Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. ·...

54
September 22-26, 2014 Performance analysis of DG and HDG methods for the simulation of seismic wave propagation in harmonic domain M. Bonnasse-Gahot 1,2 , H. Calandra 3 , J. Diaz 1 and S. Lanteri 2 1 INRIA Bordeaux-Sud-Ouest, team-project Magique 3D 2 INRIA Sophia-Antipolis-Méditerranée, team-project Nachos 3 TOTAL Exploration-Production

Transcript of Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. ·...

Page 1: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

September 22-26, 2014

Performance analysis of DG and HDG methodsfor the simulation of seismic wave propagationin harmonic domainM. Bonnasse-Gahot1,2, H. Calandra3, J. Diaz1 and S. Lanteri21 INRIA Bordeaux-Sud-Ouest, team-project Magique 3D2 INRIA Sophia-Antipolis-Méditerranée, team-project Nachos

3 TOTAL Exploration-Production

Page 2: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Motivation

Examples of seismic applications

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 2/30

Page 3: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

MotivationImaging method : the full wave inversion

I Iterative procedure using the wavefield in order to obtainquantitative high resolution images of the subsurface physicalparameters

Seismic imaging : time-domain or harmonic-domain ?I Time-domain : imaging condition complicated but low

computational costI Harmonic-domain : imaging condition simple but huge

computational cost

Forward problem of the inversion processI Elastic wave propagation in harmonic domain : Helmholtz

equationI Reduction of the size of the linear system

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 3/30

Page 4: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

MotivationImaging method : the full wave inversion

I Iterative procedure using the wavefield in order to obtainquantitative high resolution images of the subsurface physicalparameters

Seismic imaging : time-domain or harmonic-domain ?I Time-domain : imaging condition complicated but low

computational costI Harmonic-domain : imaging condition simple but huge

computational cost

Forward problem of the inversion processI Elastic wave propagation in harmonic domain : Helmholtz

equationI Reduction of the size of the linear system

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 3/30

Page 5: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

MotivationImaging method : the full wave inversion

I Iterative procedure using the wavefield in order to obtainquantitative high resolution images of the subsurface physicalparameters

Seismic imaging : time-domain or harmonic-domain ?I Time-domain : imaging condition complicated but low

computational costI Harmonic-domain : imaging condition simple but huge

computational cost

Forward problem of the inversion processI Elastic wave propagation in harmonic domain : Helmholtz

equationI Reduction of the size of the linear system

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 3/30

Page 6: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

MotivationSeismic imaging in heterogeneous complex media

I Complex topographyI High heterogeneities

Use of unstructured meshes with FE methods

DG methodI Flexible choice of interpolation orders (p − adaptativity)I Highly parallelizable methodI Increased computational cost as compared to classical FEM

b b

b

b

b

b b b

b

b b

b

b

b

b b

b

b

b

b

b

b b

b

bb

bb

b

b

b

DOF of classical FEM

b

b

bb

bbb b

b b

bb

bb

bb b

bb

bbb

b b

b

b b

b

b

bb

b

bb b

b

b

b

b bbb

b

b b

b b

b b

b

DOF of DGM

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 4/30

Page 7: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

MotivationSeismic imaging in heterogeneous complex media

I Complex topographyI High heterogeneities

Use of unstructured meshes with FE methods

DG methodI Flexible choice of interpolation orders (p − adaptativity)I Highly parallelizable methodI Increased computational cost as compared to classical FEM

b b

b

b

b

b b b

b

b b

b

b

b

b b

b

b

b

b

b

b b

b

bb

bb

b

b

b

DOF of classical FEM

b

b

bb

bbb b

b b

bb

bb

bb b

bb

bbb

b b

b

b b

b

b

bb

b

bb b

b

b

b

b bbb

b

b b

b b

b b

b

DOF of DGM

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 4/30

Page 8: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

MotivationSeismic imaging in heterogeneous complex media

I Complex topographyI High heterogeneities

Use of unstructured meshes with FE methods

DG methodI Flexible choice of interpolation orders (p − adaptativity)I Highly parallelizable methodI Increased computational cost as compared to classical FEM

