Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura...

121
Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven Frick, MD

Transcript of Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura...

Page 1: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Pediatric Ankle & Foot Fractures

Steven Rabin, MDRevised: March 2011

Original authors (2004): Laura Phieffer, MD & Steven Frick, MD

Revised (2006): Steven Frick, MD

Page 2: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Pediatric Ankle Fractures

Page 3: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Epidemiology

• 2nd most common site of physeal fractures in children

• Most occur between ages 8 - 15 y.o.

• Boys > girls

• Direct and indirect mechanisms of injury

Page 4: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Anatomy

• All ligamentous structures attach distal to the physis

• Ligaments are stronger than physis and bone

• Physeal injury more common than ligament injury

• Anterior Tibio-fibular ligament important in transitional fractures when the physis is closing

Page 5: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Ankle Anatomy

• Distal tibia ossification center appears between 6 - 24 months

• Distal fibula ossification center appears between 9 - 24 months

• Medial malleolar extension appears at about 7 years

Page 6: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Physeal Closure

• Distal tibia physis closes:– About age 12-15 yrs girls – About age 13-17 yrs boys

• Medial malleolus extension appears ~10 yrs• Asymmetric closure over ~18 months

– Tibia physis closes in center first then medially and posteriorly.

– Anterolateral portion of physis is the last to close

• Closure of the distal fibula physis follows distal tibia physeal closure by ~12-24 months

Page 7: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Distal Tibial Physeal Closure

Page 8: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Age / Fracture Pattern

Spiegel P, et al. Epiphyseal fractures of the distal ends of the tibia and fibula. J Bone Joint Surg Am. 1978;60(8):1046-50.

Page 9: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

ClassificationAnatomic

• Salter-Harris– High

interobserver correlation

– Correlated with outcomes

Page 10: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Classification - Ankle Fractures

• Mechanism of injury:

Dias L, Tachdjian M. Physeal injuries of the ankle in children: classification. Clin Orthop Relat Res. 1978;136:230-3.

Page 11: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Diagnosis - Ankle Fractures

• Direct/indirect mechanisms

• Acute/subacute

• May have subtle exam findings

• Differentiate sprain from non-displaced fracture by location of tenderness– (Pain over the physis/bone = physeal injury)– (Pain over the soft tissues = sprain)

Page 12: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Imaging of Ankle Fractures

• Radiographs - AP, LAT, Mortise– know normal anatomic variants

• Stress radiographs• CT scan – to assess articular involvement• MRI – role not well defined• Bone Scan – if in doubt about an accessory

ossification center vs. an acute fracture

Page 13: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Accessory Ossification Centers – Smooth Borders

• Accessory ossification centers usually appear between ages of 7 to 10 yrs

• Fuse by skeletal maturity• Medial (os subtibiale) in

20% of patients• Lateral (os subfibulare) in

1% of patients

Page 14: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Treatment Considerations

• Location of fracture

• Mechanism of injury

• Degree of displacement

• Age of child (how much growth remains)– Distal tibia physis contributes:

• 3-4 mm growth per year

• 35-45% of overall tibial length

Page 15: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type I Fracture• Typically occur in younger pts• Seen with all mechanisms (SI, SPF, SER,

PER)• Often missed initially (dx “sprain”):

– Physis weaker than ligaments so physeal injury is more common than a sprain

• Xrays – Acute – often normal except for soft tissue

swelling over physis– Subacute - reveal widening of physis- healing

Page 16: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter I Distal Tibia Fractures: Treatment

• Less than 3 mm displacement– Cast– 4-6 weeks depending on the patient’s age

• Greater than 3 mm displacement– Gentle closed reduction and casting– Usually require anesthesia– If interposed soft tissue, must be removed– If unstable, pin fixation may be needed.– More likely to be unstable if fibula also

fractured

• Follow x-rays for 6-12 months to evaluate for premature physeal closure

Page 17: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter I Fracture Distal Tibia

• Salter I fracture of the distal tibia (with metaphyseal fibula fracture)

• Treated with closed reduction and pin fixation

Page 18: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type II Fractures

• Most common distal tibia Fx type• Seen with all mechanisms

(SI, SPF, SER, PER)• Mechanism deduced by

– Direction of displacement of the tibial epiphysis,

– Type of associated fibula fx– Location of metaphyseal spike

Page 19: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type II fractures: Treatment

• Non-displaced fractures– Short leg cast (SLC) for 3 weeks

– Then walking SLC for 3 weeks

• Displaced fractures– Avoid repeated attempts at reduction

– If unstable consider a long leg cast for 2-3 weeks, otherwise a short leg cast for 3-4 weeks then a short leg walking cast for 2-3 weeks (depending on age)

– Open reduction infrequently indicated

– Follow for growth arrest

Page 20: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter II Fracture of the Distal Tibia

• Salter II fracture of the distal tibia– treated with

closed reduction and cannulated screw fixation

Page 21: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type I & II fxs

• If reduction is incomplete, how much residual displacement is acceptable?

