pell-2

download pell-2

of 4

Transcript of pell-2

  • 8/3/2019 pell-2

    1/4

    Applied Mathematical Sciences, Vol. 3, 2009, no. 3, 115 - 118

    A Note on the Pell Equation x2 Dy2 = 4

    Liqun Tao

    School of Mathematical Sciences, University College DublinBelfield, Dublin 4, Ireland

    [email protected]

    Abstract

    Let D be any square-free positive integer. In this note we give aproof of two conjectures in [1] on the recurrence relations of integersolutions of the Pell equation x2 Dy2 = 4.

    Mathematics Subject Classifications: Primary 11E15

    Keywords: Pell equation

    1. Introduction

    Let D be any square-free positive integer. In [1], A. Tekcan consideredthe Pell equation x2 Dy2 = 4 and proved some interesting results. Healso proposed two conjectures on the recurrence relations of integer (actuallypositive) solutions in terms of the fundamental solution of the equation.

    The aim of this note is just to show that these conjectures hold and followimmediately from the main results shown in [1], which, together with theconjectures, we record as follows.

    Lemma 1.1. Let (x1, y1) be the fundamental solution of the Pell equationx2 Dy2 = 4, and let

    unvn

    =

    x1 Dy1y1 x1

    n10

    (1)

    for n 1. Then all the positive integer solutions of the Pell equation x2Dy2 =

    4 are given by (xn, yn) = (

    un

    2n1 ,

    vn

    2n1 ).

    Lemma 1.2. Let (x1, y1) be the fundamental solution of the negative Pellequation x2 Dy2 = 4, and let

    unvn

    =

    x1 Dy1y1 x1

    n10

    (2)

  • 8/3/2019 pell-2

    2/4

    116 Liqun Tao

    for n 0. Then all the positive integer solutions of the Pell equation x2Dy2 =4 are given by (x2n+1, y2n+1) = (

    u2n+122n

    ,v2n+1

    22n).

    Conjecture 1.3. Let (x1, y1) be the fundamental solution of the Pell equationx2 Dy2 = 4, then (xn, yn) satisfy the following recurrence relations

    xn = (x1 1)(xn1 + xn2) xn3yn = (x1 1)(yn1 + yn2) yn3

    for n 4.

    Conjecture 1.4. Let (x1, y1) be the fundamental solution of the Pell equationx2 Dy2 = 4, then (x2n+1, y2n+1) satisfy the following recurrence relations

    x2n+1 = (x21 + 1)(x2n1 + x2n3) x2n5

    y2n+1 = (x21 + 1)(y2n1 + y2n3) y2n5

    for n 3.

    2. Proof of conjectures

    Proof of Conjecture 1.3. Since (xn, yn) = (un

    2n1 ,vn

    2n1 ), we need only to showthat

    unvn

    =

    2(x1 1)(un1 + 2un2) 8un32(x1 1)(vn1 + 2vn2) 8vn3

    = 2(x1 1)

    un1vn1

    + 2

    un1vn2

    8

    un3vn3

    In view of (1), it suffices to show

    x1 Dy1y1 x1

    3 10

    =

    2(x1 1)

    x1 Dy1y1 x1

    2

    + 2

    x1 Dy1y1 x1

    8

    1 00 1

    10

    It is easy to see that

    x1 Dy1y1 x1

    2= x21 + Dy21 2Dx1y1

    2x1y1 x21 + Dy21

    and

    x1 Dy1y1 x1

    3=

    x31 + 3Dx1y

    21 3Dx

    21y1 + D

    2y213x21y1 + Dy

    31 x

    31 + 3Dx1y

    21

  • 8/3/2019 pell-2

    3/4

    Pell equation 117

    Using x21 Dy21 = 4, we have

    2(x1 1)

    x1 Dy1y1 x1

    2+ 2

    x1 Dy1y1 x1

    8

    1 00 1

    10

    = 2(x1 1)

    x

    2

    1 + Dy2

    12x1y1

    + 2

    x1y1

    8

    10

    =

    2(x1 1)(x

    21 + Dy

    21 + 2x1) 8

    2(x1 1)(2x1y1 + 2y1)

