Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning...

40
Percolation is Odd Stephan Mertens, Otto-von-Guericke University Cristopher Moore, Santa Fe Institute

Transcript of Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning...

Page 1: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Percolation is OddStephan Mertens, Otto-von-Guericke University Cristopher Moore, Santa Fe Institute

Page 2: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 3: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 4: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

The Total Number of Spanning Configurations is Always Odd

1 2 3 4 5 6 71 1 1 1 1 1 1 12 3 7 17 41 99 239 5773 7 37 197 1041 5503 29089 1537694 15 175 1985 22193 247759 2764991 308567055 31 781 18621 433809 10056959 232824241 53882741216 63 3367 167337 8057905 384479935 18287614751 8689724109297 127 14197 1461797 144769425 14142942975 1374273318721 133267613878665

<latexit sha1_base64="ra7591rNlC99TFfYc3oiajUfMOE=">AAAGC3icfVPdjtw0FM5OGSjhrwuX3FiMqBBCq8R2YlviYqVtJW4oC2K3pevRysl4ZqPNH7ansMpGvW0veBruELc8BK/BE2A72U4bsVg6jnO+7/x8Tk7WloU2UfT33uzOW/O337n7bvje+x98+NG9/Y9PdbNVuTzJm7JRTzKhZVnU8sQUppRPWiVFlZXycXZ55PDHz6TSRVP/aK5auazEpi7WRS6MdZ3v7/0T8kxuiroTSomrvsuv82H14X0Qg/sAWkPWsLXEWmqNAM4Bv3BFQ8e53TgPbxIQ53AbdhBjLjdye0JcvvCGgzyR+T3y3CSJHAhZRB0/ThBJmQvB/s3n9Tuj7gFhzDwfE5L4MiTFjLlMKKJJSqLEBTsqck5Cfa80he6JEaKRLxNFScqGBAhSiOHQDKIUEhxDL87dRuqKIZT6jlOCvAAaJYRFvgbFmDCGfIcUUpLGmCQuFU0pIzZrxKCX4xNAv+PxAnAak/GErWgMkwHF0J7ZoBoRDG3VmBIvIEYIprYIooSmqZfKZb0aP3AYhuf3FtEBY4wyCOKDyC8wePDOszgMhnV8vn8n4Ksm31ayNnkptD6Lo9YsbUZT5KXsQ77VshX5pdjIM3usRSX1svN/Zw8+t54VWDfKWm2A974e0YlK66sqs8xKmAs9xZxzh/0gf94WSh6P+Eq7pJMOzJouu6Jut0bW+dDAelsC0wA3AmBl43NTXtmDyFVhNYD8QiiRGzsoIa/lL3lTVcJeGS/qWqr+DC47Xsq14aWoN6UEixh8BRYQcFVsLgxX3tu/GSoy3Z/FY+C1CxnY15b3QNprVPJbK+m7ViphGvVlxx/+2vYddzqzrHvY38o7FWrkqapzL7cyzWtE8z88dbnj2fNESabEqOSV+usJ5VIaTxl1/td9FKuxxkp38bSEbLVFn9nOWl2UTT2Fd+3JaejT3Z09nWKPdtijKXa0w4766Q/UtIVYdr5bqYtN3fuZeTUq08PNzJzCgxgfJN/jxeHX4/TcDT4NPgu+COKABIfBN8FxcBLks59mz2cvZi/nv81/n/8x/3OgzvbGmE+CN9b8r38BytnKkw==</latexit>

Height

Wid

th

Page 5: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

10 20 30 40 50 60

1000.0

107

1011

1015

1019

: # configurations with k occupied sitesAn,m(k)

k

Page 6: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Rn,m(z) =nm

∑k=0

zkAn,m(k)

Page 7: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Rn,m(z) =nm

∑k=0

zkAn,m(k) Pcross(p) =nm

∑k=0

pk(1 − p)nm−kAn,m(k)

Page 8: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Rn,m(z) =nm

∑k=0

zkAn,m(k) Pcross(p) =nm

∑k=0

pk(1 − p)nm−kAn,m(k)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

5 × 5, 11 × 11, 22 × 22

Page 9: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Rn,m(z) =nm

∑k=0

zkAn,m(k)

Page 10: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Rn,m(z) =nm

∑k=0

zkAn,m(k) Rn,m(−1) = ∑k even

An,m(k) − ∑k odd

An,m(k)

Page 11: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Rn,m(z) =nm

∑k=0

zkAn,m(k) Rn,m(−1) = ∑k even

An,m(k) − ∑k odd

An,m(k)

The paper is organized as follows. We start by proving

(3a) and (3b). We then generalize this result to site per-

colation on the hypercube Zd and, more generally, to carte-

sian graph products. Then we present the most general form

of our result in terms of percolation on graph stacks. Fi-

nally we discuss the computation of Rn,m(�1, 1) for pairs of

matching lattices.

