel about its shaft. ( I=mR2 )c) Find the torsion constant of the coil spring.

2)/2(/2 TRmIT

(mass m)

Page 5: Periodic Motion and Theory of Oscillations

Vibrations of Molecules due to van der Waals Interaction

F

60

120

0 2rR

rRUU

Displacement fromequilibrium x = r – R0

Restoring force

7

0

13

00

07

013

0

0

0 111212Rx

Rx

RU

rR

rR

RU

drdUFr

Approximation of small-amplitude oscillations: |x| << R0 , (1+ x/R0)-n ≈ 1 – nx/R0,

Fr = - kx , k = 72U0/R02

m m

Example: molecule Ar2 , m = 6.63·10-26kg,U0=1.68·10-21 J, R0= 3.82·10-10 m

Hzmkf 11106.5

21

2

Potential well formolecular oscillations

Page 6: Periodic Motion and Theory of Oscillations

Simple and Physical PendulumsNewton’s 2nd law for rotation of physical pendulum: Iαz = τz , τz = - mg d sinθ ≈ - mgd θ

Imgd

dtd

,022

2

mgdIT 2

Simple pendulum: I = md2

gdT 2

Example: Find length d for the period to be T=1s.

cmmssmdgTd 2525.0)14.3(4

)1(/8.94 2

22

2

2

Page 7: Periodic Motion and Theory of Oscillations

Exam Example 32: Physical Pendulum (problem 14.88, 14.53)Data: Two identical, thin rods, each of mass m and length L,are joined at right angle to form an L-shaped object. Thisobject is balanced on top of a sharp edge and oscillates. Find: (a) moment of inertia for each of rods;(b) equilibrium position of the object’s center of mass;(c) derive harmonic oscillator equation for smalldeflection angle starting from Newton’s 2nd law for rotation;(d) angular frequency and period of oscillations.

Solution: (a) dm = m dx/L ,

dcm

2

0

21 )3/1()/( mLdxxLmI

L

(b) geometry and definition xcm=(m1x1+m2x2)/(m1+m2)→ ycm= d= 2-3/2 L, xcm=0

m m

(c) Iαz = τz , τz = - 2mg d sinθ ≈ - 2mgd θ Imgd

dtd 2,02

2

2

X

y

0

(d) Object’s moment of inertia 2,

2232

322 2

1 TLg

ImgdmLII

θ

gM

Page 8: Periodic Motion and Theory of Oscillations

Damped Oscillations

Springs in the automobile’s suspension system: oscillation with ω0

The shock absorber: damping γ

Page 9: Periodic Motion and Theory of Oscillations

Damped OscillationsFrictional force f = - b vxdissipates mechanical energy. Newton’s 2nd law: max = -kx - bvx

Differential equation of the damped harmonic oscillator:

mb

mk

xdtdx

dtxd

2,

02

20

202

2

220,)cos( tAex tGeneral solution:

underdamped (γ < γcr)(instability if γ<0)overdamped (γ > γcr)

Critical damping γcr = ω0 , bcr=2(km)1/2Damping power: 2

xx bvfvdtdE

20

22,121 ,21 tt eCeCx

Fourier analysis:

titi

ti

eAeAtx

iiAex21

21

2202,1

20

2

)(

02

Page 10: Periodic Motion and Theory of Oscillations

Forced Oscillations and Resonance

mtFx

dtdx

dtxd )(2 2

02

2

Amplitude of a steady-state oscillationsunder a sinusoidal driving force F = Fmax cos(ωdt)

222220

max

4)( ddm

FA

At resonance, ωd ≈ ω, driving force does positive work all the timeWnc = Ef – Ei >0, and even weak force greatly increases amplitude of oscillations.

vF

Example: laser ( ← → )→

Parametric resonance is another typeof resonance phenomenon, e.g. L(t).

Forced oscillator equation:

(self-excited oscillation of atoms and field)

0

max0 2)(

mFA d