Pascals Triangle Binomial Theorem

download Pascals Triangle Binomial Theorem

of 10

Transcript of Pascals Triangle Binomial Theorem

  • 7/28/2019 Pascals Triangle Binomial Theorem

    1/10

    Pascals Triangle & Binomial Theorem

    Mundeep Gill [email protected]

    IntroductionPascals Triangle and the Binomial Theorem are methods that can be used to

    expand out expressions of the form

    (a + b)n

    Where aand bare either mathematical expressions or numerical values and n

    is a given number (positive or negative).

    Both Pascals Triangle and the Binomial Theorem can be used when n is

    positive, however the Binomial Theorem is used when n is negative.

    Pascals Triangle

    0 11 1 1

    2 1 2 1

    3 1 3 3 1

    4 1 4 6 4 1

    5 1 5 10 10 5 1

    6 1 6 15 20 15 6 1

    The numbers in Pascals Triangle indicate the coefficients that are required for

    each term when expanding algebraic expressions.

    For example, if expanding (a + b)4, Pascals Triangle can be used in the

    following way:

    The coefficients of terms when raised to the power of 4 are

    1 4 6 4 1

    Using this:

    (a + b)4 = 1(a)4(b)0 + 4(a)3(b)1 + 6(a)2(b)2 + 4(a)1(b)3 + 1(a)0(b)4

    = a4 + 4a3b + 6a2b2 + 4ab3 + b4

    (taken from row 5 of

    Pascals Triangle)

  • 7/28/2019 Pascals Triangle Binomial Theorem

    2/10

    2

    For a general expansion, i.e. (a + b)n, you decrease the power of a from n to 0

    and increase the power of b from 0 to n.

    (NB: Within each term the powers should add up to n. For example, in the

    above expansion: 1(a)4(b)0 + 4(a)3(b)1 + 6(a)2(b)2 + 4(a)1(b)3 + 1(a)0(b)4 within

    each term the sum of all powers equals 4).

    Example 1:Use Pascals Triangle to expand (x - 2)3.

    Solution: The coefficients of an expansion involving the power of 3 are:

    1 3 3 1

    Therefore,

    (x 2)3 = 1(x)3(-2)0 + 3(x)2(-2)1 + 3(x)1(-2)2 + 1(x)0(-2)3

    = 1x3 + 3x2(-2) + 3x(4) + 1(-8)

    = x3 6x2 + 12x 8

    Example 2: Use Pascals Triangle to expand (3a + b)5.

    Solution:The coefficients of an expansion involving the power of 5 are:

    1 5 10 10 5 1

    Therefore,

    (3a + b)5 = 1(3a)5(b)0 + 5(3a)4(b)1 + 10(3a)3(b)2 + 10(3a)2(b)3

    + 5(3a)1(b)4 + 1(3a)0(b)5

    = 243a5 + 5(81a4)(b)+ 10(27a3)(b2) + 10(9a2)(b3) + 5(3a)(b4) + b5

    = 243a5 + 405a4b+ 270a3b2 + 90a2b3 + 15ab4 + b5

  • 7/28/2019 Pascals Triangle Binomial Theorem

    3/10

    3

    Example 3: Use Pascals Triangle to expand

    5

    x

    1x

    + .

    Solution:5

    x

    1x

    + = ( )

    0

    5

    x

    1x1

    + ( )

    1

    4

    x

    1x5

    + ( )

    2

    3

    x

    1x10

    + ( )

    3

    2

    x

    1x10

    + ( )

    4

    1

    x

    1x5

    + ( )5

    0

    x

    1x1

    = 5x +x

    5x 4+

    2

    3

    x

    10x+

    3

    2

    x

    10x+

    4x

    5x+

    5x

    1

    = 5x + 35x + 10x +x

    10 + 3x5 + 5x

    1

    Example 4: Expand (x2 + 1)3

    Solution:

    (x2 + 1)3 = 1(x2)3(1)0 + 3(x2)2(1)1 + 3(x2)1(1)2 + 1(x2)0(1)3

    = x6 + 3x4 + 3x2 + 1

    Questions

    Use Pascals Triangle to expand the following expressions:

    1. (x + 1)6

    2. (3x 1)4

    3. (2x + y)5

    4. (x3 + 1)4

    5.

