Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic...

53
Performance & QoS Congestion Control ETSF05/ETSF10 – Internet Protocols

Transcript of Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic...

Page 1: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Performance&QoSCongestion Control

ETSF05/ETSF10– InternetProtocols

Page 2: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

QualityofService(QoS)

• Maintainingafunctioningnetwork–Meetingapplications’demands

• User’sdemands=QoE (QualityofExperience)

– Dealingwithflowcharacteristics

3ETSF05/ETSF10- InternetProtocols

Jitter = Packet Delay Variations

Page 3: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Figure 22.1 Architectural Framework for QoS Support

Queuemanagement

Congestionavoidance

Packetmarking

Trafficshaping

Trafficpolicing

Trafficclassification

Queueing &scheduling

Data Plane

Admissioncontrol

QoSrouting

Resourcereservation

Control Plane

Servicelevel

agreement

Trafficrestoration

Policy

Trafficmetering

andrecording

Manag

emen

t

Plane

ETSF05/ETSF10- InternetProtocols 4

Page 4: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

DataPlane• Includesthosemechanismsthatoperatedirectlyonflowsofdata– Queuemanagementalgorithms

• TaildropvsRED(RandomEarlyDetection)– Queueingandscheduling– Congestionavoidance– Packetmarking– Trafficclassification– Trafficpolicing– Trafficshaping

ETSF05/ETSF10- InternetProtocols 5

Page 5: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

ControlPlane

• Concernedwithcreatingandmanagingthepathwaysthroughwhichuserdataflows– Admissioncontrol– QoS routing– Resourcereservation

ETSF05/ETSF10- InternetProtocols 6

Page 6: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

ManagementPlane

• Containsmechanismsthataffectbothcontrolplaneanddataplanemechanisms– Servicelevelagreement(SLA)– Trafficmeteringandrecording– Trafficrestoration– Policy

ETSF05/ETSF10- InternetProtocols 7

Page 7: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Networkperformance• Datarate(Bandwidth)– Bitspersecond

• Throughput– Efficiency,alwayslessthancapacity(<1)– Alternatively:availabledatarate

• Latency(Delay)– Transmission,propagation,processing,queueing– OnewayorRTT(RoundTriptime)

• PDV=PacketDelay Variation(Jitter)– Real-time applications!

8ETSF05/ETSF10- InternetProtocols

Page 8: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Otherparameters

• BitErrorRate– L1parameterthatheavilyimpactsonL3– Frame/PacketLossonhigherlayers

• InterPacketGapvariations– “Jitter”– Couldbenon-zeroalreadyatsender

• Ratioofpacketsoutoforder– ImpactondelayinTCP

ETSF05/ETSF10- InternetProtocols 9

Page 9: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Packetloss• Due to– Biterror inpacket

• Routersdiscard erronous packet• LinkorPhysical Layer?

– Queue overflow• Discard packets• Node problems

• Inreal-timemultimedialatepacketsconsidered lost• Packetlossratio (%)• NoteTCP’s sensitivity to packetloss

ETSF05/ETSF10- InternetProtocols 10

Page 10: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Circuit Switching Datagram Packet Switching Virtual Circuit Packet Switching

Dedicated transmission path No dedicated path No dedicated path

Continuous transmission of data

Transmission of packets Transmission of packets

Fast enough for interactive Fast enough for interactive Fast enough for interactive Messages are not stored Packets may be stored until

delivered Packets stored until delivered

The path is established for entire conversation

Route established for each packet

Route established for entire conversation

Call setup delay; negligible transmission delay

Packet transmission delay Call setup delay; packet transmission delay

Busy signal if called party busy

Sender may be notified if packet not delivered

Sender notified of connection denial

Overload may block call setup; no delay for established calls

Overload increases packet delay

Overload may block call setup; increases packet delay

Electromechanical or computerized switching nodes

Small switching nodes Small switching nodes

User responsible for message loss protection

Network may be responsible for individual packets

Network may be responsible for packet sequences

Usually no speed or code conversion

Speed and code conversion Speed and code conversion

Fixed bandwidth Dynamic use of bandwidth Dynamic use of bandwidth No overhead bits after call setup