b b

b

b

b

b b b

b

b b

b

b

b

b b

b

b

b

b

b

b b

b

bb

bb

b

b

b

DOF of classical FEM

b

b

bb

bbb b

b b

bb

bb

bb b

bb

bbb

b b

b

b b

b

b

bb

b

bb b

b

b

b

b bbb

b

b b

b b

b b

b

DOF of DGM

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 4/30

Page 9: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

MotivationSeismic imaging in heterogeneous complex media

I Complex topographyI High heterogeneities

Use of unstructured meshes with FE methods

DG methodI Flexible choice of interpolation orders (p − adaptativity)I Highly parallelizable methodI Increased computational cost as compared to classical FEM

b b

b

b

b

b b b

b

b b

b

b

b

b b

b

b

b

b

b

b b

b

bb

bb

b

b

b

DOF of classical FEM

b

b

bb

bbb b

b b

bb

bb

bb b

bb

bbb

b b

b

b b

b

b

bb

b

bb b

b

b

b

b bbb

b

b b

b b

b b

b

DOF of DGM

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 4/30

Page 10: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Motivation

Objective of this workI Development of an hybridizable DG (HDG) methodI Comparison with a reference method : a standard nodal DG

method

b

b

bb

bbb b

b b

bb

bb

bb b

bb

bbb

b b

b

b b

b

b

bb

b

bb b

b

b

b

b bbb

b

b b

b b

b b

b

Figure : Degrees offreedom of DGM

b

b bb b

b b bb

bbb

bb

b bbb

b b

b

b

b b

b

b

b b

b

b

b b

b

b

b

bb

bb

b

Figure : Degrees offreedom of HDGM

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 5/30

Page 11: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG methods

HDG methodsI B. Cockburn, J. Gopalakrishnan, R. Lazarov Unified

hybridization of discontinuous Galerkin, mixed and continuousGalerkin methods for second order elliptic problems, SIAMJournal on Numerical Analysis, Vol. 47 (2009)

I S. Lanteri, L. Li, R. Perrussel, Numerical investigation of ahigh order hybridizable discontinuous Galerkin method for 2dtime-harmonic Maxwell’s equations, COMPEL, Vol. 32 (2013)(time-harmonic domain)

I N.C. Nguyen, J. Peraire, B. Cockburn, High-order implicithybridizable discontinuous Galerkin methods for acoustics andelastodynamics, J. of Comput. Physics, Vol. 230 (2011) (timedomain for seismic applications)

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 6/30

Page 12: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

2D Helmholtz equations

Contents

2D Helmholtz elastic equations

Notations and definitions

Hybridizable Discontinuous Galerkin method

Numerical results

Conclusions-Perspectives

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 6/30

Page 13: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

2D Helmholtz equations

2D Helmholtz elastic equations

First order formulation of Helmholtz wave equationsx = (x , y) ∈ Ω ⊂ R2,

iωρ(x)v(x) = ∇·σ(x) + fs(x)

iωσ(x) = C(x) ε(v(x))

I Free surface condition : σn = 0 on Γl

I Absorbing boundary condition : σn = vp(v · n)n + vs(v · t)t on Γa

I v : velocity vectorI σ : stress tensorI ε : strain tensor

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 7/30

Page 14: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

2D Helmholtz equations

2D Helmholtz elastic equations

First order formulation of Helmholtz wave equationsx = (x , y) ∈ Ω ⊂ R2,

iωρ(x)v(x) = ∇·σ(x) + fs(x)

iωσ(x) = C(x) ε(v(x))

I Free surface condition : σn = 0 on Γl

I Absorbing boundary condition : σn = vp(v · n)n + vs(v · t)t on Γa

I ρ : mass densityI C : tensor of elasticity

coefficients

I vp : P-wave velocityI vs : S-wave velocityI fs : source term, fs ∈ L2(Ω)