    3

    x

    12x

    +

  • 7/28/2019 Pascals Triangle Binomial Theorem

    4/10

    4

    Solutions:

    1. (x + 1)6 = 1(x)6(1)0 + 6(x)5(1)1 + 15(x)4(1)2 + 20(x)3(1)3

    + 15(x)2(1)4 + 6(x)1(1)5 + 1(x)0(1)6

    = x6 + 6x5 + 15x4 +20x3 + 15x2 + 6x + 1

    2. (3x 1)4 = 1(3x)4(-1)0 + 4(3x)3(-1)1 + 6(3x)2(-1)2 + 4(3x)1(-1)3

    + 1(3x)0(-1)4

    = 81x4 + 4(27x3)(-1) + 6(9x2)(1) + 4(3x)(-1) + 1(1)

    = 81x4 108x3 + 54x2 12x + 1

    3. (2x + y)5 = 1(2x)5(y)0 + 5(2x)4(y)1+ 10(2x)3(y)2 + 10(2x)2(y)3 + 5(2x)(y)4

    + 1(2x)0(y)5

    = 32x5 + 5(16x4)(y)+ 10(8x3)(y2)+ 10(4x2)(y3)+ 10xy4 + y5

    = 32x5 + 80x4y+ 80x3y2 + 40x2y3 + 10xy4 + y5

    4. (x3 + 1)4 = 1(x3)4(1)0 + 4(x3)3(1)1 + 6(x3)2(1)2 + 4(x3)1(1)3 + 1(x3)0(1)4

    = x12 + 4x9 + 6x6 + 4x3 + 1

    5.

    3

    x

    12x

    + = 1(2x)3

    0

    x

    1

    + 3(2x)2

    1

    x

    1

    + 3(2x)1

    2

    x

    1

    + 1(2x)0

    3

    x

    1

    = 8x3 + 3(4x2)

    x

    1+ 6x

    2x

    1+

    3x

    1

    = 8x3 + 12x +x

    6+

    3x

    1

  • 7/28/2019 Pascals Triangle Binomial Theorem

    5/10

    5

    The Binomial Theorem

    The Binomial Theorem is an alternative method to expanding algebraicexpressions and is useful when dealing with large powers (where generatinglarge numbers of rows in Pascals Triangle would not be ideal). The Binomial

    Theorem also has to be used when n is negative, since Pascals Triangle onlydeals with positive integers.

    The general Binomial Theorem is:

    (a + b)n = an + nan-1b +( )2!

    1nn an-2b2 +

    ( )( )3!

    2n1nn an-3b3

    +( )( )( )

    4!

    3n2n1nn an-4b4 + + bn

    A simpler form of the theorem is quoted by taking the special case in whicha = 1 and b = x.

    (1 + x)n = 1 + nx +( )2!

    1nn x2 +

    ( )( )3!

    2n1nn x3 +

    ( )( )( )4!

    3n2n1nn x4 + + xn

    To illustrate how to apply the above theorem lets look at a simple example(where Pascals Triangle would probably be more ideal to use).

    Use Pascals Triangle to expand (1 + x)4.The simpler form of the theorem can be used, which is:

    (1 + x)n = 1 + nx + ( )2!

    1nn x2 + ( )( )3!

    2n1nn x3 + + xn

    Where n in this case is 4.

    (1 + x)4 = 1 + 4x +( )2!

    144 x2 +

    ( )( )3!

    24144 x3 + x4

    = 1 + 4x +2

    12x2 +

    6

    24x3 + x4

    = 1 + 4x + 6x2 +4x3 + x4

  • 7/28/2019 Pascals Triangle Binomial Theorem

    6/10

    6

    Example 2:

    Use the Binomial Theorem to find the first four terms of

    10

    x3

    11

    +

    Solution:The first four terms can be found by using

    (1 + x)n = 1 + nx +( )2!

    1nn x2 +

    ( )( )3!

    2n1nn x3

    Where x is replaced by x3

    1and n = 10, hence

    10

    x3

    11

    + = 1 + 10

    x

    3

    1+

    ( )2

    x3

    1

    2!

    11010

    +

    ( )( )3

    x3

    1

    3!

    21011010

    = 1 + x3

    10+

    ( )

    2x9

    1

    2

    910+

    ( )( )

    3x27

    1

    6

    8910

    = 1 + x3

    10+ 5x2 + 3x

    9

    40+

    Example 3:

    Use the Binomial Theorem to find the first four terms of (2 3z)11.

    Solution:

    Since the first term is not 1, we have to use the original form of the Theorem:

    (a + b)n = an + nan-1b +( )2!

    1nn an-2b2 +

    ( )( )3!

    2n1nn an-3b3

    Where a = 2, b = -3z and n = 11,

    (2 3z)11 = (2)11 + 11(2)10(-3z) +( )2!