– Carothers and Crenshaw (1955)• “accurate reposition of the displaced epiphysis at the

expense of forced or repeated manipulation or operative intervention is not indicated”

Carothers C, Crenshaw A. Clinical significance of a classification of epiphyseal injuries at the ankle. Am J Surg. 1955;89(4):879-89.

Page 22: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type I & II fxs

• If reduction is incomplete, how much residual displacement is acceptable?

– Spiegel (1978)• correlated Salter-Harris classification with risk of

shortening, angular deformity and joint incongruity

• recommended “precise anatomical reduction”

Spiegel P, et al. Epiphyseal fractures of the distal ends of the tibia and fibula. J Bone Joint Surg Am. 1978;60(8):1046-50.

Page 23: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type I & II fxs

• Differing opinions regarding indication for open reduction for interposition of periosteum => widening with minimal angulation– Kling (1984)

– Phieffer (2000)- Animal model

– Barmada (2005) believes interposed periosteum leads to growth disturbance

-Kling T, Bright R, Hensinger R. Distal tibial physeal fractures in children that may require open reduction. J Bone Joint Surg Am. 1984;66(5):647-57.-Phieffer et al. Effect of interposed periosteum in an animal physeal fracture model. Clin Orthop Relat Res. 2000;376:15-25.-Barmada A, Gaynor T, Mubarak SJ. Premature physeal closure following distal tibia physeal fractures: a new radiographic predictor. J Pediatr Orthop. 2003;23(6):733-9.

Page 24: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Closed reduction with incomplete reduction because of interposed soft

tissues – removed at ORIF

Page 25: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type I & II fxs

• Displaced subacute (>7-10 days out) fxs– Residual displacement may have to be accepted– If growth does not sufficiently correct

malunion, corrective osteotomy performed

Page 26: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter II Fracture of the Distal Tibia

Page 27: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type III & IV fxs

• Mechanism of injury similar for both fx patterns (typically supination-inversion)

• Usually produced by medial corner of talus being driven into the junction of distal tibial articular surface and the medial malleolus

• Can see central and lateral fx patterns

Page 28: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type III & IV fxs

• Treatment and prognosis are similar

• Anatomic restoration of the articular surface is a high priority

• Medial pattern appears to be at higher risk for developing partial growth arrest and subsequent varus deformity

-Spiegel P, Cooperman D, Laros G. Epiphyseal fractures of the distal ends of the tibia and fibula. J Bone Joint Surg Am. 1978;60(8):1046-50.-Kling T, Bright R, Hensinger R. Distal tibial physeal fractures in children that may require open reduction. J Bone Joint Surg Am. 1984;66(5):647-57.-Caterini R, Farsetti P, Ippolito E. Long-term followup of physeal injury to the ankle. Foot Ankle. 1991;11(6):372-83.

Page 29: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type III & IV fxs

• Non-displaced fractures (<1 mm)– Cast for 3-4 wks => SLWC x 3 wks– May need CT after cast placement to assess

displacement– Follow with x-rays in cast to assure no

displacement– Percutaneous fixation is an option – Follow for growth arrest

Page 30: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter IV Minimally Displaced Distal Tibia Fracture

*Fixation avoids physis

Page 31: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type III & IV fxs

• Displaced fractures (>2 mm)– Require Anatomic reduction

– Closed reduction under general anesthesia– If continued > 2 mm displacement => open reduction

– Open reduction with epiphyseal fixation parallel to growth plate if possible, especially if significant growth remaining

– Postop: Cast (NWB) for 3-4 wks => SLWC x 3 wks

– Follow for growth arrest: 15% incidence of growth arrest even with anatomic reduction

Page 32: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter III Injury- Closed reduction with percutaneous internal fixation

Page 33: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter IV Distal Tibia Fracture

Page 34: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type III & IV fxs

• Subacute displaced fxs– Accept up to 2 mm displacement– Greater than 2 mm displacement