    =

    2(x1 1)(x

    21 + (x

    21 4) + 2x1) 8

    2(x1 1)(2x1y1 + 2y1)

    =

    4(x1 1)(x

    21 + x1 2) 8

    2(x1 1)(2x1y1 + 2y1)

    =

    4x1(x

    21 3)

    4(x21 1)y1

    andx1 Dy1y1 x1

    310

    =

    x31 + 3Dx1y

    21

    3x21y1 + Dy31

    =

    x31 + 3x1(x

    21 4)

    3x21y1 + y1(x21 4)

    =

    4x1(x

    21 3)

    4(x21 1)y1

    This completes the proof. 2

    Proof of Conjecture 1.4. Since (x2n+1, y2n+1) = (u2n+1

    22n ,v2n+1

    22n ), we need onlyto show that

    u2n+1v2n+1

    =

    (x21 + 1)(u2n1 + u2n3) u2n5(x21 + 1)(v2n1 + v2n3) v2n5

    = (x21 + 1)

    u2n1v2n1

    +

    u2n3v2n3

    u2n5v2n5

    In view of (2), it suffices to show

    x1 Dy1y1 x1

    6 10

    =

    4(x21

    + 1)

    x1 Dy1y1 x1

    4

    + 4

    x1 Dy1y1 x1

    2

    64

    1 00 1

    10

    It is easy to see that

    x1 Dy1y1 x1

    2=

    x21 + Dy

    21 2Dx1y1

    2x1y1 x21 + Dy

    21

    x1 Dy1y1 x1

    4=

    (x21 + Dy

    21)

    2 + 4Dx21y21 4Dx1y1(x

    21 + Dy

    21)

    4x1y1(x21 + Dy

    21) (x

    21 + Dy

    21)

    2 + 4Dx21y21

  • 8/3/2019 pell-2

    4/4

    118 Liqun Tao

    and

    x1 Dy1y1 x1

    6=

    (x2

    1+ Dy2

    1)3 + 12Dx2

    1y21

    (x21

    + Dy21

    ) 6Dx1y1(x2

    1+ Dy2

    1)2 + 8D2x3

    1y31

    8Dx31y31

    + 6x1y1(x2

    1+ Dy2

    1)2 (x2

    1+ Dy2

    1)3 + 12Dx2

    1y21

    (x1 + Dy2

    1)

    Using x21 Dy21 = 4, we have

    4(x21 + 1)

    x1 Dy1y1 x1

    4+ 4

    x1 Dy1y1 x1

    2 64

    1 00 1

    10

    = 4(x21 + 1)

    (x21 + Dy

    21)

    2 + 4Dx21y21

    4x1y1(x21 + Dy

    21)

    + 4

    x21 + Dy

    21

    2x1y1

    64

    10

    =

    4(x21 + 1)((x

    21 + Dy

    21)

    2 + 4Dx21y21 + 4(x

    21 + Dy

    21) 64)

    4(x21 + 1)(4x1y1(x21 + Dy

    21) + 4 2x1y1)

    =

    4(x21 + 1)((x

    21 + x

    21 + 4)

    2 + 4x21(x21 + 4) + 4(x

    21 + x

    21 + 4)) 64

    4(x21 + 1)(4x1y1(x21 + x

    21 + 4) + 8x1y1)

    = 32((x21 + 1)2(x21 + 4) 2)

    32x1y1(x21 + 1)(x21 + 3)

    andx1 Dy1y1 x1

    610

    =

    (x21 + Dy

    21)

    3 + 12Dx21y21(x

    21 + Dy

    21)

    8Dx31y31 + 6x1y1(x

    21 + Dy

    21)

    2

    =

    (x21 + x

    21 + 4)

    3 + 12x21(x21 + 4)(x

    21 + x

    21 + 4)

    8x31y1(x21 + 4) + 6x1y1(x

    21 + x

    21 + 4)

    2

    =

    32((x21 + 1)

    2(x21 + 4) 2)32x1y1(x

    21 + 1)(x

    21 + 3)

    This completes the proof. 2

    References

    [1] Ahmet Tekcan, The Pell Equation x2 Dy2 = 4, Applied MathematicalSciences, 1(8), 2007, 363-369

    Received: June 8, 2008