Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on...

12
www.tranquileducation.weebly.com Unit 4 Groups Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic structure. Define Semi-group Let S be a nonempty set and be a binary operation on S. The algebraic system (,.) is called a semigroup if the operation . is associative. In other words (,.) is a semigroup if for any , , โˆˆ, . . = .(. ). Define Monoid A semigroup (M,.) with an identity element with respect to the operation o is called a monoid. In other words, an algebraic system (M,.) is called a monoid if for any , , โˆˆ, . . = .(. ) and there exists an element โˆˆ such that for any โˆˆ, . = . = Define semigroup homomorphism. Let (,โˆ—) and (, โˆ† ) be any two semigroups. A mapping : โ†’ such that for any two elements , โˆˆ, (โˆ—) = () โˆ† () is called a semigroup homomorphism. Define direct product Let (,โˆ—) and (, โˆ†) be two semigroups. The direct product of (,โˆ—) and (, โˆ†) is the algebraic system ( ร— ,.) in which the operation . on ร— is defined by 1 , 1 . 2 , 2 = ( 1 โˆ— 2 , 1 โˆ† 2 ) for any 1 , 1 2 , 2 โˆˆ ร— . Show that the set of natural numbers is a semigroup under the operation โˆ— = {, }. Is it monoid? Given the operation โˆ— = {, } for any , โˆˆ. Clearly (,โˆ—) is closed because โˆ— = {, } โˆˆ and โˆ— is associative as (โˆ—) โˆ— = {โˆ—, } = {{, }, } = {, , } = {, {, }} = {,{โˆ—}} = โˆ— (โˆ—) Therefore, ,โˆ— is a semi-group. The identity of ,โˆ— must satisfy the property that โˆ— = โˆ— = . But โˆ— = โˆ— = , = {, } = . Prove that โ€œ A semi-group homomorphism preserves the property of associativity . , , โˆˆ ,

Transcript of Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on...

Page 1: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

Unit 4 Groups Part A

Define Algebraic structure. The operations and relations on the set ๐‘† define a structure on the elements of ๐‘†, an algebraic system is called an algebraic structure. Define Semi-group Let S be a nonempty set and ๐‘œ be a binary operation on S. The algebraic system (๐‘†, . ) is called a semigroup if the operation . is associative. In other words (๐‘†, . ) is a semigroup if for any ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†,

๐‘ฅ. ๐‘ฆ . ๐‘ง = ๐‘ฅ. (๐‘ฆ. ๐‘ง). Define Monoid A semigroup (M,.) with an identity element with respect to the operation o is called a monoid. In other words, an algebraic system (M,.) is called a monoid if for any ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘€, ๐‘ฅ. ๐‘ฆ . ๐‘ง = ๐‘ฅ. (๐‘ฆ. ๐‘ง) and there exists an element ๐‘’ โˆˆ ๐‘€ such that for any ๐‘ฅ โˆˆ ๐‘€, ๐‘’. ๐‘ฅ = ๐‘ฅ. ๐‘’ = ๐‘ฅ Define semigroup homomorphism. Let (๐‘†,โˆ—) and (๐‘‡, โˆ† ) be any two semigroups. A mapping ๐‘”: ๐‘† โ†’ ๐‘‡ such that for any two elements ๐‘Ž, ๐‘ โˆˆ ๐‘†, ๐‘”(๐‘Ž โˆ— ๐‘) = ๐‘”(๐‘Ž) โˆ† ๐‘”(๐‘) is called a semigroup homomorphism. Define direct product Let (๐‘†,โˆ—) and (๐‘‡, โˆ†) be two semigroups. The direct product of (๐‘†,โˆ—) and (๐‘‡, โˆ†) is the algebraic system (๐‘† ร— ๐‘‡, . ) in which the operation . on ๐‘† ร— ๐‘‡ is defined by ๐‘ 1, ๐‘ก1 . ๐‘ 2, ๐‘ก2 = (๐‘ 1 โˆ— ๐‘ 2 , ๐‘ก1โˆ† ๐‘ก2) for any ๐‘ 1, ๐‘ก1 ๐‘Ž๐‘›๐‘‘ ๐‘ 2, ๐‘ก2 โˆˆ ๐‘† ร— ๐‘‡. Show that the set ๐‘ต of natural numbers is a semigroup under the operation ๐’™ โˆ— ๐’š = ๐’Ž๐’‚๐’™{๐’™, ๐’š}. Is it monoid? Given the operation ๐‘ฅ โˆ— ๐‘ฆ = ๐‘š๐‘Ž๐‘ฅ{๐‘ฅ, ๐‘ฆ} for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘. Clearly (๐‘,โˆ—) is closed because ๐‘ฅ โˆ— ๐‘ฆ = ๐‘š๐‘Ž๐‘ฅ{๐‘ฅ, ๐‘ฆ} โˆˆ ๐‘ and โˆ— is associative as

(๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง = ๐‘š๐‘Ž๐‘ฅ{๐‘ฅ โˆ— ๐‘ฆ, ๐‘ง} = ๐‘š๐‘Ž๐‘ฅ{๐‘š๐‘Ž๐‘ฅ{๐‘ฅ, ๐‘ฆ}, ๐‘ง}

= ๐‘š๐‘Ž๐‘ฅ{๐‘ฅ, ๐‘ฆ, ๐‘ง} = ๐‘š๐‘Ž๐‘ฅ{๐‘ฅ, ๐‘š๐‘Ž๐‘ฅ{๐‘ฆ, ๐‘ง}}

= ๐‘š๐‘Ž๐‘ฅ{๐‘ฅ, {๐‘ฆ โˆ— ๐‘ง}} = ๐‘ฅ โˆ— (๐‘ฆ โˆ— ๐‘ง)

Therefore, ๐‘,โˆ— is a semi-group. The identity ๐‘’ of ๐‘,โˆ— must satisfy the property that ๐‘ฅ โˆ— ๐‘’ = ๐‘’ โˆ— ๐‘ฅ = ๐‘ฅ. But ๐‘ฅ โˆ— ๐‘’ = ๐‘’ โˆ— ๐‘ฅ = ๐‘š๐‘Ž๐‘ฅ ๐‘ฅ, ๐‘’ = ๐‘š๐‘Ž๐‘ฅ{๐‘’, ๐‘ฅ} = ๐‘ฅ. Prove that โ€œ A semi-group homomorphism preserves the property of associativity. ๐ฟ๐‘’๐‘ก ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐‘†,

Page 2: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

๐‘”( ๐‘Ž โˆ— ๐‘ โˆ— ๐‘ = ๐‘” ๐‘Ž โˆ— ๐‘ . ๐‘”(๐‘)

= [ ๐‘” ๐‘Ž . ๐‘” ๐‘ . ๐‘”(๐‘)] โ€ฆ (1) ๐‘” ๐‘Ž โˆ— ๐‘ โˆ— ๐‘ = ๐‘” ๐‘Ž . ๐‘”(๐‘ โˆ— ๐‘)

= ๐‘” ๐‘Ž . [๐‘” ๐‘ . ๐‘”(๐‘)] โ€ฆ (2) ๐ต๐‘ข๐‘ก ๐‘–๐‘› ๐‘†, (๐‘Ž โˆ— ๐‘) โˆ— ๐‘ = ๐‘Ž โˆ— (๐‘ โˆ— ๐‘), โˆ€ ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐‘†

โˆด ๐‘”[(๐‘Ž โˆ— ๐‘) โˆ— ๐‘] = ๐‘”[๐‘Ž โˆ— (๐‘ โˆ— ๐‘)] โ‡’ ๐‘” ๐‘Ž . ๐‘” ๐‘ .๐‘” ๐‘ = ๐‘” ๐‘Ž . [๐‘” ๐‘ . ๐‘”(๐‘)]

โˆด The property of associativity is preserved. Prove that a semi group homomorphism preserves idem potency. Let ๐‘Ž โˆˆ ๐‘† be an idempotent element. โˆด ๐‘Ž โˆ— ๐‘Ž = ๐‘Ž

๐‘”(๐‘Ž โˆ— ๐‘Ž) = ๐‘” ๐‘Ž . ๐‘”(๐‘Ž) = ๐‘”(๐‘Ž) โˆด ๐‘”(๐‘Ž โˆ— ๐‘Ž) = ๐‘”(๐‘Ž).

This shows that ๐‘”(๐‘Ž) is an idempotent element in T. The property of idem potency is preserved under semi group homomorphism. Prove that A semigroup homomorphism preserves commutativity. Let ๐‘Ž, ๐‘ โˆˆ ๐‘† Assume that ๐‘Ž โˆ— ๐‘ = ๐‘ โˆ— ๐‘Ž

๐‘”(๐‘Ž โˆ— ๐‘) = ๐‘”(๐‘ โˆ— ๐‘Ž) ๐‘” ๐‘Ž . ๐‘” ๐‘ = ๐‘” ๐‘ . ๐‘”(๐‘Ž).