• Goal to restore joint congruity

• Recommend reduction regardless of time from injury

• Debridement and interposition graft, if necessary

Page 35: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Delayed diagnosis Salter IV medial malleolus fracture in 6 yr multi-trauma patient

• Initial radiographs 15 days out from injury

Page 36: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

• ORIF 16 days after injury

• Anterior approach

Page 37: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Note Harris growth line parallels physis and increased distance between markers – normal

growth

• Nine months post-operative

Page 38: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter-Harris Type V fxs

• Crush injury to physis

• No associated displacement

• Diagnosis made with follow-up xrays revealing premature physeal closure

• Treatment directed primarily at sequelae of growth arrest

Page 39: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

High energy injuries to distal tibia

• Uncommon

• Severe injury to distal tibial articular surface – poor prognosis

• Restore articular surface, if possible

• Length and alignment – bridging external fixation can be helpful

Page 40: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

High energy distal tibia fracture/subluxation

11 year old female in MVC

Page 41: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

CT scan demonstrates significantly comminuted articular surface and

anterior subluxation of talus

Page 42: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Intraop views – bridging external fixation and ORIF with pin fixation

Page 43: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

One Year Follow Up

Page 44: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

12 Year Old – High Velocity GSW – loss of tibial epiphysis/anterior soft tissues/tendons

- bridging external fixator- latissimus free flap

-ankle fusion

Page 45: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

“Transitional” Fractures• Fractures occurring during

asymmetric closure of distal tibial physis

– Triplane fx • Fracture appears to be in

multiple planes

• May be 2, 3 or 4 part fractures

– Tillaux fx• Fracture of the anterolateral

epiphysis

Page 46: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

“Transitional” Fractures

• Triplane fx– Tend to be seen in younger

pts than those with Tillaux fx

– More displacement/swelling

– Appear as Salter III on AP view and Salter II on lateral view

– Treatment decisions usually based on articular displacement

– CT scan often helpful

Page 47: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Triplane Fractures

• Combination of Salter II and III fractures: usually near end of growth (Complex type IV fracture)

• Anterior epiphseal fracture with large posteriomedial metaphyseal fragment…fibula may also be fractured

Page 48: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Triplane FracturesResults

• Overall results are good following adequate reduction– Von Laer (1985)

– Clement and Warlock (1987) - Good early results

– Erlt (1988) - Decline in results over time

-von Laer L. Classification, diagnosis, and treatment of transitional fractures of the distal part of the tibia. J Bone Joint Surg Am. 1985;67(5):687-98.-Clement D, Worlock P. Triplane fracture of the distal tibia. A variant in cases with an open growth plate. J Bone Joint Surg Br. 1987;69(3):412-5.-Ertl J, Barrack R, Alexander A, VanBuecken K. Triplane fracture of the distal tibial epiphysis. Long-term follow-up. J Bone Joint Surg Am. 1988;70(7):967-76.

Page 49: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Triplane Fractures

• Non-displaced– Cast (NWB) 3-4 wks, then SLWC x 3-4 wks– Monitor in cast to assure no displacement– FU x-rays every 6-12 months for 2 to 3 yrs to

assess for growth arrest

Page 50: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Triplane Fractures

• Displaced Triplane Fractures (>2 mm)– Anatomic reduction required– If closed reduction successful

• Cast: consider a long leg cast with 30 of knee flexion and foot internally rotated, if unstable

– If closed reduction unsuccessful => ORIF• Reduction/internal fixation done in step-wise fashion

with small fragment or 4.0 cannulated screws

– Postop - SLC x 3-4 wks, then SLWC x 3 wks

Page 51: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Adequate Imaging Helps

• CT gives 3D visualization of fracture patterns

• Essential for planning

Page 52: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Triplane Fracture

• Surgical Correction

Page 53: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

“Transitional” Fractures• Juvenile Tillaux fractures

– Patients tend to be older than those with triplane fx

– Fibula prevents marked displacement: may be subtle

– Local tenderness at anteriolateral joint line

– Mortise view essential– May need CT scan– Although literature based

on small series, excellent results with anatomic reduction noted

Page 54: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Tillaux Fractures Treatment

• Non-displaced– Cast (NWB) x 3 wks, then SLWC x 3-4 wks– CT scan after cast placement may be needed to assure

no displacement– Radiographs in cast to assure no re-displacement in

cast– Follow-up x-rays obtained every 6-12 months for 2 to

3 yrs to assess for growth arrest

Page 55: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

• Displaced (>2mm) Tillaux fxs– Anatomic reduction required– If closed reduction achieved

