PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc....

23
PCR Modeling 2004.08.31 MEC Lim Hee Woong

Transcript of PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc....

Page 1: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

PCR Modeling

2004.08.31MEC

Lim Hee Woong

Page 2: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Denaturation

Temp.input

Melting curve of

known DNA conc.

Keq

output

dsDNA conc.input

Released ssDNA conc.output

denaturationefficiency

Page 3: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

• Melting Profile– Sigmoid function assumption

– Parameters• Tm: Melting temperature : Transition width: begin & end temperature• Cinit: initial dsDNA concentration for melting profile• Measured and fitted by experiment with UV spectrophotomete

r or real-time PCR machine

1

ratio of denatured dsDNA

1mT T

T

e

Page 4: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

• Equilibrium Constant Kd from Tm Profile

2 2

2

/ 2

4

1

ss ssd

ds init ss

init

C CK T

C C C

T C

T

2

1

ss init

ds init

C T C

C C T

Page 5: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

2 2

0

2

0

2

0 0

2

0

0 0

/ 2

16

4

8 16

8

16/ 2

8

ss ssd

ds ds ss

d d d dsss

ds d d d dsds

d d d dsssd

ds ds

C CK T

C C C

K T K T K T CC

C K T K T K T CC

K T K T K T CCE

C C

• Denaturation– Cds0: initial dsDNA strand in denature step– Kd(T): equlibrium constant from melting profile

2

0

0

0

0

0

0

0

16

8

16

8

16

8

21

16

d d d dsd

ds

d d d ds

ds

d d ds d

ds

d

d ds d

K T K T K T CE

C

K T K T K T C

C

K T K T C K T

C

K T

K T C K T

Page 6: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Annealing

• 경쟁적인 annealing 반응 , primer vs. template

1

2'

k

k

Primer Template hdDNA

Template Template dsDNA

Page 7: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

• 다른 step (denaturation, extension) 과는 달리 각 template 에 대해 forward 와 backward를 구분

– 대칭성에 의해 forward 와 backward strand 의 농도변화는 같다고 가정– 위의 계산식에 사용되는 Css, 와 Chd 는 forward 혹은 backward 의 한쪽 방향 strand 에 대한

농도– 앞의 denaturation step 에서 계산된 ssDNA 의 농도의 절반 만큼의 농도를 할당하여 계산

수행하고 Annealing 이 끝난 후 위 계산 결과에 2 를 곱하여 backward/forward 의 구분을 없앰• Rate constant k 의 값을 몰라도 그 비율만으로 최종 product 의 비율을 계산 가능

– Wetmur (Annu. Rev. Biophys. Bioeng. 1976)• Calculation

– Numerical method, Runge-Kutta formulae– Matlab function “ode45”

,1 ,0 , ,0 , ,

2,2 ,0 , ,

,0 ,00, 0

hd tpr hd t ss hd t ds t

ds tss hd t ds t

hd ds

dCk C C C C C

dtdC

k C C CdtC C

strandlonger oflength : N

strandshorter oflength :LN

Lk

Wetmur (Annu. Rev. Biophys. Bioeng. 1976)

Page 8: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Annealing 2-Temperature Ramping-

Temperature

Time

Template Tm

hdDNA Tm

Pre-annealingof template

Competitive annealingto form dsDNA and hdDNA

• Tm,hdDNA<Tm,dsDNA– Pre-annealing takes place before competitive annealing

'2' kTemplate Template dsDNA

1

2'

k

k

Primer Template hdDNA

Template Template dsDNA

Pre-annealing

Competitive annealing

annealing

Page 9: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

,1 ,0 , ,0 , ,

2,2 ,0 , ,

,0 0

hd tpr hd t ss hd t ds t

ds tss hd t ds t

hd

dCk C C C C C

dtdC

k C C CdtC

strandlonger oflength : N

strandshorter oflength :LN

Lk

Wetmur (Annu. Rev. Biophys. Bioeng. 1976) 2,

2 ,0 ,

,0 0,

ds tss ds t

ds

dCk C C

dtC

Page 10: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Extension

• rt: t 초 후의 reaction rate• ke: extension rate for one polymerase• knu: nucleotide incorporation rate of one polymerase• Ea,t: t 초 후에 실제 polymerization 에 참가하는 enzyme 의 농도

trhdDNA dsDNA

,t e a t

nue

r k E

kk

length

From Hsu et al.BB 1997

Page 11: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

• Active enzyme– Cenz: thermal deactivate 되지 않고 남아있는 polymerase 농도– Cenz 를 hetero duplex 부분과 template duplex 부분의 비율로 나누어 실제 polymerization 에