II. The Square Lattice

We compute Rn,m(�1, 1) by constructing a partial matching on

the set of spanning configurations: that is, for most span-

ning configurations � we define a unique partner �0 which

is another spanning configuration, such that �00 = �. More-

over, � and �0 have opposite parity, since they differ at a

m

n

1 2 3 4 5 6 7 8

1 �1 �1 �1 �1 �1 �1 �1 �1

2 1 �1 1 �1 1 �1 1 �1

3 �1 1 �1 1 �1 1 �1 1

4 1 1 1 1 1 1 1 1

5 �1 �1 �1 �1 �1 �1 �1 �1

6 1 �1 1 �1 1 �1 1 �1

7 �1 1 �1 1 �1 1 �1 1

8 1 1 1 1 1 1 1 1

Table I. Values of Rn,m(�1, 1) for the square lattice with m rows and n

columns, for either open or cylindrical boundary conditions.

4

Page 12: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

k odd k even

partial matching

Page 13: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

k odd k even

partial matching

Page 14: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 15: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 16: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 17: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 18: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 19: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 20: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 21: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 22: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 23: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 24: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 25: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 26: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 27: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 28: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 29: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 30: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 31: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 32: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 33: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 34: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577
Page 35: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

The Odd One Out

Page 36: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

⌊ m2 ⌋ n + ⌈ m

2 ⌉

The Odd One Out

Page 37: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Rn,m(−1) = ∑k even

An,m(k) − ∑k odd

An,m(k) = (−1)⌊ m2 ⌋n+⌈ m

2 ⌉

The paper is organized as follows. We start by proving

(3a) and (3b). We then generalize this result to site per-

colation on the hypercube Zd and, more generally, to carte-

sian graph products. Then we present the most general form

of our result in terms of percolation on graph stacks. Fi-

nally we discuss the computation of Rn,m(�1, 1) for pairs of

matching lattices.

II. The Square Lattice

We compute Rn,m(�1, 1) by constructing a partial matching on

the set of spanning configurations: that is, for most span-

ning configurations � we define a unique partner �0 which

is another spanning configuration, such that �00 = �. More-

over, � and �0 have opposite parity, since they differ at a

m

n

1 2 3 4 5 6 7 8

1 �1 �1 �1 �1 �1 �1 �1 �1

2 1 �1 1 �1 1 �1 1 �1

3 �1 1 �1 1 �1 1 �1 1

4 1 1 1 1 1 1 1 1

5 �1 �1 �1 �1 �1 �1 �1 �1

6 1 �1 1 �1 1 �1 1 �1

7 �1 1 �1 1 �1 1 �1 1

8 1 1 1 1 1 1 1 1

Table I. Values of Rn,m(�1, 1) for the square lattice with m rows and n

columns, for either open or cylindrical boundary conditions.

4

Page 38: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Other Matching Proofs

A square integer has an odd number of divisors The number of binary trees with leaves is odd A prime has an odd number of representations

2n

p = 4n + 1 p = x2 + y2

Page 39: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Shameless plug

To put it bluntly: this book rocks! It somehow manages to combine the fun of a popular book with the intellectual heft of a textbook.

Scott Aaronson, UT Austin

This is, simply put, the best-written book on the theory of computation I have ever read; one of the best-written mathematical books I have ever read, period.

Cosma Shalizi, Carnegie Mellonwww.nature-of-computation.org

Page 40: Percolation is Odd - UCLA Mathematicspak/seminars/Slides/Moore.pdf · The Total Number of Spanning Configurations is Always Odd 12 3 4 5 6 7 1 11 1 1 1 1 1 2 3 7 17 41 99 239 577

Shameless plug

To put it bluntly: this book rocks! It somehow manages to combine the fun of a popular book with the intellectual heft of a textbook.

Scott Aaronson, UT Austin

This is, simply put, the best-written book on the theory of computation I have ever read; one of the best-written mathematical books I have ever read, period.

Cosma Shalizi, Carnegie Mellonwww.nature-of-computation.org

NEW! IMPROVED!