• Long leg cast with knee flexed 30 degrees and foot internally rotated if unstable

– If closed reduction unsuccessful• Attempt closed reduction under anesthesia

• If still unsuccessful, may use k-wires to joystick Tillaux fragment (percutaneously or open)

• Fixation with small fragment or 4.0 cannulated screws

– Postop - SLC x 3-4 wks, then SLWC x 3 wks

Tillaux Fractures Treatment

Page 56: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Tillaux Fracture Example

• Child with ankle pain:– Fracture

difficult to see

Page 57: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Tillaux Fracture Example

• CT shows a Salter III (“Tillaux”) fracture of the distal tibia– Tillaux fractures occur

near the end of growth as medial portion of distal tibial physis closes before the lateral side closes

Page 58: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Tillaux Fracture Example• Post-operative and healed x-rays after hardware

removal: no residual deformity

Page 59: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

“Other” Distal Tibial Fractures

• Injury to accessory ossification centers

• Treatment SLWC 3-4 weeks– Ogden (1990)

• Good results 26/27 patients with injuries involving the medial side

• 5/11 pts with injuries involving the lateral side had persistent symptoms requiring excision

Ogden JA, Lee J. Accessory ossification patterns and injuries of the malleoli. J Pediatr Orthop. 1990;10(3):306-16.

Page 60: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Distal Fibula Fractures

• Typically Salter-Harris I or II fractures– When isolated, usually minimally displaced

• Can treat with a SLWC for 3-4 wks

– Significant displacement occurs more often with Salter III and IV distal tibial fractures

• Usually reduces with tibial reduction

– If fracture is unstable• Can usually fix with smooth intramedullary or oblique k-

wires

• Sometimes plate fixation, especially if comminuted.

Page 61: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Salter I Distal Fibulatypical “goose egg” swelling over distal fibula

with tenderness over distal fibular physis

Page 62: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Pediatric Ankle Sprains

• Should be diagnosis of exclusion

• Tenderness should be over the ligaments

• If tenderness is over the physis, may be a Salter I ankle fractures or non-displaced calcaneus fracture

• Treatment as with any sprain: rest, ice, elevation, and splint until comfortable.

Page 63: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Ankle FracturesPrognosis

• Depends on mechanism of injury– Higher energy, worse prognosis– Greater comminution, worse prognosis

• Depends on age of the patient– Less chance for re-modeling if older

• Often poor outcome with– Medial distal tibial physeal injuries– Residual articular step off

• Presence of an associated fibular fracture– has no prognostic significance

Page 64: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Ankle FracturesComplications

• Growth arrest– Can occur with any

fracture pattern

– Most often with Salter III and IV fractures

– Usually seen 6 to 18 months after injury (but as late as 2 yrs after injury)

Page 65: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Ankle FracturesComplications

• Growth arrest– Occur in fractures treated operatively and non-op– Radiographic Harris growth lines

• Allow for earlier intervention

• Look for in x-rays 6-12 weeks

– LLD tolerated well – Angular deformity less well tolerated

Page 66: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Growth Arrest

• Treatment: – Observation if near end of

growth– Monitor and epiphysiodesis

or bar resection depending on deformity

– Osteotomy if persistent deformity after growth has ceased.

Page 67: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Physeal Injury Simulating Bone Tumor

• Arrow points to growth arrest line

Page 68: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Other Complications of Ankle Fractures

• Arthritis• Malunion• Delayed/nonunion• AVN distal tibial

epiphysis (rare)

Page 69: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

10 year old – 3 months after distal Tibia fracture

Page 70: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

CT shows anterior central bar

Page 71: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Ankle FracturesSummary

• Heterogenous group of fractures

• Age dependent

• Important to have high index of suspicion to avoid missing diagnosis

• Correlate physical exam and x-ray findings

• Follow until skeletal maturity

• May develop late sequelae

Page 72: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Pediatric Foot Fractures

Page 73: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Epidemiology

• Often missed

• 5-8% of all pediatric fractures

• Reductions of fractures important– Less remodeling potential– Reach 50% of mature length of foot bones by

18 mo. (compared to femur/tibia - do not reach until 3 yrs)

Page 74: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Pediatric Foot Fractures

• Types of foot injuries1

– Metatarsal fractures 90%– Phalangeal fractures 18%– Navicular fractures 5%– Talar fractures 3%– Calcaneal fractures 3%– Cuboid fractures 2%

• 1Data from Cleveland Fracture Service, A.Crawford (Skeletal Trauma)

