Particle fall throught the atmosphere

download Particle fall throught the atmosphere

of 34

Transcript of Particle fall throught the atmosphere

  • 8/10/2019 Particle fall throught the atmosphere

    1/34

    Particle Fall through theatmosphere

    Lecture #5

    Ashfall Class 2009

  • 8/10/2019 Particle fall throught the atmosphere

    2/34

  • 8/10/2019 Particle fall throught the atmosphere

    3/34

    Distance dtravelled by an object falling for

    time t:

    Time ttaken for an object to fall distance d:

    Instantaneous velocity viof a falling object

    after elapsed time t:

    Instantaneous velocity viof a falling object

    that has travelled distance d:

    Average velocity vaof an object that has

    been falling for time t(averaged over time):

    Average velocity vaof a falling object that

    has travelled distance d(averaged overtime):

    use g= 9.8 m/s(metres per second squared; which might be thought

    of as "metres per second, per second. Assuming SI units, gis measured

    in metres per second squared, so dmust be measured in metres, tin

    seconds and vin metres per second.

    air resistance is neglected--- quite inaccurate after only 5 seconds

    http://en.wikipedia.org/wiki/International_System_of_Unitshttp://en.wikipedia.org/wiki/International_System_of_Units
  • 8/10/2019 Particle fall throught the atmosphere

    4/34

  • 8/10/2019 Particle fall throught the atmosphere

    5/34

    Particle Fallout

    After a very short time, ~4 seconds, particles

    will reach a terminal velocityin earth's

    atmosphere, with their gravitational attraction

    to the earth balanced by air resistance. Small

    particles have dominant air resistance (fall

    slowly) while large particles have dominant

    gravity (fall rapidly).

    http://hyperphysics.phy-astr.gsu.edu/hbase/airfri2.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/airfri2.html
  • 8/10/2019 Particle fall throught the atmosphere

    6/34

    Reynolds Number

    Re

    Reynolds number is a dimensionless number(i.e. it has no units) that is a measure of thetype of flow through a fluid. In the case of

    falling particles, this describes the way that airflows around the particle. There are threebasic types:

    laminarwhere Re < 0.4,

    intermediate where 0.4 < Re < 500, and

    turbulent where Re > 500.

    http://www-pgss.mcs.cmu.edu/Publications/Volume16/physics/Turb/Turb-II.htmlhttp://www-pgss.mcs.cmu.edu/Publications/Volume16/physics/Turb/Turb-II.htmlhttp://www-pgss.mcs.cmu.edu/Publications/Volume16/physics/Turb/Turb-II.htmlhttp://www-pgss.mcs.cmu.edu/Publications/Volume16/physics/Turb/Turb-II.html
  • 8/10/2019 Particle fall throught the atmosphere

    7/34

    Laminar flow;

    RN = 10-2Turbulent flow;

    RN = 106RN = 20 RN = 40 RN = 104

    Fast-falling

    Large

    Pyroclasts

    Fluid dynamics applies dimensionless analysis of fall of spheres in the

    atmosphere, which shows that experience with large pyroclasts might not applyto smaller ones which fall much more slowly

    RN =dvt/

    Medium and

    small pyroclasts

    10

    m/s

    D =

    1mmD =1m

    .01

    cm/

    s

  • 8/10/2019 Particle fall throught the atmosphere

    8/34

    8

    Conventional Wisdom:

    Particle Settling

    particle accelerates due to gravity

    Drag force:

    (i) viscous drag(friction betweenthe fluid and the

    particle surface)(ii) form drag(inertial forcecaused by theacceleration offluid around theparticle as it falls)

    Particle Reynoldsnumber, Rep:

    ratio of inertial forceto viscous force perunit mass

    Rep= Vtd/ v

    Vt= particle terminal

    fall velocity;d= particle diameter;v= fluid kinematic viscosity

    Rep:

    > 500 turbulent

    1-500 transitional

  • 8/10/2019 Particle fall throught the atmosphere

    9/34

    Larger pyroclasts,

    those >2mm in

    diameter, fall in aturbulent flow

    regime (Re> 500)

    through the

    atmosphere. Smallpyroclasts,

  • 8/10/2019 Particle fall throught the atmosphere

    10/34

    10

    Particle Terminal Fall Velocity

    For large particles (Rep> 500)

    inertial forces dominate:

    fd

    fp

    CgdtV

    )(34

    d = particle diameter

    p= particle density

    f= fluid density

    g = acceleration due to gravity

    Cd= dimensionless drag coefficient

    For small particles(Rep< 1)-viscous forces dominate:

    18

    2

    gdV pt

    p= particle density

    g= acceleration due to gravity

    d= particle diameter

    v= kinematic viscosity

  • 8/10/2019 Particle fall throught the atmosphere

    11/34

    Fall of spherical particles in earths atmosphere

    Schneider et al., 1999, J Geophys Res 104 4037-4050

  • 8/10/2019 Particle fall throught the atmosphere

    12/34

    12

    Particle Terminal Fall Velocity

    100 microndiameter

    particle hasVtof ~4-7

    ms-1

    Mean particle sizeat ~330 km fromMSH (Ritzville,WA) was 20

    microns; Vt~0.2-

    0.4 ms-1

  • 8/10/2019 Particle fall throught the atmosphere

    13/34

    13

    Atmospheric Structure

    Environmental parameters determined from the radiosonde sounding takenat Spokane International Airport at 1800 UTC on 18 May 1980.

  • 8/10/2019 Particle fall throught the atmosphere

    14/34

    Bonadonna et al., 1998

  • 8/10/2019 Particle fall throught the atmosphere

    15/34

    Bonadonna et al., 1998

  • 8/10/2019 Particle fall throught the atmosphere

    16/34

    Bonadonna et al., 1998

  • 8/10/2019 Particle fall throught the atmosphere

    17/34

    Bonadonna et al., 1998

  • 8/10/2019 Particle fall throught the atmosphere

    18/34

    Bonadonna et al., 1998

  • 8/10/2019 Particle fall throught the atmosphere

    19/34

    Bonadonna et al., 1998

  • 8/10/2019 Particle fall throught the atmosphere

    20/34

    Bonadonna et al., 1998

  • 8/10/2019 Particle fall throught the atmosphere

    21/34

    Bonadonna et al., 1998

  • 8/10/2019 Particle fall throught the atmosphere

    22/34

  • 8/10/2019 Particle fall throught the atmosphere

    23/34

    Figure 3. Digital elevation map produced from stereo-pair in Figure 2.

    Figure 2 Typical stereo-pair taken at 8otilt angle.

    Owen P Mills, MSthesis, Michigan Tech,

    2007

  • 8/10/2019 Particle fall throught the atmosphere

    24/34

    Ash is NOT

    spherical!

    Riley et al., 2003

    Augustine ash P Izbekov

  • 8/10/2019 Particle fall throught the atmosphere

    25/34

    Riley et al., 2003

  • 8/10/2019 Particle fall throught the atmosphere

    26/34

    Rose W I, C M Riley and S Dartevelle, 2003, J Geology, 111:115-124.

    http://www.geo.mtu.edu/~raman/papers/Nebraska.pdfhttp://www.geo.mtu.edu/~raman/papers/Nebraska.pdfhttp://www.geo.mtu.edu/~raman/papers/Nebraska.pdfhttp://www.geo.mtu.edu/~raman/papers/Nebraska.pdf
  • 8/10/2019 Particle fall throught the atmosphere

    27/34

    Riley et al., 2003

  • 8/10/2019 Particle fall throught the atmosphere

    28/34

    Riley et al., 2003

  • 8/10/2019 Particle fall throught the atmosphere

    29/34

    Riley et al., 2003

  • 8/10/2019 Particle fall throught the atmosphere

    30/34

    Riley et al., 2003

  • 8/10/2019 Particle fall throught the atmosphere

    31/34

  • 8/10/2019 Particle fall throught the atmosphere

    32/34

    Rose W I, C M Riley and S Dartevelle, 2003, J Geology, 111:115-124.

    http://www.geo.mtu.edu/~raman/papers/Nebraska.pdfhttp://www.geo.mtu.edu/~raman/papers/Nebraska.pdfhttp://www.geo.mtu.edu/~raman/papers/Nebraska.pdfhttp://www.geo.mtu.edu/~raman/papers/Nebraska.pdf
  • 8/10/2019 Particle fall throught the atmosphere

    33/34

    Rose W I, C M Riley and S Dartevelle, 2003, J Geology, 111:115-124.

    http://www.geo.mtu.edu/~raman/papers/Nebraska.pdfhttp://www.geo.mtu.edu/~raman/papers/Nebraska.pdfhttp://www.geo.mtu.edu/~raman/papers/Nebraska.pdfhttp://www.geo.mtu.edu/~raman/papers/Nebraska.pdf
  • 8/10/2019 Particle fall throught the atmosphere

    34/34

    Riley et al., 2003