This means that the operation . is commutative in ๐‘‡ The semigroup homomorphism preserves commutativity. Define group. A non-empty set G, together with a binary operation * is said to be a group if it satisfies the following axioms. i) โˆ€a,b โˆˆG โ‡’ a*b โˆˆ G (Closure Property) ii) For any ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐บ, (๐‘Ž โˆ— ๐‘) โˆ— ๐‘ = ๐‘Ž โˆ— (๐‘ โˆ— ๐‘) (Associative property) iii) There exists an element ๐‘’ ๐‘–๐‘› ๐บ such that ๐‘Ž โˆ— ๐‘’ = ๐‘’ โˆ— ๐‘Ž = ๐‘Ž, โˆ€๐‘Ž โˆˆ ๐บ (Identity) iv) For all ๐‘Ž โˆˆ ๐บ there exists an element ๐‘Ž โˆ’ 1 โˆˆ ๐บ such that ๐‘Ž โˆ— ๐‘Žโˆ’1 = ๐‘Žโˆ’1 โˆ— ๐‘Ž = ๐‘’ (Inverse Property) Define Abelian group A Group (๐บ,โˆ—) is said to be abelian if ๐‘Ž โˆ— ๐‘ = ๐‘ โˆ— ๐‘Ž for all ๐‘Ž, ๐‘ โˆˆ ๐บ Define Left coset of H in G Let (๐ป,โˆ—) be a subgroup of (๐บ,โˆ—). For any ๐‘Ž โˆˆ ๐บ , the set ๐‘Ž๐ป defined by

๐‘Ž๐ป = {๐‘Ž โˆ— ๐‘• / ๐‘• โˆˆ ๐ป } is called the left coset of ๐ป in ๐บ determined by the element

๐‘Ž โˆˆ ๐บ.

The element ๐‘Ž is called the representative element of the left coset ๐‘Ž๐ป.

Page 3: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

State Lagrangeโ€™s theorem The order of a subgroup of a finite group divides the order of the group. Or If ๐บ is a finite group, then ๐‘‚(๐ป) \ ๐‘‚(๐บ) , for all sub-group ๐ป of ๐บ. If (๐‘ฎ,โˆ—) is a finite group of order ๐’, then for any ๐’‚ โˆˆ ๐‘ฎ, we have ๐’‚๐’ = ๐’† , where e is the identity of the group ๐‘ฎ. Let ๐‘‚(๐บ) = ๐‘› and Let ๐‘Ž โˆˆ ๐บ Then order of the subgroup < ๐‘Ž > is the order of the element ๐‘Ž. If ๐‘‚(< ๐‘Ž >) = ๐‘š, then ๐‘Ž๐‘š = ๐‘’ and by Lagrangeโ€™s theorem , we get ๐‘š\ ๐‘›.Let ๐‘› = ๐‘š๐‘˜ Then ๐‘Ž๐‘š = ๐‘Ž๐‘š๐‘˜ = (๐‘Ž๐‘š )๐‘˜ = ๐‘’๐‘˜ = ๐‘’. Let ๐‘ฎ = ๐Ÿ, ๐’‚, ๐’‚๐Ÿ, ๐’‚๐Ÿ‘ ๐’˜๐’‰๐’†๐’“๐’† (๐’‚๐Ÿ’ = ๐Ÿ) be a group and ๐‘ฏ = {๐Ÿ, ๐’‚๐Ÿ} is a subgroup of G under multiplication . Find all the cosets of H. Let us find the right cosets of ๐ป in ๐บ.