Page 75: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Pediatric Foot Anatomy• Hindfoot: talus, calcaneus• Midfoot: navicular, cuboid,

3 cuneiforms• Forefoot:

– 5 metatarsals (distal epiphyses except for 1st MT - proximal epiphysis)

• Distal 1st Metatarsal pseuodoepiphysis may occur

– 14 phalanges (proximal epiphyses)

• Variable number of sesamoids/accessory ossicles

Page 76: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Foot Accessory Ossicles

Page 77: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Radiographs

• AP, lateral, oblique XR of foot

• AP, lateral, oblique XR of ankle as well

• Co-existent unrecognized fractures of distal tibia/fibula occur in up to 8% patients with foot fractures

• Comparison views of opposite foot may be helpful

Page 78: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Talus Fractures

• Less than 1% of all pediatric fractures:– 56 % = Avulsion fractures– 20% = Osteochondral lesions– 19% = Talar neck fractures– 6% = Talar body fractures

Jensen et al. Prognosis of fracture of the talus in children: 21 (7-34)-year follow-up of 14 cases. Acta Orthop Scand 1994;65:398-400.

Page 79: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Talus Avulsion fractures

• Usually require only symptomatic treatment

• Splint, cast or brace for comfort

• Usually healed in 2-3 weeks

Kay R, Tang C. Pediatric foot fractures: evaluation and treatment. J Am Acad Orthop Surg. 2001;9(5):308-19.

Page 80: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Lateral or Medial Process Talus Fractures

• Lateral/medial process fractures – Rarely displace– Symptomatic treatment only– Non-unions rare

• Usually asymptomatic, if they occur

Page 81: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Talar Dome Fracture

• Example: 14 year old girl. • Treatment: similar to an adult.

Page 82: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Talar Dome Fracture

• Fixation

Page 83: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Talar Neck & Body Fractures

• Rare injuries

• Neck fractures most common with apex plantar angulation

• Monitor for 1 year for possible AVN (rare)

Page 84: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Pediatric Talus Neck Fractures

• Hawkins’ Classification (same as in adults)– Type I = nondisplaced– Type II = displaced talar neck involving

subtalar joint– Type III = displaced talar neck fractures

involving both ankle and subtalar joints– Type IV = displaced talar neck fractures

involving ankle, subtalar and talo-navicular joints

Hawkins LG: Fractures of the neck of the talus. J Bone Joint Surg 52A:991–1002, 1970.Canale ST, Kelly FB: Fractures of the neck of the talus, long term evaluation of seventy one cases. J Bone Joint Surg 60A:143–156, 1978.

Page 85: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Talar Neck Fractures

• If nondisplaced– Treatment is non-weightbearing in a above-knee cast for

6-8 weeks.

• If displaced– Treatment may include ORIF– Angulation < 5 degrees acceptable– > 5 degrees angulation requires reduction under general

anesthesia– Displaced (>2mm) fractures at the articular surface

require ORIF

Kay R, Tang C. Pediatric foot fractures: evaluation and treatment. J Am Acad Orthop Surg. 2001;9(5):308-19.

Page 86: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Hawkins 2 Talar Neck Fracture with Distal Fibula Avulsion

• Example: Talar neck fracture• Distal fibula avulsion with ankle instability.

Page 87: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Talar Neck Fracture with Distal Fibula Avulsion

• ORIF of both fractures – To restore

stability

Page 88: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Displaced talar neck fracture with medial and lateral malleolar fractures

• Initial x-rays • Postop x-rays - Anatomic reduction required (same as in

adults)

Page 89: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Talar Neck Fracture(with bi-malleolar fractures)

• Complication:– Avascular Necrosis– Less common than in

adults but can still occur – Long term follow-up

necessary

Page 90: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Peritalar Dislocations in Children

• Extremely rare injury (case reports only)• Represent dislocation of subtalar and talonavicular

joints• Four types based on direction of foot

– Medial most common

– Also lateral, anterior, posterior

• Adults – usually have an associated displaced talar neck fracture– But in children, isolated dislocations more common

Page 91: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Peritalar Dislocations in Children

• Often associated foot fracture• Attempt closed reduction

– Open reductions associated with ultimate decreased ROM

• Associated intra-articular fracture of talonavicular joint adversely affects outcome

• No reported cases of associated AVN

Page 92: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Osteochondral Talus Fractures

• Osteochondral fractures– Inversion/plantar flexion injury

• Posteromedial lesion (more common)

– Eversion/dorsiflexion injury• Anterolateral lesion

• Often require MRI for diagnosis

• Non-displaced lesion => NWB in cast

• Displaced lesion => excision/currettage

Page 93: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Osteochondral Lesions(Osteochondritis dissecans)

• Classification– Type I lesions are nondisplaced. – Type II lesions are partially detached. – Type III lesions are detached but not displaced. – Type IV lesions are detached and displaced or

rotated.