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 7/30

Page 15: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Definitions

Contents

2D Helmholtz elastic equations

Notations and definitions

Hybridizable Discontinuous Galerkin method

Numerical results

Conclusions-Perspectives

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 7/30

Page 16: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Definitions

Notations and definitions

NotationsI Th mesh of Ω composed of triangles K

I Fh set of all faces F of ThI n the normal outward vector of an element K

K

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 8/30

Page 17: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Definitions

Notations and definitions

NotationsI Th mesh of Ω composed of triangles KI Fh set of all faces F of Th

I n the normal outward vector of an element K

F

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 8/30

Page 18: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Definitions

Notations and definitions

NotationsI Th mesh of Ω composed of triangles KI Fh set of all faces F of ThI n the normal outward vector of an element K

nK

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 8/30

Page 19: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Definitions

Notations and definitions

Approximations spacesI Pp(K ) set of polynomials of degree at most p on K

I Vph = v ∈

(L2(Ω)

)2: v|K ∈ Vp(K ) = (Pp(K ))2 , ∀K ∈ Th

I Σph = σ ∈

(L2(Ω)

)3: σ|K ∈ Σp(K ) = (Pp(K ))3 ,∀K ∈ Th

I Mh = η ∈(L2(Fh)

)2: η|F ∈ (Pp(F ))2 ,∀F ∈ Fh

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 9/30

Page 20: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Definitions

Notations and definitions

Approximations spacesI Pp(K ) set of polynomials of degree at most p on KI Vp

h = v ∈(L2(Ω)

)2: v|K ∈ Vp(K ) = (Pp(K ))2 , ∀K ∈ Th

I Σph = σ ∈

(L2(Ω)

)3: σ|K ∈ Σp(K ) = (Pp(K ))3 ,∀K ∈ Th

I Mh = η ∈(L2(Fh)

)2: η|F ∈ (Pp(F ))2 ,∀F ∈ Fh

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 9/30

Page 21: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Definitions

Notations and definitions

Approximations spacesI Pp(K ) set of polynomials of degree at most p on KI Vp

h = v ∈(L2(Ω)

)2: v|K ∈ Vp(K ) = (Pp(K ))2 , ∀K ∈ Th

I Σph = σ ∈

(L2(Ω)

)3: σ|K ∈ Σp(K ) = (Pp(K ))3 ,∀K ∈ Th

I Mh = η ∈(L2(Fh)

)2: η|F ∈ (Pp(F ))2 ,∀F ∈ Fh

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 9/30

Page 22: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Definitions

Notations and definitions

Approximations spacesI Pp(K ) set of polynomials of degree at most p on KI Vp

h = v ∈(L2(Ω)

)2: v|K ∈ Vp(K ) = (Pp(K ))2 , ∀K ∈ Th

I Σph = σ ∈

(L2(Ω)

)3: σ|K ∈ Σp(K ) = (Pp(K ))3 ,∀K ∈ Th

I Mh = η ∈(L2(Fh)

)2: η|F ∈ (Pp(F ))2 ,∀F ∈ Fh

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 9/30

Page 23: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Definitions

Notations and definitions

DefinitionsI Jump [[·]] of a vector v through F :

[[v]] = v+ ·n+ +v− ·n− = v+ ·n+−v− ·n+

I Jump of a tensor σ through F :

[[σ]] = σ+n+ + σ−n− = σ+n+ − σ−n+

K+

K−n+

n−

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 10/30

Page 24: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method

Contents

2D Helmholtz elastic equations

Notations and definitions

Hybridizable Discontinuous Galerkin methodFormulationDiscretization

Numerical results

Conclusions-Perspectives

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 10/30

Page 25: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Formulation

HDG formulation of the equations

Local HDG formulationiωρv−∇ · σ = 0

iωσ − Cε (v) = 0

KiωρK vK ·w +

∫KσK : ∇w−

∫∂Kσ∂K · n ·w = 0∫

KiωσK : ξ +

∫K

vK · ∇ ·(CKξ

)−∫∂K

v∂K · CKξ · n = 0

We define :

vF = λF , ∀F ∈ Fh,σ∂K · n = σK · n− τ I

(vK − λ∂K) , on ∂K

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 11/30

Page 26: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Formulation

HDG formulation of the equations

Local HDG formulation

KiωρK vK ·w +

∫KσK : ∇w−

∫∂Kσ∂K · n ·w = 0∫

KiωσK : ξ +

∫K

vK · ∇ ·(CKξ

)−∫∂K

v∂K · CKξ · n = 0

We define :