Overhead bits in each packet Overhead bits in each packet

Table9.1

ComparisonofCommunication

SwitchingTechniques

(Tablecanbefoundonpage315in

textbook)

ETSF05/ETSF10- InternetProtocols 11

Page 11: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

(a) Circuit switching

Callrequestsignal

Callacceptsignal

propagationdelay

processingdelay

(b) Virtual circuit packet switching

Callrequestpacket

Callacceptpacket

link link link

1 2 3 4Nodes: 1 2 3 4

Acknowledge-ment signal

Acknowledge-ment packet

(c) Datagram packet switching

1 2 3 4

Userdata

Pkt1

Pkt2

Pkt3Pkt1

Pkt2

Pkt3Pkt1

Pkt2

Pkt3

Pkt1

Pkt2

Pkt3Pkt1

Pkt2

Pkt3Pkt1

Pkt2

Pkt3

Figure 9.15 Event Timing for Circuit Switching and Packet SwitchingETSF05/ETSF10- InternetProtocols 12

Page 12: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

VirtualCircuitsvs.Datagram• Virtualcircuits– Networkcanprovidesequencinganderrorcontrol– Packetsareforwardedmorequickly– Lessreliable(compareCircuitSwitching)

• Datagram(BestEffort)– Nocallsetupphase– Individualpackethandling–Moreflexible–Morereliable

ETSF05/ETSF10- InternetProtocols 13

Page 13: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

IPPerformanceMetrics(IPPMwg)• CharteredbyIETFtodevelopstandardmetricsthatrelatetothequality,performance,andreliabilityofInternetdatadelivery

• Measurementtechniques– Active:Transmitpacketsovernetworkformeasurementpurposes

– Passive:Useexistingtrafficformeasurements

ETSF05/ETSF10- InternetProtocols 14

Page 14: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Table22.3IPPerformanceMetrics

Metric Name Singleton Definition Statistical Definitions One-Way Delay Delay = dT, where Src transmits first bit of

packet at T and Dst received last bit of packet at T + dT

Percentile, median, minimum, inverse percentile

Round-Trip Delay Delay = dT, where Src transmits first bit of packet at T and Src received last bit of packet immediately returned by Dst at T + dT

Percentile, median, minimum, inverse percentile

One-Way Loss Packet loss = 0 (signifying successful transmission and reception of packet); = 1 (signifying packet loss)

Average

One-Way Loss Pattern

Loss distance: Pattern showing the distance between successive packet losses in terms of the sequence of packets Loss period: Pattern showing the number of bursty losses (losses involving consecutive packets)

Number or rate of loss distances below a defined threshold, number of loss periods, pattern of period lengths, pattern of inter-loss period lengths.

Packet Delay Variation

Packet delay variation (pdv) for a pair of packets with a stream of packets = difference between the one-way-delay of the selected packets

Percentile, inverse percentile, jitter, peak-to-peak pdv

Src=IPaddressofahostDst =IPaddressofahost

(a)SampledmetricsETSF05/ETSF10- InternetProtocols 15

Page 15: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Table22.3IPPerformanceMetrics

Metric Name General Definition Metrics Connectivity Ability to deliver a packet

over a transport connection.

One-way instantaneous connectivity, Two-way instantaneous connectivity, one-way interval connectivity, two-way interval connectivity, two-way temporal connectivity

Bulk Transfer Capacity

Long-term average data rate (bps) over a single congestion-aware transport connection.

BTC = (data sent)/(elapsed time)

(b)Othermetrics

ETSF05/ETSF10- InternetProtocols 16

Page 16: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

P(i) P(j)

P(j)

P(k)

P(k)P(i)

dTi

I1MP1

MP2

Figure 22.12 Model for Defining Packet Delay Variation

I1

I2

I2dTj dTk

I1, I2 = times that mark that beginning and ending of the interval in which the packet stream from which the singleton measurement is taken occurs.MP1, MP2 = source and destination measurement pointsP(i) = ith measured packet in a stream of packetsdTi = one-way delay for P(i)

ETSF05/ETSF10- InternetProtocols 17

PDVi=dTi-dTi-1Alt.STD(dT)

Time synch!