Berndt AL, Harty M: Transcondylar fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg 41A:988–1020, 1959.

Page 94: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Osteochondral LesionsTreatment

• Splint/non-weightbearing for 1-2 months– The initial treatment for all but type IV for 1 to

2 months. No contact sports for another 2-3 months

• If no symptomatic and/or radiographic improvement by 3 to 4 months, – Drilling, debridement, or arthroscopic fixation

may be indicated.

Higuera, et al. Osteochondritis dissecans of the talus during childhood and adolescence. J Pediatr Orthop 1998;18:328-332.

Page 95: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Ankle sprain that didn’t heal-Anterolateral Talar

Osteochondral Lesion

Page 96: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Calcaneal Fractures

• Rare – 2% of all pediatric foot fractures• Result of significant falls• 5% associated with lumbar spine injuries • Often missed diagnosis

– Difficult to diagnosis if non-displaced

• Extra-articular fractures are more frequent– Approximately 65% of calc fxs in children

• Bone scan can confirm diagnosis

Kay R, Tang C. Pediatric foot fractures: evaluation and treatment. J Am Acad Orthop Surg. 2001;9(5):308-19.

Page 97: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Treatment Calcaneal Fractures

• Treat soft tissues first with elevation• Non-displaced injuries– NWB with Jones’ dressing then cast when soft tissue

swelling subsides

– Weightbearing in 3-6 weeks

• Displaced injuries – ORIF when soft tissues amenable

• Acceptable displacement not well-defined

• Adolescents - same indications as adultsBrunet JA: Calcaneal fractures in children. Long-term results of treatment. J Bone Joint Surg 82B:211–216, 2000.Inokuchi S, Usami N, Hiraishi E, Hashimoto T: Calcaneal fractures in children. J Pediatr Orthop 18:469–474, 1998.

Page 98: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Other Tarsal Fractures

• Fractures of the navicular, cuboid and cuneiforms– 2-7% of pediatric foot fractures– Usually avulsion injuries

• Immobilize 2-3weeks

– If high energy trauma, may have associated LisFranc and other fractures

• Watch closely for compartment syndrome

• May need ORIF

Kay R, Tang C. Pediatric foot fractures: evaluation and treatment. J Am Acad Orthop Surg. 2001;9(5):308-19.

Page 99: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Lisfranc Injuries(Tarsal-metatarsal fractures/dislocations)

• Direct/indirect mechanisms of injury

• Represent significant force – Fracture of base of 2nd MT - implies more severe

injury– Associated cuboid fx - implies dislocation

• Treatment - requires anatomic reduction– Treat soft tissues first with elevation– Closed reduction/pinning vs. ORIF– Beware of compartment syndrome

Page 100: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Lisfranc Injuries

• Same treatment classification and options as in adults.

• Residual pain reported in up to 22% of pediatric patients.

Johnson GF. Pediatric Lisfranc injury: “Bunk bed” fracture. AJR Am J Roentgenol. 1981;137:1041-1044.Wiley JJ: Tarso-metatarsal joint injuries in children. J Pediatr Orthop. 1981;1:255-260.

Page 101: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Metatarsal Fractures

• Most common pediatric foot fracture (60%)– 5th metatarsal base is most frequent

• Usually caused by direct trauma– Except base of 5th more often avulsion

• Metatarsal shaft fractures most common– Lateral displacement – acceptable (if Lisfranc joint

intact)– Significant dorsal/plantar angulation not acceptable,

requires closed reduction/pinningOwen RJT, Hickey FG, Finlay DB: A study of metatarsal fractures in children. Injury 1995;26:537-538.

Page 102: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Metatarsal Fractures

• 1st metatarsal fractures– Can see buckle fracture just distal to proximal

physis (treatment – SLWC x 3 wks)– Do not confuse pseudoepiphysis at distal end

with fracture

Owen RJT, Hickey FG, Finlay DB: A study of metatarsal fractures in children. Injury 1995;26:537-538.

Page 103: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Metatarsal Fractures

• 5th metatarsal fractures– Proximal metaphyseal transverse fractures most

common – Treatment SLWC x 6 wks– Distinguish from “Jones” fractures

• Occur in proximal diaphysis• Occur in older children (15 - 20 y.o.)