    11111 (2)9(-3z)2

    +( )( )

    3!

    21111111 (2)8(-3z)3

    = 2048 + 11(1024)(-3z) +( )2

    1011(512)(9z2) +

    ( )( )6

    91011(256)(-27z3)

    = 2048 33792z + 253440z2 1140480z3

  • 7/28/2019 Pascals Triangle Binomial Theorem

    7/10

    7

    Example 4:

    Use the Binomial Theorem to find the first four terms of ( )23

    x1+ .

    Solution:

    The first four terms can be found by using

    (1 + x)n = 1 + nx +( )2!

    1nn x2 +

    ( )( )3!

    2n1nn x3

    Replacing n by2

    3

    ( )23

    x1+ = 1 +2

    3x +

    2!

    12

    3

    2

    3

    x2 +3!

    22

    31

    2

    3

    2

    3

    x3 +

    = 1 +2

    3x +

    2

    2

    1

    2

    3

    x2 +6

    2

    1

    2

    1

    2

    3

    x3 +

    = 1 +2

    3x +

    8

    3x2

    16

    1x3 +

  • 7/28/2019 Pascals Triangle Binomial Theorem

    8/10

    8

    Questions

    Use the Binomial Theorem to find the first four terms of the following

    expressions:

    1. (1 + x)8

    2. (1 4x)9

    3. (2 + 5x)12

    4. ( )21

    x1+

    5.23

    x2

    11

    Solutions:

    1. (1 + x)8

    Using (1 + x)n = 1 + nx +( )2!

    1nn x2 +

    ( )( )3!

    2n1nn x3

    (1 + x)8 = 1 + 8x +( )

    2!

    188 x2 +

    ( )( )

    3!

    28188 x3

    = 1 + 8x +

    ( )

    2

    78

    x

    2

    +

    ( )( )

    6

    678

    x

    3

    +

    = 1 + 8x + 28x2 + 56x3 +

    2. (1 4x)9

    Using (1 + x)n = 1 + nx +( )2!

    1nn x2 +

    ( )( )3!

    2n1nn x3

    Where x is replaced by -4x and n = 9

    (1 4x)9 = 1 + 9(-4x) + ( )2!

    199 (-4x)2 + ( )( )3!

    29199 (-4x)3 +

    = 1 36x +( )2

    89(16x2) +

    ( )( )6

    789(-64x3) +

    = 1 36x + 576x2 5376x3 +

  • 7/28/2019 Pascals Triangle Binomial Theorem

    9/10

    9

    3. (2 + 5x)12

    Using the original form of the Theorem:

    (a + b)n = an + nan-1b +( )2!

    1nn an-2b2 +

    ( )( )3!

    2n1nn an-3b3

    Where a = 2, b = 5x and n = 12

    (2 + 5x)12 = 212 + 12(2)11(5x) +( )

    2!

    11212 (2)10(5x)2

    +( )( )

    3!

    21211212 (2)9(5x)3 +

    = 4096 + 12(2048)(5x) + 66(1024)(25x2)

    +( )( )

    6

    101112(512)(125x3)

    = 4096 + 122880x + 1689600x2 + 14080000x3

    4. ( )21

    x1+

    Using (1 + x)n = 1 + nx +( )2!

    1nn x2 +

    ( )( )3!

    2n1nn x3 +

    ( )21

    x1+ = 1 +2

    1x +

    2!

    12

    1

    2

    1

    x2 +3!

    22

    11

    2

    1

    2

    1

    x3 +

    = 1 +2

    1x +

    2

    2

    1

    2

    1

    x2 +6

    2

    3

    2

    1

    2

    1

    x3 +

    = 1 +2

    1x

    8

    1x2 +

    16

    1x3 +

  • 7/28/2019 Pascals Triangle Binomial Theorem

    10/10

    10

    5.23

    x2

    11

    Using (1 + x)n = 1 + nx +( )2!

    1nn x2 +

    ( )( )3!

    2n1nn x3

    Where x = x2

    1 and n =

    2

    3

    23

    x2

    11

    = 1 +

    2

    3

    x

    2

    1+

    ( )

    2!

    123

    23

    2

    x2

    1

    +( )( )

    3!

    21 23

    23

    23

    3

    x2

    1

    +

    = 1 x4

    3+

    ( )

    221

    23

    2x4

    1+

    ( )( )

    621

    21

    23

    3x8

    1+

    = 1 x4

    3+

    32

    3x2 +

    128

    1x3 +