vF = λF , ∀F ∈ Fh,σ∂K · n = σK · n− τ I

(vK − λ∂K) , on ∂K

σK and vK are numerical traces of σK and vK respectively on ∂K

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 11/30

Page 27: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Formulation

HDG formulation of the equations

Local HDG formulation

KiωρK vK ·w +

∫KσK : ∇w−

∫∂Kσ∂K · n ·w = 0∫

KiωσK : ξ +

∫K

vK · ∇ ·(CKξ

)−∫∂K

v∂K · CKξ · n = 0

We define :

vF = λF , ∀F ∈ Fh,σ∂K · n = σK · n− τ I

(vK − λ∂K) , on ∂K

where τ is the stabilization parameter (τ > 0)

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 11/30

Page 28: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Formulation

HDG formulation of the equations

Local HDG formulationWe replace vK and

(σK · n

)by their definitions into the local

equations

∫KiωρK vK ·w +

∫KσK : ∇w−

∫∂KσK · n ·w

+

∫∂Kτ I(

vK − λ∂K)·w = 0∫

KiωσK : ξ +

∫K

vK · ∇ ·(CKξ

)−∫∂Kλ∂K · CKξ · n = 0

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 12/30

Page 29: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Formulation

HDG formulation of the equations

Local HDG formulation∫

KiωρK vK ·w−

∫K

(∇ · σK) ·w +

∫∂Kτ I(vK − λ∂K) ·w = 0∫

KiωσK : ξ +

∫K

vK · ∇ ·(CKξ

)−∫∂Kλ∂K · CKξ · n = 0

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 13/30

Page 30: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Formulation

HDG formulation of the equations

Transmission conditionIn order to determine λK , the continuity of the normal componentof σK is weakly enforced, rendering this numerical traceconservative : ∫

F[[σK · n]] · η = 0

Replacing(σK · n

)and summing over all faces, the transmission

condition becomes :∑K∈Th

∫∂K

(σK · n

)· η −

∑K∈Th

∫∂Kτ I(

vK − λ∂K)· η = 0

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 14/30

Page 31: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Formulation

HDG formulation of the equations

Transmission conditionIn order to determine λK , the continuity of the normal componentof σK is weakly enforced, rendering this numerical traceconservative : ∫

F[[σK · n]] · η = 0

Replacing(σK · n

)and summing over all faces, the transmission

condition becomes :∑K∈Th

∫∂K

(σK · n

)· η −

∑K∈Th

∫∂Kτ I(

vK − λ∂K)· η = 0

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 14/30

Page 32: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Formulation

HDG formulation of the equations

Global HDG formulation

∫KiωρK vK ·w−

∫K

(∇ · σK) ·w +

∫∂Kτ I(vK − λ∂K) ·w = 0∫

KiωσK : ξ +

∫K

vK · ∇ ·(CKξ

)−∫∂Kλ∂K · CKξ · n = 0

∑K∈Th

∫∂K

(σK · n

)· η −

∑K∈Th

∫∂Kτ I(vK − λ∂K) · η = 0

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 15/30

Page 33: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Discretization

Discretization of the HDG formulation

Local HDG formulation∫

KiωρK vK ·w−

∫K

(∇ · σK) ·w +

∫∂Kτ I(vK − λ∂K) ·w = 0∫

KiωσK : ξ +

∫K

vK · ∇ ·(CKξ

)−∫∂Kλ∂K · CKξ · n = 0

We define :W K =

(vx

K , vzK , σxx

K , σzzK , σxz

K)T

Λ =(ΛF1 , ΛF2 , ..., ΛFnf

)T, where nf = card(Fh)

Discretization of the local HDG formulationAKW K + CK Λ = 0

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 16/30

Page 34: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Discretization

Discretization of the HDG formulation

Transmission condition∑K∈Th

∫∂K

(σK · n

)· η −

∑K∈Th

∫∂K

S(

vK − λ∂K)· η = 0

Discretization of the transmission condition∑K∈Th

[BKWK + LK Λ

]= 0

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 17/30

Page 35: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Discretization

Discretization of the HDG formulationTransmission condition∑

K∈Th

[BKWK + LK Λ

]= 0

Local HDG scheme

AKWK + CK Λ = 0

Global HDG system

KΛ = 0

with K =∑

K∈Th

[−BK (AK )−1CK + LK

]