๐ป1 = {1, ๐‘Ž2} = ๐ป ๐ป๐‘Ž = {๐‘Ž, ๐‘Ž3}

๐ป๐‘Ž2 = {๐‘Ž2 , ๐‘Ž4} = {๐‘Ž2 , 1} = ๐ป ๐‘Ž๐‘›๐‘‘ ๐ป๐‘Ž3 = {๐‘Ž3, ๐‘Ž5} = {๐‘Ž3 , ๐‘Ž} = ๐ป๐‘Ž

โˆด ๐ป. 1 = ๐ป = ๐ป๐‘Ž2 = {1, ๐‘Ž2} ๐‘Ž๐‘›๐‘‘ ๐ป๐‘Ž = ๐ป๐‘Ž3 = {๐‘Ž, ๐‘Ž3} are distinct right cosets of ๐ป in ๐บ. Similarly, we can find the left cosets of ๐ป in ๐บ. Find the left cosets of {[๐ŸŽ], [๐Ÿ]} in the group (๐’๐Ÿ’, +๐Ÿ’). Let ๐‘4 = {[0], [1], [2], [3]} be a group and ๐ป = { [0], [2]} be a sub-group of ๐‘4 under +4. The left cosets of ๐ป are

[0] + ๐ป = {[0], [2]} [1] + ๐ป = {[1], [3]}

[2] + ๐ป = {[2], [4]} = {[2], [0]} = {[0], [2]} = ๐ป [3] + ๐ป = {[3], [5]} = {[3], [1]} = {[1], [3]} = [1] + ๐ป

[0] + ๐ป = [2] + ๐ป = ๐ป ๐‘Ž๐‘›๐‘‘ [1] + ๐ป = [3] + ๐ป are the two distinct left cosets of ๐ป in ๐‘4. Define subgroup Let (๐บ,โˆ—) be a group and let ๐ป be a non-empty subset of ๐บ. Then ๐ป is said to be a subgroup of ๐บ if ๐ป itself is a group with respect to the operation โˆ— . Define normal subgroup A subgroup ๐ป,โˆ— of ๐บ,โˆ— is called a normal sub-group if for any ๐‘Ž โˆˆ ๐บ, ๐‘Ž๐ป = ๐ป๐‘Ž. (i.e.) Left coset = Right coset Prove that every subgroup of an abelian group is normal subgroup. Let (๐บ,โˆ—) be an abelian group and (๐‘,โˆ—) be a subgroup of ๐บ. Let ๐‘” be any element in ๐บ and let ๐‘› โˆˆ ๐‘. Now ๐‘” โˆ— ๐‘› โˆ— ๐‘”โˆ’1 = (๐‘› โˆ— ๐‘”) โˆ— ๐‘”โˆ’1 [Since G is abelian] = ๐‘› โˆ— ๐‘’ = ๐‘› โˆˆ ๐‘

Page 4: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

โˆด โˆ€ ๐‘” โˆˆ ๐บ ๐‘Ž๐‘›๐‘‘ ๐‘› โˆˆ ๐‘, ๐‘” โˆ— ๐‘› โˆ— ๐‘”โˆ’1 โˆˆ ๐‘ โˆด (๐‘,โˆ—) is a normal subgroup. Define direct product on groups Let (๐บ,โˆ—) and (๐ป, โˆ†) be two groups. The direct product of these two groups is the algebraic structure ( ๐บ ร— ๐ป , . ) in which the binary operation . on ๐บ ร— ๐ป is given by ๐‘”1, ๐‘•1 . (๐‘”2, ๐‘•2) = (๐‘”1 โˆ— ๐‘”2, ๐‘•1โˆ† ๐‘•2) for any ๐‘”1, ๐‘•1 , (๐‘”2, ๐‘•2) โˆˆ ๐บ ร— ๐ป. If S denotes the set of positive integers โ‰ค 100, for any ๐’™, ๐’š โˆˆ ๐‘บ, define ๐’™ โˆ— ๐’š = ๐’Ž๐’Š๐’{๐’™, ๐’š}. Verify whether (๐‘บ,โˆ—) is a monoid assuming that โˆ— is associative. The identity element is ๐‘’ = 100 exists. Since for ๐‘ฅ โˆˆ ๐‘†, ๐‘š๐‘–๐‘› (๐‘ฅ, 100) = ๐‘ฅ โ‡’ ๐‘ฅ โˆ— 100 = ๐‘ฅ , โˆ€๐‘ฅ โˆˆ ๐‘† If ๐‘ฏ is a subgroup of the group ๐‘ฎ, among the right cosets of ๐‘ฏ in ๐‘ฎ. Prove that there is only one subgroup viz., ๐‘ฏ. Let ๐ป๐‘Ž be a right coset of ๐ป in ๐บ where ๐‘Ž โˆˆ ๐บ. If ๐ป๐‘Ž is a subgroup of ๐บ then ๐‘’ โˆˆ ๐ป๐‘Ž, where ๐‘’ is the identity element in ๐บ. ๐ป๐‘Ž is an equivalence class containing ๐‘Ž with respect to an equivalence relation.