참가하는 enzyme 의 비율을 구한다 .– 단순히 duplex 의 농도만 고려하는 것이 아니라 duplex region 의 길이까지도 고려함– Kainz (BBA 2000) paper 참조

• Calculation– Numerical method, Runge-Kutta formulae– Matlab function “ode45”

,,,

, ,

0 ,

0 ,

0 , , ,0 ,0

p hd tds te a t e enz

p hd t ds t

p ds t

e enz

p p ds t

hd t ds t hd ds

l CdCk E k C

dt l C lC

l C Ck C

l C l l C

C C C C C

,,

, ,

p hd ta t enz

p hd t ds t

l CE C

l C lC

실제 polymerization 에 참가하는 enzyme 의

농도

Page 12: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Enzyme Deactivation

• Hsu et al. (BB, 1997) 논문의 deactivation 식에 temperature ramping 을 추가하여 확장

• at: remaining enzyme ratio after t second– considering temperature ramping

• T1, T2, t: t∆ ∆ 초 동안 T1 에서 T2 로 온도가 변함• Calculation

– Numerical method, Runge-Kutta formulae– Matlab function “ode45”

112

0

'00

0

'expln

law Arrhenius

ondeactivatiorder first

Ttt

TTtT

dteKaeKdt

ad

eKK

aKdt

da

ttRT

E

dttRT

E

dt

tRT

E

dd

tdt

dd

d

K/mol cal 987.1K J/mol 31441.8

J/mol1032.7

10677.45

1000

R

E

K

d

d

From Hsu et al.BB 1997

Page 13: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Product Flow

By- Productand

Surplus

Main Streamand

Expected Product

Reagentand

Reaction Step

Denature

Annealing

Extension

dsDNAHeteroDuplex

dsDNAHeteroDuplex

Polymerase

dsDNA ssDNA Primer

Primer

dsDNA

Page 14: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Simulation

Page 15: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

9e-012 4.93815e-008

Page 16: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

9e-013 4.28836e-008

Page 17: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

9e-014 3.59484e-008

Page 18: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

PCR Plateau?

• When varying amounts of a single target are amplified, a constant maximum level of product is obtained.

• Coamplification of different concentrations of different targets results in retention of the initial proportions.

• Morrison et al. BBA, 1994

Figuresfrom TAKARA

Page 19: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Factors of Plateau?

• Reduction in the denaturation efficiency• Utilization of substrates (dNTPs or primers)• Reannealing of specific product at concentrations above

10-8 M• Thermal inactivation or limited concentration of DNA poly

merase• Exonuclease activity of Taq polymerase• Inhibition of enzyme activity by increasing pyrophosphate

Page 20: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

In Plateau• In plateau

– The template concentration reaches constant level (about 10-8 order), even if the order of initial concentration varies.

• What occurs at each step in plateau?– Denaturation

• Constant denaturation efficiency and ssDNA concentration• ≈ 1, almost perfect denaturation• Not only in plateau

– Annealing• Constant annealing efficiency and hdDNA concentration• ≈ 0 or >> 0 ?

– Extension• Constant extension efficiency• ≈ 0 or >> 0 ?

• Question…– Annealing efficiency and the amount of hdDNA in plateau– Extension efficiency in plateau– What is the major factor for plateau

Page 21: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Other Insignificant Factors

• Mis-annealing of primers• Reaction condition change

– pH change?– MgCl2 concentration?– DNA contaminants (non-specific products, pri

mer-dimer)

Page 22: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Parameters to Fit

• Hybridization rate constant• Extension rate constant• Pre-annealing (?) region

Page 23: PCR Modeling 2004.08.31 MEC Lim Hee Woong. Denaturation Temp. input Melting curve of known DNA conc. K eq output dsDNA conc. input Released ssDNA conc.

Extension2

• Michaelis-Menten Equation + BB paper

1 3

2

4

5

1

2

1 4

k k

k

k

k

hdDNA Enzyme Complex dsDNA Enzyme

dsDNA Enzyme Complex

k k

,1 , , 2 ,

,1 , , 2 , 3 ,

, , ,0

, , , , ,01 , , 3 , 2 ,

,3 ,

hd thd t enz t c t

c thd t enz t c t c t

enz t c t enz

enz t hd t c t ds t hdhd t enz t c t c t

ds tc t

dCk C C k C

dtdC

k C C k C k C C C CdtdC C C C C

k C C k C k Cdt

dCk C

dt

,1 , , 2 ,0 ,

,1 , , 3 2 ,0 ,

hd thd t enz t enz enz t

enz thd t enz t enz enz t

dCk C C k C C

dtdC

k C C k k C Cdt