Page 17: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

• How much datafills thelink• OneWayDelay• TwoWayDelay=RoundTripTime(RTT)

Timefordata+timeforACK

ETSF05/ETSF10- InternetProtocols 18

Bandwidth-delayproduct

Page 18: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

ETSF05/ETSF10- InternetProtocols 19

bandwidth:5bps,delay:5sbandwidthxdelay=25bits

Bandwidth-delayproduct

Page 19: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Bandwidth-delayproduct

• Importantforcongestionavoidance– Don’toverfillthelink

• Importantforefficiency– Keepthelinkfilledatalltimes– FormaxefficiencyDatachunks>2*bandwidth*delay

20ETSF05/ETSF10- InternetProtocols

Page 20: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Bandwidth-delayproduct

• Important fortuning (TCP)• LongFatNetwork (LFN,”elephant”)BDP>>105 bits

• Very long(high delay)links:->Bandwidth =BDP/delayBut ittakes longtime before ACKarrives …

ETSF05/ETSF10- InternetProtocols 21

Page 21: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Performance vsARQ

• Method– Stop-&-Wait– Go-Back-N– Selective-Repeate

• Utilisation =f(window size)

ETSF05/ETSF10- InternetProtocols 22

Page 22: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

t0 T RT R

t0 + 1 T RT R

t0 + a T RT R

t0 + 1 + a T RT R

t0 + 1 + 2a ACK

Frame

t0

t0 + a

t0 + 1

t0 + 1 + a

t0 + 1 + 2a T RT R

(b) a > 1(a) a < 1

Figure 16.8 Stop-and-Wait Link Utilization (transmission time = 1; propagation time = a)ETSF05/ETSF10- InternetProtocols 23

Page 23: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

(a) W����a + 1

�a + 1

a + 1

a

1

t = 0

�)UDPH���a + 1)A BA�)UDPH���a) Frame (a��� Frame (a+3)

Frame (a + 1)A BA Frame a �)UDPH��

Frame aA B Frame (a – 1) Frame 1�)UDPH��

Frame 3

�)UDPH��A B Frame 1

Frame 1A B

A B

(b) W����a + 1

�a + 1

W

1

t = 0

A BA Frame (a ����

Frame WA BA Frame (W – 1) Frame (W–a+1)

Frame W

Frame (W-a���

a + 1 Frame (a + 1)A BA Frame a �)UDPH�� Frame 3

a Frame aA B Frame (a – 1) Frame 1�)UDPH��

Frame 1A B

A B

Figure 16.9 Timing of Sliding-Window Protocol

Sliding Windowsbased• a =propagationtime

• W =window size

• Compare withBandwitdh-DelayProduct

ETSF05/ETSF10- InternetProtocols 24

Page 24: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

2015-12-07 ETSF05/ETSF10- InternetProtocols 25

(a) W����a + 1

�a + 1

a + 1

a

1

t = 0

�)UDPH���a + 1)A BA�)UDPH���a) Frame (a��� Frame (a+3)

Frame (a + 1)A BA Frame a �)UDPH��

Frame aA B Frame (a – 1) Frame 1�)UDPH��

Frame 3

�)UDPH��A B Frame 1

Frame 1A B

A B

(b) W����a + 1

�a + 1

W

1

t = 0

A BA Frame (a ����

Frame WA BA Frame (W – 1) Frame (W–a+1)

Frame W

Frame (W-a���

a + 1 Frame (a + 1)A BA Frame a �)UDPH�� Frame 3

a Frame aA B Frame (a – 1) Frame 1�)UDPH��

Frame 1A B

A B

Figure 16.9 Timing of Sliding-Window Protocol

Page 25: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

2015-12-07 ETSF05/ETSF10- InternetProtocols 26

(a) W����a + 1

�a + 1

a + 1

a

1

t = 0

�)UDPH���a + 1)A BA�)UDPH���a) Frame (a��� Frame (a+3)

Frame (a + 1)A BA Frame a �)UDPH��

Frame aA B Frame (a – 1) Frame 1�)UDPH��

Frame 3

�)UDPH��A B Frame 1

Frame 1A B

A B

(b) W����a + 1

�a + 1

W

1

t = 0

A BA Frame (a ����

Frame WA BA Frame (W – 1) Frame (W–a+1)