๐‘’ โˆˆ ๐ป๐‘Ž โ‡’ ๐ป. ๐‘’ = ๐ป๐‘Ž. But ๐ป๐‘’ = ๐ป โˆด ๐ป๐‘Ž = ๐ป. ๐‘‡๐‘•๐‘–๐‘  ๐‘ ๐‘•๐‘œ๐‘ค๐‘  ๐ป ๐‘–๐‘  ๐‘œ๐‘›๐‘™๐‘ฆ ๐‘ ๐‘ข๐‘๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘.

Give an example of sub semi-group For the semi group (๐‘, +), where ๐‘ is the set of natural number, the set ๐ธ of all even non-negative integers (๐ธ, +) is a sub semi-group of (๐‘, +). Find the subgroup of order two of the group (๐’๐Ÿ–, +๐Ÿ–) ๐ป = { [0], [4]} is a subgroup of order two of the group ๐บ = (๐‘8, +8) .

+๐Ÿ– [๐ŸŽ] [๐Ÿ’] [๐ŸŽ] [0] [4]

[๐Ÿ’] [4] [0]

Define Ring An algebraic system (๐‘†, +, . ) is called a ring if the binary operations + and . on ๐‘† satisfy the following three properities. i)(๐‘†, +) is an abelian group ii)(๐‘†, . ) is a semigroup iii) The operation . is distributive over + , i.e. , for any ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐‘† ,

๐‘Ž. (๐‘ + ๐‘) = ๐‘Ž. ๐‘ + ๐‘Ž. ๐‘ ๐‘Ž๐‘›๐‘‘ (๐‘ + ๐‘). ๐‘Ž = ๐‘. ๐‘Ž + ๐‘. ๐‘Ž Define Subring

Page 5: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

A commutative ring (๐‘†, +, . ) is a ring is called a subring if (๐‘…, +, . ) is itself with the operations + and . restricted to ๐‘…. Define Ring homomorphism Let (๐‘…, +, . ) ๐‘Ž๐‘›๐‘‘ (๐‘†,โŠ•,โŠ™) be rings. A mapping g:RโˆˆS is called a ring homomorphism from (๐‘…, +, . ) to (๐‘†,โŠ•,โŠ™) if for any ๐‘Ž, ๐‘ โˆˆ ๐‘….

๐‘”(๐‘Ž + ๐‘) = ๐‘”(๐‘Ž) โŠ• ๐‘”(๐‘) ๐‘Ž๐‘›๐‘‘ ๐‘”(๐‘Ž. ๐‘) = ๐‘”(๐‘Ž) โŠ™ ๐‘”(๐‘) If (๐‘น, +, . ) be a ring then prove that ๐’‚ . ๐ŸŽ = ๐ŸŽ for every ๐’‚ โˆˆ ๐‘น Proof: Let ๐‘Ž โˆˆ ๐‘… then ๐‘Ž. 0 = ๐‘Ž. (0 + 0) = ๐‘Ž. 0 + ๐‘Ž. 0 [ by Distributive Law ] ๐‘Ž. 0 = 0 [ Cancellation Law ] Give an example of an ring with zero-divisors. The ring ( ๐‘10 , +10 , .10 ) is not an integral domain. Since 5 .10 2 = 0 , ( 5 โ‰  0, 2 โ‰  0 ๐‘–๐‘› ๐‘10)

Define Field. The commutative ring (๐‘…, +,ร—) with unity is said to be a Field if it has inverse element under the binary operation ร—. ๐‘Žโˆ’1 ร— ๐‘Ž = ๐‘Ž ร— ๐‘Žโˆ’1 = 1, โˆ€๐‘Ž โˆˆ ๐‘… .