– Do not confuse os vesalianum (os peronei) with fracture (oblique orientation proximally)

Owen RJT, Hickey FG, Finlay DB: A study of metatarsal fractures in children. Injury 1995;26:537-538.

Page 104: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Metatarsal Fractures

• Metatarsal base fractures– Require significant force– Consider early fasciotomy if significant

swelling/venous congestion in toes • No reported compartment pressures to guide

• Use clinical judgment

Owen RJT, Hickey FG, Finlay DB: A study of metatarsal fractures in children. Injury 1995;26:537-538.

Page 105: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Metatarsal Fractures and Growth Deformity

• Physeal fractures of the base of the first metatarsal may cause abnormal growth with shortening of the first ray.

• Overgrowth may also occur after metatarsal fractures. – Overgrowth is more common than growth

inhibition

Owen RJT, Hickey FG, Finlay DB: A study of metatarsal fractures in children. Injury 1995;26:537-538.

Page 106: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Growth Plate Injuries• Treatment of Physeal

Injuries– Non-displaced

• SLWC x 4-6 wks

– Displaced• Finger-trap traction until

swelling subsides then percutaneous pinning

• Open reduction if unable to obtain adequate alignment

Owen RJT, Hickey FG, Finlay DB: A study of metatarsal fractures in children. Injury 1995;26:537-538.

Page 107: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Pediatric Phalangeal Fractures

• 18% of children’s foot fractures– 2/3 involve proximal phalanges– 1/3 middle phalanges– Rarely distal phalanges

• Treatment– Traction, closed reduction, buddy taping, hard sole

shoe

• Open injures require I&D/IV antibiotic– Osteomyelitis can occur

Page 108: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Pediatric Phalangeal Fractures

• Great toe distal phalangeal fractures– Beware of crush injuries– May represent open fractures– If suspect open injury, treat with I&D and

antibiotics to avoid complication of osteomyelitis

Owen RJT, Hickey FG, Finlay DB: A study of metatarsal fractures in children. Injury 1995;26:537-538.

Page 109: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Lawnmower Injuries• Common cause of

pediatric open fractures• 70% are bystanders• Occur with all types of

mowers but majority are riding mowers.

• Distribution of injuries– Head/eye 24%– Upper extremity 36%– Lower extremity 39%

Alonso JE, Sanchez FL. Lawn mower injuries in children: A preventable impairment. J Pediatr Orthop. 1995;15:83-89.

Page 110: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Lawnmower Injuries

• Highly contaminated injuries– Initial irrigation &

debridment/antibiotic coverage

– Repeat debridements until wound is clean

Page 111: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Lawn Mower Injuries• May require internal or

external fixation of fractures

• Attempt coverage by 7-14 days, if possible

• >50% require skin grafting or flap coverage

Dormans JP, Azzoni M, Davidson RS, Drummond DS. Major lower extremity lawn mower injuries in children. J Pediatr Orthop. 1995;15:78-82.

Page 112: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.
Page 113: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Lawn Mower Injuries

• High complication rate – Infection

– Growth arrest

– Amputation rates• 16-78%

• > 50% unsatisfactory results

Dormans JP, Azzoni M, Davidson RS, Drummond DS. Major lower extremity lawn mower injuries in children. J Pediatr Orthop. 1995;15:78-82.

Page 114: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Lawnmower InjuriesLong-term follow-up

• Late deformity may occur– Muscle imbalances

from loss of soft tissue attachments

– Due to growth arrest and asymmetric growth.

Page 115: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Needs Long Term Follow-up

• Varus Deformity of the first ray– This deformity likely to

progress due to muscle imbalances and medial over-growth (intact 1st MT,PP,DP and 2nd MT physes) without lateral growth (loss of 3rd, 4th, and 5th MT physes)

Page 116: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Lawn Mower Injuries

• Difficult area to obtain adequate durable soft tissue coverage

• May require revisions of flaps or skin grafts– Insensate– Potential for graft breakdown– May need special

shoes/orthotics/fillers– Orthotics & fillers may need

yearly replacement.

Dormans JP, Azzoni M, Davidson RS, Drummond DS. Major lower extremity lawn mower injuries in children. J Pediatr Orthop. 1995;15:78-82.