Frame W

Frame (W-a���

a + 1 Frame (a + 1)A BA Frame a �)UDPH�� Frame 3

a Frame aA B Frame (a – 1) Frame 1�)UDPH��

Frame 1A B

A B

Figure 16.9 Timing of Sliding-Window Protocol

Page 26: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

1.0

0.8

0.6

0.4

0.2

0.0

Util

izat

ion

0 .1 1 1 0 1 0 0 1000a

W = 7 W = 1

W = 127

Figure 16.10 Sliding-Window Utilization as a function of a

ETSF05/ETSF10- InternetProtocols 27

W=1 Stop-&-Wait

Page 27: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

1.0

0.8

0.6

0.4

0.2

0.0

Util

izat

ion

0 .1 1 1 0 1 0 0 1000a

Stop-and-wait

W =127 Go-back-N

W =7 Go-back-N

Figure 16.11 ARQ Utilization as a Function of a (P = 10–3)

ETSF05/ETSF10- InternetProtocols 28P=Propability of frame error

Page 28: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

1

Data1Data

Header

(a) 1-packet message (b) 2-packet message (c) 5-packet message (d) 10-packet message

Data

Data

Data2

Data1

Data2

Data1

Data2

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 9.13 Effect of Packet Size on Transmission Time

X a b Y

X a b Y

X a b Y

X a b Y

PacketSize vsTransmissionTime

ETSF05/ETSF10- InternetProtocols 29

Page 29: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Nor

mal

ized

Thr

ough

put

Load

Average delayfor packets thatare delivered

Average delayfor all packets

Del

ay

Load

Figure 20.4 The Effects of Congestion

No congestion Severe congestionModeratecongestion

A

B

ETSF05/ETSF10- InternetProtocols 32

Delay andthroughput:Finite buffersNocongestioncontrol

Page 30: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

CongestionControlinPacket-SwitchingNetworks

Sendcontrolpackettosomeorallsourcenodes• Requiresadditionaltrafficduringcongestion

Relyonroutinginformation• Mayreacttooquickly

Endtoendprobepackets• Addstooverhead

Addcongestioninformationtopacketsintransit• Eitherbackwardsorforwards

ETSF05/ETSF10- InternetProtocols 34

Page 31: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

ExplicitCongestionSignaling

• Backward– Congestionavoidancenotificationinoppositedirectiontopacketrequired

• Forward– Congestionavoidancenotificationinsamedirectionaspacketrequired

ETSF05/ETSF10- InternetProtocols 36

Page 32: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Congestion control

• Avoiding andeliminating congestion– Open-loop=proactive,prevent congestion– Closed-loop=reactive,control congestion

37ETSF05/ETSF10- InternetProtocols

Page 33: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Closed-loopcongestion control (1)

• Backpressure

38ETSF05/ETSF10- InternetProtocols

Page 34: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Closed-loopcongestion control (2)

• Chokepacket

40ETSF05/ETSF10- InternetProtocols

Page 35: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

ImplicitCongestionSignaling

• Withnetworkcongestion:– Transmissiondelayincreases– Packetsmaybediscarded(Packetloss)

• Sourcecandetectcongestionandreduceflow• Responsibilityofendsystems• Effectiveonconnectionless(datagram)networks

• Alsousedinconnection-orientednetworks

ETSF05/ETSF10- InternetProtocols 42

Page 36: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

ExplicitSignalingCategories

ETSF05/ETSF10- InternetProtocols 43

• Binary– Abitsetinapacketindicatescongestion

• Creditbased– Indicateshowmanypacketssourcemaysend– Commonforend-to-endflowcontrol

• Ratebased– Supplyexplicitdataratelimit– Nodesalongpathmayrequestratereduction

Page 37: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

How toimprove QoS?

• Admission control• Resource reservation• Scheduling• Traffic shaping

• Routing?

44ETSF05/ETSF10- InternetProtocols

Page 38: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

WheretoimproveQoS?

