Particle)in)a)central)potential.)The)...

40
Particle in a central potential. The hydrogen atom Lecture notes 6 (based on CT, Sec4on 6)

Transcript of Particle)in)a)central)potential.)The)...

Page 1: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

 Particle  in  a  central  potential.  The  hydrogen  atom  Lecture  notes  6  (based  on  CT,  Sec4on  6)    

Page 2: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Introduction  

  Central  poten4al:  V(r)  depends  only  on  the  distance  r  from  the  origin  

  The  Hamiltonian  commutes  with  the  three  components  of  the  orbital  angular  momentum  L  

  The  eigenfunc4ons  of  H  can  be  required  to  be  eigenfunc4ons  of  L2  and  Lz  as  well  

  This  defines  their  angular  part;  the  eigenvalue  equa4on  for  H  is  then  a  differen4al  equa4on  in  the  variable  r  only  

  Any  isolated  system  of  two  interac4ng  par4cles  can  be  treated  as  a  central  problem  

   

Page 3: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  Consider  a  spinless  par4cle  of  mass  μ  ,  subject  to  a  central  force  derived  from  the  poten4al  V(r)  (the  center  of  force  is  the  origin)  

  The  eigenvalue  equa4on  of  the  Hamiltonian  is:  

  Spherical  coordinates  are  more  suitable  to  solve  the  problem:  

  We  look  for  eigenfunc4ons  which  are  func4ons  of  r,  θ,  φ  

   

Page 4: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  We  recall  that:  

  From  which  we  can  rewrite  the  Hamiltonian  as:  

  The  angular  dependence  is  en4rely  contained  in  the  L2  term  

  We  therefore  need  to  solve:    

   

Page 5: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  The  three  components  of  L  commute  with  L2  and  with  all  operators  which  only  act  on  the  r  dependence  

  Therefore,  the  three  components  of  L  are  constants  of  the  mo4on:    

   [H,L]=0        and                [H,L2]  

  The  components  of  L  do  not  commute  with  each  other:  we  can  only  use  L2  and  one  of  the  L  components:  we  choose  L2  and  Lz  

  Since  H,  L2  and  Lz  commute,  we  can  find  a  basis  of  the  state  space  E of  common  eigenfunc4ons  to  these  three  observables  

   

   

Page 6: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  We  need  to  solve  the  system  of  differen4al  equa4ons:  

  We  already  know  the  eigenfunc4ons  of  L2  and  Lz.  The  func4ons  we  are  looking  for,  are  the  products  of  a  func4on  of  r  and  the  spherical  harmonic    

  We  now  need  to  find  R(r),  such  that  the  above  func4on  is  eigenfunc4on  of  H  

   

   

Page 7: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  When  we  apply  L2  to                    we  get:    

 

                               is  a  common  factor  on  both  sides,  therefore  we  simplified  it  

  No4ce  that  the  expression  for  the  laplacian  is  not  valid  at  r=0  

  We  have  to  make  sure  that  the  behavior  of  the  solu4ons  R(r)  is  regular  

  We  look  for  eigenfunc4ons  of  an  operator  Hl  which  depends  on  l  

   

Page 8: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  Therefore,  we  fix  l  and  m.  The  equa4on  to  be  solved  depends  only  on  l:  it  is  the  same  in  the  (2l+1)  subspaces  E(l,m)  

  We  denote  the  eigenvalue  of  Hl  by  Ek,l  

  The  index  k  represents  the  various  eigenvalues  associated  with  the  same  value  of  l  

  We  rewrite  the  equa4on  as:  

   

Page 9: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  We  can  simplify  the  equa4on  by  wri4ng:  

  Mul4plying  both  sides  by  r  we  get:  

  This  equa4on  can  be  seen  as  the  one  for  a  par4cle  which  moves  in  the  effec4ve  poten4al    

   

Page 10: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  The  new  term  is  always  posi4ve  or  zero:  the  force  tends  to  repel  the  par4cle  from  the  force  center  O  

  It  is  called  centrifugal  poten4al  

  For  an  a_rac4ve  Coulomb  poten4al,  the  poten4al  becomes:  

   

Page 11: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  We  assume  that  V(r)  approaches  infinity  less  rapidly  than  1/r  when  r  approaches  0  

  We  assume  that  the  eigenfunc4on  of  H  behaves  like  rs  at  the  origin:  

  Subs4tu4ng  it  into  the  equa4on  and  seang  the  coefficient  of  the  dominant  term  to  zero  we  get:  

from  which:  

   

Page 12: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  Therefore,  the  two  solu4ons  of  this  equa4on  behave  at  the  origin  as  rl  or  1/rl+1  

  The  la_er  needs  to  be  rejected  because  it  is  not  a  solu4on  of  

 

for  r=0.  