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 18/30

Page 36: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Discretization

Discretization of the HDG formulationTransmission condition∑

K∈Th

[BKWK + LK Λ

]= 0

Expression of W K in terms of Λ

WK = −(AK )−1CK Λ

Global HDG system

KΛ = 0

with K =∑

K∈Th

[−BK (AK )−1CK + LK

]

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 18/30

Page 37: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

HDG method Discretization

Discretization of the HDG formulationTransmission condition∑

K∈Th

[BKWK + LK Λ

]= 0

Expression of W K in terms of Λ

WK = −(AK )−1CK Λ

Global HDG system

KΛ = 0

with K =∑

K∈Th

[−BK (AK )−1CK + LK

]M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 18/30

Page 38: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results

Contents

2D Helmholtz elastic equations

Notations and definitions

Hybridizable Discontinuous Galerkin method

Numerical resultsPlane wave in an homogeneous mediumDisk-shaped scatterer problemMarmousi test-case

Conclusions-Perspectives

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 18/30

Page 39: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Plane wave in an homogeneous medium

Plane wave

10000 m

10000 m

Computational domain Ωsetting

I Physical parameters :I ρ = 2000kg .m−3I λ = 16GPaI µ = 8GPa

I Plane wave :

u = ∇ei(k cos θx+k sin θy)

where k =ω

vpI θ = 0I Three meshes :

I 3000 elementsI 10000 elementsI 45000 elements

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 19/30

Page 40: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Plane wave in an homogeneous medium

Plane wave

5 5.5 6 6.5−5

0

5

10

15

20

hmax

||Wa −

We ||

12.3

13.4

1

4.0

1

5.4

P1

P2

P3

P4

Convergence order of the HDG scheme

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 20/30

Page 41: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Disk-shaped scatterer problem

Disk-shaped scatterer problem

ΓlΓa

Ω

a

b

Computational domain Ωsetting

I a = 2000.0m and b = 8000.0mI Physical parameters in Ω :

I ρ = 1kg .m−3I λ = 8GPaI µ = 4GPa

I Γl free surface boundary :σn = 0

I Γa absorbing boundary :σn = vp(v · n)n + vs(v · t)t

I Three meshes :I 1200 elementsI 5400 elementsI 22000 elements

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 21/30

Page 42: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Disk-shaped scatterer problem

Disk-shaped scatterer problem

5.5 6 6.5 711

12

13

14

15

16

17

hmax

||Wa −

We ||

P2

h2.5

P3

h3.22

P4

h2.27

Convergence order of the HDG schemeM. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 22/30

Page 43: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Disk-shaped scatterer problem

Disk-shaped scatterer problem

Elements Order CPU Time (s) Memory (MB)HDG UDG IPDG HDG UDG IPDG

1200 2 0.7

2.6 2.4

32

269 70

5100 2 3.0

15.0 11.9

161

1360 369

21000 2 14.0

94.8 58.0

728

6578 1857

1200 3 1.7

5.4 6.8

57

525 190

5100 3 7.6

38.8 35.9

283

2921 1017

21000 3 34.8

252.0 197.8

1284

14131 5126

1200 4 3.9

10.5 15.7

86

895 428

5100 4 17.7

67.0 87.9

430

4537 2279

21000 4 79.1

452.8 520.7

1953

21186 11503

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 23/30

Page 44: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Disk-shaped scatterer problem

Disk-shaped scatterer problem

Elements Order CPU Time (s) Memory (MB)HDG UDG IPDG HDG UDG IPDG

1200 2 0.7 2.6 2.4 32 269 705100 2 3.0 15.0 11.9 161 1360 36921000 2 14.0 94.8 58.0 728 6578 18571200 3 1.7 5.4 6.8 57 525 1905100 3 7.6 38.8 35.9 283 2921 101721000 3 34.8 252.0 197.8 1284 14131 51261200 4 3.9 10.5 15.7 86 895 4285100 4 17.7 67.0 87.9 430 4537 227921000 4 79.1 452.8 520.7 1953 21186 11503