Part B State and Prove Lagrangeโ€™s theorem for finite groups. Statement: The order of a subgroup of a finite group is a divisor of the order of the group. Proof: Let ๐‘Ž๐ป and ๐‘๐ป be two left cosets of the subgroup {๐ป,โˆ—} in the group {๐บ,โˆ—}. Let the two cosets ๐‘Ž๐ป and ๐‘๐ป be not disjoint. Then let ๐‘ be an element common to ๐‘Ž๐ป and ๐‘๐ป i.e., ๐‘ โˆˆ ๐‘Ž๐ป โˆฉ ๐‘๐ป

โˆต ๐‘ โˆˆ ๐‘Ž๐ป, ๐‘ = ๐‘Ž โˆ— ๐‘•1, ๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘•1 โˆˆ ๐ป โ€ฆ (1) โˆต ๐‘ โˆˆ ๐‘๐ป, ๐‘ = ๐‘ โˆ— ๐‘•2, ๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘•2 โˆˆ ๐ป โ€ฆ (2)

From (1) and (2), we have ๐‘Ž โˆ— ๐‘•1 = ๐‘ โˆ— ๐‘•2

๐‘Ž = ๐‘ โˆ— ๐‘•2 โˆ— ๐‘•1โˆ’1 โ€ฆ (3)

Let ๐‘ฅ be an element in ๐‘Ž๐ป ๐‘ฅ = ๐‘Ž โˆ— ๐‘•3, ๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘•3 โˆˆ ๐ป

= ๐‘ โˆ— ๐‘•2 โˆ— ๐‘•1โˆ’1 โˆ— ๐‘•3, ๐‘ข๐‘ ๐‘–๐‘›๐‘” (3)

Since H is a subgroup, ๐‘•2 โˆ— ๐‘•1โˆ’1 โˆ— ๐‘•3 โˆˆ ๐ป

Hence, (3) means ๐‘ฅ โˆˆ ๐‘๐ป Thus, any element in ๐‘Ž๐ป is also an element in ๐‘๐ป. โˆด ๐‘Ž๐ป โŠ† ๐‘๐ป Similarly, we can prove that ๐‘๐ป โŠ† ๐‘Ž๐ป Hence ๐‘Ž๐ป = ๐‘๐ป Thus, if ๐‘Ž๐ป and ๐‘๐ป are disjoint, they are identical.

Page 6: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

The two cosets ๐‘Ž๐ป and ๐‘๐ป are disjoint or identical. โ€ฆ(4) Now every element ๐‘Ž โˆˆ ๐บ belongs to one and only one left coset of ๐ป in ๐บ, For, ๐‘Ž = ๐‘Ž๐‘’ โˆˆ ๐‘Ž๐ป, ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘’ โˆˆ ๐ป โ‡’ ๐‘Ž โˆˆ ๐‘Ž๐ป

๐‘Ž โˆ‰ ๐‘๐ป, since ๐‘Ž๐ป and ๐‘๐ป are disjoint i.e., ๐‘Ž belongs to one and only left coset of ๐ป in ๐บ i.e., ๐‘Ž๐ป โ€ฆ (5) From (4) and (5), we see that the set of left cosets of ๐ป in ๐บ form the partition of ๐บ. Now let the order of ๐ป be ๐‘š. Let ๐ป = ๐‘•1, ๐‘•2, โ€ฆ , ๐‘•๐‘š , ๐‘ค๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘•๐‘– โ€ฒ๐‘  are distinct Then ๐‘Ž๐ป = ๐‘Ž๐‘•1, ๐‘Ž๐‘•2, โ€ฆ , ๐‘Ž๐‘•๐‘š The elements of ๐‘Ž๐ป are also distinct, for, ๐‘Ž๐‘•๐‘– = ๐‘Ž๐‘•๐‘— โ‡’ ๐‘•๐‘– = ๐‘•๐‘— , which is not

true. Thus ๐ป and ๐‘Ž๐ป have the same number of elements, namely ๐‘š. In fact every coset of ๐ป in ๐บ has exactly ๐‘š elements. Now let the order of the group {๐บ,โˆ—} be ๐‘›, i.e., there are ๐‘› elements in ๐บ Let the number of distinct left cosets of ๐ป in ๐บ be ๐‘. โˆด The total number of elements of all the left cosets = ๐‘๐‘š = the total number of elements of ๐บ. i.e., ๐‘› = ๐‘๐‘š i.e., ๐‘š, the order of ๐ป is adivisor of ๐‘›, the order of ๐บ. Find all non-trivial subgroups of (๐’๐Ÿ” , +๐Ÿ”) Solution: ๐‘6 , +6 , ๐‘† = 0 ๐‘ข๐‘›๐‘‘๐‘’๐‘Ÿ ๐‘๐‘–๐‘›๐‘Ž๐‘Ÿ๐‘ฆ ๐‘œ๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› +6 are trivial subgroups

+๐Ÿ” [0] [1] [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5]

[1] [1] [2] [3] [4] [5] [0]