  Therefore,  the  acceptable  solu4ons  go  to  zero  at  the  origin  

  We  add  the  condi4on                                                  to  the  eigenvalue  equa4on      

Page 13: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  Therefore,  the  fact  that  the  poten4al  is  central  allows:  

-­‐  To  require  the  eigenfunc4ons  of  H  to  be  simultaneous  eigenfunc4ons  of  L2  and  Lz,  which  determines  their  angular  dependence  

-­‐  To  replace  the  eigenvalue  equa4on  of  H  by  a  differen4al  equa4on  involving  only  r  and  depending  on  the  parameter  l  

Page 14: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  In  principle,  the  func4ons                                                              must  be  square-­‐integrable:  

 

  We  can  separate  the  variables:  

  The  spherical  harmonics  are  normalized:  this  reduces  to:  

Page 15: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  However,  if  the  spectrum  of  H  has  a  con4nuum  part,  we  only  require:  

where  k  is  a  con4nuous  index  

  It  is  only  because  of  the  behavior  of  the  wavefunc4on  for  r∞  that  the  normaliza4on  integrals  diverge  if  k=k’  

  We  call  k  the  radial  quantum  number,  l  the  azimuthal  quantum  number  and  m  the  magne4c  quantum  number    

Page 16: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  The  (2l+1)  func4ons                                                          with  k  and  l  fixed  and  m  from  –l  to  l  are  eigenfunc4ons  of  H  with  eigenvalue  Ek,l  

  The  level  Ek,l  is  therefore  (2l+1)-­‐fold  degenerate  

  This  degeneracy  is  due  to  the  fact  that  H  does  not  contain  Lz    and  it  is  called  essen4al  degeneracy  

  It  is  also  possible  that  an  eigenvalue  Ek,l  is  the  same  as  Ek’,l’  

  These  degeneracies  are  called  accidental  

  For  a  fixed  value  of  l,  the  radial  equa4on  has  at  most  one  solu4on  for  each  Ek,l  

Page 17: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Stationary  states  of  a  particle    in  a  central  potential  

  This  follows  from  the  condi4on  that  

  Since  the  radial  equa4on  is  a  second-­‐order  differen4al  equa4on,  in  principle  it  has  two  solu4ons  but  the  above  requirement  eliminates  one  of  them  

  H,  L2  and  Lz  cons4tute  a  complete  set  of  commu4ng  observables  

Page 18: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Motion  of  the  center  of  mass  and  relative  motion  

  Consider  a  system  of  two  spinless  par4cles  of  mass  m1  and  m2  and  posi4ons  r1  and  r2  

  We  assume  that  the  forces  exerted  on  these  par4cles  are  derived  from  a  poten4al  energy  V(r1-­‐r2)  which  depends  only  on  r1-­‐r2  

  This  is  true  for  an  isolated  system  

  This  system  can  be  reduced  to  a  single  par4cle  placed  in  a  poten4al  V(r)  

Page 19: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Motion  of  the  center  of  mass  and  relative  motion  

  The  operators  R1,  P1,  R2,  P2  which  describe  the  posi4ons  and  momenta  of  the  two  par4cles  sa4sfy  the  commuta4on  rela4ons:  

with  analogous  expressions  along  y  and  z.  All  observables  labeled  by  the  index  1  commute  with  all  those  of  index  2.  

  We  define  the  observables  (center  of  mass  and  rela4ve  mo4on):  

Page 20: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Motion  of  the  center  of  mass  and  relative  motion  

  The  commutators  of  the  new  observables  are:  

  With  analogous  expressions  along  y  and  x.  All  other  commutators  are  0  

  Therefore,  R,  P,  RG,  PG  sa4sfy  canonical  commuta4on  rela4ons  

  We  can  interpret  {R,  P},  {RG,  PG}  as  posi4on  and  momentum  of  two  fic44ous  par4cles      

Page 21: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Motion  of  the  center  of  mass  and  relative  motion  

  The  Hamiltonian  is:  

  Or  equivalently  

  Therefore,  the  Hamiltonian  is  the  sum  of  two  terms:  

  with  

Page 22: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Motion  of  the  center  of  mass  and  relative  motion  

  HG  and  Hr  commute  with  each  other  and  with  H  

  There  exists  a  basis  of  eigenvectors  of  H  which  are  eigenvectors  of  HG  and  Hr  

  We  look  for  solu4ons  of  the  system:  

which  implies                                                                                with    

Page 23: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Motion  of  the  center  of  mass  and  relative  motion  

  We  consider  the  {|rG,r>}  representa4on,  whose  basis  vectors  are  the  eigenvectors  common  to  RG  and  R  

  In  this  representa4on,  a  state  is  characterized  by  a  wavefunc4on    

  In  this  representa4on,  RG  and  R  correspond  to  mul4plying  the  wavefunc4on  by  rG  and  r.  PG  and  P  become  the  differen4al  operators  

  The  state  space  E      is  the  tensor  product  of  E rG  and  Er  

Page 24: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Motion  of  the  center  of  mass  and  relative  motion  

  Therefore  we  can  find  a  basis  in  the  form  

  with  

Page 25: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Motion  of  the  center  of  mass  and  relative  motion  

  In  the  {|rG>}  and  {|r>}  representa4ons  we  have:  

  The  par4cle  associated  with  the  center  of  mass  is  free:  