• Admissioncontrol– DIFFSERV:Serviceclasses– INTSERV:Reservationarchitectures

• Resource reservation– RSVP(Resource ResevationProtocol)

• Scheduling• Trafficshaping

ETSF05/ETSF10- InternetProtocols 45

ANYWHEREYOUFINDQUEUES!

Page 39: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Scheduling:FIFOqueuing

47ETSF05/ETSF10- InternetProtocols

Page 40: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Scheduling:Priority queuing

48ETSF05/ETSF10- InternetProtocols

Page 41: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Scheduling:Weightedfairqueuing

49ETSF05/ETSF10- InternetProtocols

Page 42: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

TrafficShaping/TrafficPolicing• Twoimportanttoolsinnetworkmanagement:– Trafficshaping

• Concernedwithtrafficleavingtheswitch• Reducespacketclumping• Producesanoutputpacketstreamthatislessburstandwithamoreregularflowofpackets

– Trafficpolicing• Concernedwithtrafficenteringtheswitch• Packetsthatdon’tconformmaybetreatedinoneofthefollowingways:– Givethepacketlowerprioritycomparedtopacketsinotheroutputqueues

– Labelthepacketasnonconformingbysettingtheappropriatebitsinaheader

– DiscardthepacketETSF05/ETSF10- InternetProtocols 50

Page 43: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

TrafficManagement

ETSF05/ETSF10- InternetProtocols 51

• Fairness– Provideequaltreatmentofvariousflows

• Qualityofservice– Differenttreatmentfordifferentflows

• Reservations– Trafficcontractbetweenuserandnetwork– Excesstrafficdiscardedorhandledonabest-effortbasis

Page 44: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Supportfromroutingprotocols?

Yes!• Optimalpath

– Singlemetric– Multiplemetrics?

• Multiple Equal Cost Paths– Loadsharing– Loadbalancing

• QoSrouting– Cross-layerapproaches– OSPFextensions (RFC2676)

Well,sortof!• Appliestoalltraffic

– Nodifferentiation betweenflowtypes

• Whataboutinter-domain?– Nocontrolovernetwork

resources• Moresophisticated

mechanismsneeded– MultiprotocolLabelSwitching

(MPLS)– Resource Reservation

ETSF05/ETSF10- InternetProtocols 52

Page 45: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Layer 3congestion avoidance

• Congestion=dataload>networkcapacity– Arrival rate>processingrate– Processingrate>departurerate

• Asimplemethod– Randomearlydiscard(RED)– UDP?

53ETSF05/ETSF10- InternetProtocols

APP

TCP

IP

Page 46: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Traffic descriptors

54ETSF05/ETSF10- InternetProtocols

Page 47: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Traffic profiles

55ETSF05/ETSF10- InternetProtocols

Page 48: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Trafficshaping:Twoapproaches

Leaky bucket Tokenbucket

56

Inputflow

Outputflow

Inputflow

Outputflow

ETSF05/ETSF10- InternetProtocols

Page 49: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Traffic shaping:Leakybucket

57ETSF05/ETSF10- InternetProtocols

See also Figure 20.7

Page 50: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Traffic shaping:Tokenbucket

60ETSF05/ETSF10- InternetProtocols

See also Figure 20.6

Page 51: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

TokenBucket• Widelyusedtrafficmanagementtool• Advantages:–Manytrafficsourcescanbedefinedeasilyandaccurately

– Providesaconcisedescriptionoftheloadtobeimposedbyaflow,enablingtheservicetodetermineeasilytheresourcerequirement

– Providestheinputparameterstoapolicingfunction

ETSF05/ETSF10- InternetProtocols 61

Page 52: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

Bonus:QoE,Quality of Experience

• Theuser’s subjective perceptionof thepresentationof thecontent

• Mean OpinionScore(MOS)• Researchforto find objective measures– Fullreference– Noreference– Hybrid

• What QoS give what QoE??

ETSF05/ETSF10- InternetProtocols 62

Page 53: Performance & QoS CongestionControl · Congestion avoidance Packet marking Traffic shaping Traffic policing Traffic classification Queueing & scheduling Data Plane Admission control

https://goo.gl/forms/IRcUYcJCZTu8uo152

ETSF05/ETSF10- InternetProtocols 63