Page 117: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Lawnmower Injuries

• Education/ Prevention key

• Children – < 14 years old shouldn’t operate a lawnmower– And no riders other than mower operator– Small children should not be present in yard

while mower is being operated

Return to Pediatrics

Index

E-mail OTA about

Questions/Comments

If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to [email protected]

Page 118: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Bibliography• Review Articles• Kay R, Tang C. Pediatric foot fractures: evaluation and treatment. J Am Acad Orthop Surg.

2001;9(5):308-19.• Ribbans WJ, Natarajan R, Alavala S. Pediatric foot fractures. Clin Orthop Relat Res. 2005

Mar;(432):107-15.

• Original Articles• Alonso JE, Sanchez FL. Lawn mower injuries in children: A preventable impairment. J

Pediatr Orthop. 1995;15:83-89.• Barmada A, Gaynor T, Mubarak SJ. Premature physeal closure following distal tibia physeal

fractures: a new radiographic predictor. J Pediatr Orthop. 2003;23(6):733-9.• Berndt AL, Harty M: Transcondylar fractures (osteochondritis dissecans) of the talus. J Bone

Joint Surg. 41A:988–1020, 1959.• Brunet JA: Calcaneal fractures in children. Long-term results of treatment. J Bone Joint Surg.

82B:211–216, 2000.

Page 119: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Bibliography• Canale ST, Kelly FB: Fractures of the neck of the talus, long term evaluation of seventy one

cases. J Bone Joint Surg. 60A:143–156, 1978.

• Carothers C, Crenshaw A. Clinical significance of a classification of epiphyseal injuries at the ankle. Am J Surg. 1955;89(4):879-89.

• Caterini R, Farsetti P, Ippolito E. Long-term followup of physeal injury to the ankle. Foot Ankle. 1991;11(6):372-83.

• Clement D, Worlock P. Triplane fracture of the distal tibia. A variant in cases with an open growth plate. J Bone Joint Surg Br. 1987;69(3):412-5.

• Dias L, Tachdjian M. Physeal injuries of the ankle in children: classification. Clin Orthop Relat Res. 1978;136:230-3.

• Dormans JP, Azzoni M, Davidson RS, Drummond DS. Major lower extremity lawn mower injuries in children. J Pediatr Orthop. 1995;15:78-82.

• Ertl J, Barrack R, Alexander A, VanBuecken K. Triplane fracture of the distal tibial epiphysis. Long-term follow-up. J Bone Joint Surg Am. 1988;70(7):967-76.

• Hawkins LG: Fractures of the neck of the talus. J Bone Joint Surg. 52A:991–1002, 1970.

Page 120: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Bibliography• Higuera J, Laguna R, Peral M, Aranda E, Soleto J: Osteochondritis dissecans of the talus during

childhood and adolescence. J Pediatr Orthop. 1998;18:328-332.• Inokuchi S, Usami N, Hiraishi E, Hashimoto T: Calcaneal fractures in children. J Pediatr

Orthop. 18:469–474, 1998.• Jensen et al. Prognosis of fracture of the talus in children: 21 (7-34)-year follow-up of 14 cases.

Acta Orthop Scand. 1994;65:398-400.• Johnson GF. Pediatric Lisfranc injury: “Bunk bed” fracture. AJR Am J Roentgenol.

1981;137:1041-1044.• Kling T, Bright R, Hensinger R. Distal tibial physeal fractures in children that may require open

reduction. J Bone Joint Surg Am. 1984;66(5):647-57.• Ogden JA, Lee J. Accessory ossification patterns and injuries of the malleoli. J Pediatr Orthop.

1990;10(3):306-16.• Owen RJT, Hickey FG, Finlay DB: A study of metatarsal fractures in children. Injury.

1995;26:537-538.• Phieffer et al. Effect of interposed periosteum in an animal physeal fracture model. Clin Orthop

Relat Res. 2000;376:15-25.

Page 121: Pediatric Ankle & Foot Fractures Steven Rabin, MD Revised: March 2011 Original authors (2004): Laura Phieffer, MD & Steven Frick, MD Revised (2006): Steven.

Bibliography• Spiegel P, Cooperman D, Laros G. Epiphyseal fractures of the distal ends of the

tibia and fibula. J Bone Joint Surg Am. 1978;60(8):1046-50.

• von Laer L. Classification, diagnosis, and treatment of transitional fractures of the distal part of the tibia. J Bone Joint Surg Am. 1985;67(5):687-98.

• Wiley JJ: Tarso-metatarsal joint injuries in children. J Pediatr Orthop. 1981;1:255-260.

Return to Pediatrics

Index

E-mail OTA about

Questions/Comments

If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to [email protected]