  EG  can  take  any  posi4ve  value  or  zero  

Page 26: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

Motion  of  the  center  of  mass  and  relative  motion  

  The  second  equa4on  concerns  the  “rela4ve”  par4cle  

  It  is  subject  to  a  central  poten4al  V(r)  

  The  total  angular  momentum  is  

or  equivalently:  

where    

Page 27: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  The  hydrogen  atom  consists  of  a  proton:  

and  an  electron:    

             q=  -­‐  1.6  x  10-­‐19  Coulomb  

  Their  interac4on  is  electrosta4c  

  We  study  the  system  in  the  center  of  mass  frame  

The  center  of  mass  coincides  with  the  proton,  the  rela4ve  par4cle  is  the  electron  

 

Page 28: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  The  spectrum  of  H  includes  a  discrete  part  (nega4ve  eigenvalues)  and  a  con4nuous  part  (posi4ve  eigenvalues)  

   For  E>0,  the  classical  mo4on  is  not  bounded  in  space:  the  eigenvalue  equa4on  has  solu4ons  for  any  value  of  E.  The  wavefunc4ons  are  not  square  integrable  

  For  E<0,  the  classical  mo4on  is  bounded:  the  eigenvalue  equa4on  has  solu4ons  only  for  discrete  values  of  E.  The  wavefunc4ons  are  square-­‐integrable  

Page 29: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  We  have  to  find  eigenvalues  and  eigenfunc4ons  of  the  Hamiltonian.  We  consider  E<0.  In  the  {|r>}  representa4on  it  is:  

  The  poten4al  is  central:  the  eigenfunc4ons  are  of  the  form  

  We  write  the  radial  wavefunc4on  as:    

Page 30: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  The  func4on  χ  has  to  sa4sfy  the  following  equa4on:  

  It  is  useful  to  introduce  a  new  (dimensionless)  variable  η=αr  

with:  

  Besides,  we  define:  

  The  equa4on  becomes:    

Page 31: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  The  eigenvalues  of  H  will  be  iden4fied  by  values  of  λ  corresponding  to  physically  acceptable  solu4ons  

  In  terms  of  λ  they  read:  

  We  start  by  inves4ga4ng  the  asympto4c  behavior  of  χEl  

  In  the  limit  η∞  the  eigenvalue  equa4on  reduces  to:  

  The  only  acceptable  solu4on  has  the  form:  

 

Page 32: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  In  order  for  the  solu4on  to  be  acceptable,  QEl(η)  has  to  diverge  at  most  as  a  power  of  η  

  The  eigenvalue  equa4on  for  QEl(η)  is:  

  The  solu4on  to  the  above  equa4on  has  to  behave  as  a  power  of  η  and  it  has  to  vanish  for  η=0  

  For  the  above  equa4on,  the  origin  is  a  regular  singular  point.  Its  characteris4c  exponents  are  l+1  and  –l.  Only  l+1  is  acceptable  

  Therefore:    

 

Page 33: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  The  series  has  to  be  truncated,  in  order  for  the  func4on  to  have  the  desired  asympto4c  behavior  

  Therefore,  all  coefficients  ck  are  zero  for  k>n’,  with  n’  arbitrary  integer  number  

  Therefore,  for  η∞    the  func4on  behaves  as:  

  Replacing  into  the  eigenvalue  equa4on,  and  keeping  only  the  dominant  terms  we  have:  

Page 34: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  This  equa4on  has  solu4ons  only  for  λ=n’+l+1  

  Conven4onally  we  call  n=n’+l+1  the  “main  quantum  number”  

  Once  we  fix  n,  we  have  l≤(n-­‐1)  

  The  quan4za4on  law  for  hydrogen  atoms  is  therefore:  λ=n  and  the  quan4zed  energies  are:  

  We  can  write  the  solu4on  as:  

 

Page 35: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  Replacing  into  the  eigenvalue  equa4on,  we  find  that  the  coefficients  have  to  sa4sfy:  

  These  are  the  coefficients  of  Laguerre  polynomials.  The  radial  func4on  can  therefore  be  wri_en  as:  

 

  The  Laguerre  polynomials  are  given  by:  

Page 36: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  The  following  quan44es  are  fundamental  for  the  hydrogen  atom:  

  Indeed  the  first  wavefunc4ons  are:  

  The  Compton  wavelength  of  the  electron  is:  

  a0  is  ≃100  4mes  the  Compton  wavelength  of  the  electron  

Page 37: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

  The  degeneracy  of  the  states  goes  as  follows:  

  For  every  value  of  n,  there  are  n-­‐1  possible  values  for  l,  and  for  each  of  them  there  are  2l+1  values  for  m.  The  degeneracy  therefore  is:  

  The  various  energy  levels  are:  

 

Page 38: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

Behavior  of  the  angular  func4ons:  

Page 39: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom  

Behavior  of  the  radial  func4ons:  

Page 40: Particle)in)a)central)potential.)The) hydrogen)atom)nsmn1.uh.edu/cratti/PHY6315-Fall_2017_files/QM... · The)hydrogen)atom) The!spectrum!of!Hincludes!adiscrete!part(negave!eigenvalues)!

The  hydrogen  atom