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 23/30

Page 45: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Disk-shaped scatterer problem

Disk-shaped scatterer problem

Elements Order CPU Time MemoryHDG UDG IPDG HDG UDG IPDG

1200 2 1 3.7 3.4 1 8.4 2.25100 2 1 5.0 4.0 1 8.4 2.321000 2 1 6.8 4.1 1 9.0 2.61200 3 1 3.1 4.0 1 9.2 3.35100 3 1 5.1 4.7 1 10.3 3.621000 3 1 7.2 5.7 1 11.0 4.01200 4 1 2.7 4.0 1 10.4 5.05100 4 1 3.8 5.0 1 10.5 5.321000 4 1 5.7 6.6 1 10.8 5.9

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 24/30

Page 46: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Disk-shaped scatterer problem

Disk-shaped scatterer problem

Elements Order CPU Time MemoryHDG UDG IPDG HDG UDG IPDG

1200 2 1 3.7 3.4 1 8.4 2.25100 2 1 5.0 4.0 1 8.4 2.321000 2 1 6.8 4.1 1 9.0 2.61200 3 1 3.1 4.0 1 9.2 3.35100 3 1 5.1 4.7 1 10.3 3.621000 3 1 7.2 5.7 1 11.0 4.01200 4 1 2.7 4.0 1 10.4 5.05100 4 1 3.8 5.0 1 10.5 5.321000 4 1 5.7 6.6 1 10.8 5.9

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 24/30

Page 47: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Marmousi test-case

Marmousi test-case

Computational domain Ω composed of 235000 triangles

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 25/30

Page 48: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Marmousi test-case

Parallel results for the Marmousi test-case with theHDG-P2 scheme

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 26/30

Page 49: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Marmousi test-case

Parallel results for the Marmousi test-case with theHDG-P2 scheme

CPU Time CPU Time Maximumconstruction (s) resolution. (s) Memory (MB)

sequential 67 133 99272 proc. (2/1) 32 93 58924 proc. (2/2) 15 56 33408 proc. (4/2) 8 38 209216 proc. (4/4) 4 39 369532 proc. (4/8) 2 21 131264 proc. (8/8) 1 19 893

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 27/30

Page 50: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Numerical results Marmousi test-case

Parallel results for the Marmousi test-case with theHDG-P3 scheme

CPU Time CPU Time Maximumconstruction (s) resolution (s) Memory (MB)

sequential 207 321 176312 proc.(2/1) 96 196 100484 proc. (2/2) 47 116 58498 proc. (4/2) 23 75 520516 proc. (4/4) 12 72 462832 proc. (4/8) 6 42 168964 proc. (8/8) 3 33 1229

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 28/30

Page 51: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Conclusion

Contents

2D Helmholtz elastic equations

Notations and definitions

Hybridizable Discontinuous Galerkin method

Numerical results

Conclusions-Perspectives

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 28/30

Page 52: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Conclusion

Conclusions-Perspectives

ConclusionsI The HDG scheme has the correct convergence order (p + 1)I On a same mesh the HDG formulation is more competitive in

terms of memory and computational time than the upwindflux DG formulation and the IPDG method

PerspectivesI Develop 3D Upwind flux DG and HDG formulations for

Helmholtz equationsI Solution strategy for the HDG linear system

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 29/30

Page 53: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Conclusion

Conclusions-Perspectives

ConclusionsI The HDG scheme has the correct convergence order (p + 1)I On a same mesh the HDG formulation is more competitive in

terms of memory and computational time than the upwindflux DG formulation and the IPDG method

PerspectivesI Develop 3D Upwind flux DG and HDG formulations for

Helmholtz equationsI Solution strategy for the HDG linear system

M. Bonnasse-Gahot - DG and HDG methods for Helmholtz wave equations September 8, 2014 - 29/30

Page 54: Performance analysis of DG and HDG methods for the simulation … · 2015. 1. 6. · September22-26,2014 Performance analysis of DG and HDG methods for the simulation of seismic wave

Conclusion

Thank you !