[2] [2] [3] [4] [5] [0] [1]

[3] [3] [4] [5] [0] [1] [2]

[4] [4] [5] [0] [1] [2] [3]

[5] [5] [0] [1] [2] [3] [4]

๐‘†1 = 0 , 2 , [4]

+๐Ÿ” [0] [2] [4]

[0] [0] [2] [4]

[2] [2] [4] [0]

[4] [4] [0] [2]

From the above cayleyโ€™s table, All the elements are closed under the binary operation +๐Ÿ” Associativity is also true under the binary operation +๐Ÿ” [0] is the identity element. Inverse element of [2] is [4] and vise versa

Page 7: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

Hence ๐‘†1 = 0 , 2 , [4] is a subgroup of (๐‘6 , +6) ๐‘†2 = 0 , 3

+๐Ÿ” [0] [3]

[0] [0] [3]

[3] [3] [0]

From the above cayleyโ€™s table, All the elements are closed under the binary operation +๐Ÿ” Associativity is also true under the binary operation +๐Ÿ” [0] is the identity element. Inverse element of [3] is itself. Hence ๐‘†2 = 0 , 3 is a subgroup of (๐‘6 , +6) Therefore ๐‘†1 = 0 , 2 , [4] and ๐‘†2 = 0 , 3 are non trivial subgroups of

(๐‘6 , +6) Show that the mapping ๐’ˆ: (๐‘บ, +) โ†’ (๐‘ป,โˆ—) defined by ๐’ˆ(๐’‚) = ๐Ÿ‘๐’‚, where ๐‘บ is the set

of all rational numbers under addition operation + and ๐‘ป is the set of non-zero real numbers under multiplication operation โˆ— is a homomorphism but not isomorphism. Solution: For any ๐‘Ž, ๐‘ โˆˆ ๐‘†,

๐‘” ๐‘Ž + ๐‘ = 3๐‘Ž+๐‘ = 3๐‘Ž โˆ— 3๐‘ = ๐‘” ๐‘Ž โˆ— ๐‘”(๐‘) โˆด ๐‘” is a homomorphism. To prove ๐‘” is one to one: For any ๐‘Ž, ๐‘ โˆˆ ๐‘†, Let ๐‘” ๐‘Ž = ๐‘” ๐‘ โ‡’ 3๐‘Ž = 3๐‘ โ‡’๐‘Ž = ๐‘

โˆด ๐‘” is one to one To prove ๐‘” is onto:

๐‘ = 3๐‘Ž โ‡’ log๐‘ = log 3๐‘Ž โ‡’ log๐‘ = a log 3 โ‡’๐‘Ž =log๐‘

log 3

โˆด ๐‘Ž = ๐‘” log๐‘Ž

log 3 , โˆ€๐‘Ž โˆˆ ๐‘‡

โˆด โˆ€๐‘Ž โˆˆ ๐‘‡, there is a pre-image log ๐‘Ž

log 3โˆ‰ ๐‘†

โˆต log 3 is irratioinal โ‡’log ๐‘Ž

log 3 is irratioinal

โˆด ๐‘” is not onto. โˆด ๐‘” is not an isomorphism.

The intersection of any two subgroups of a group G is again a subgroup of G. โ€“Prove. Proof: Let ๐ป1 and ๐ป2 be two normal subgroups of a group (๐บ,โˆ—). Then ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐ป2 are subgroups.

Page 8: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

๐‘’ โˆˆ ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐‘’ โˆˆ ๐ป2 โ‡’ ๐‘’ โˆˆ ๐ป1 โˆฉ ๐ป2 . Since ๐‘’ is the identity element of G and it is

unique. โˆด ๐ป1 โˆฉ ๐ป2 ๐‘–๐‘  ๐‘›๐‘œ๐‘› ๐‘’๐‘š๐‘๐‘ก๐‘ฆ.

โˆ€๐‘Ž, ๐‘ โˆˆ ๐ป1 โˆฉ ๐ป2 โ‡’๐‘Ž, ๐‘ โˆˆ ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐‘Ž, ๐‘ โˆˆ ๐ป2 โ‡’๐‘Ž โˆ— ๐‘โˆ’1 โˆˆ ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐‘Ž โˆ— ๐‘โˆ’1 โˆˆ ๐ป2

Since ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐ป2 are subgroups. โ‡’ ๐‘Ž โˆ— ๐‘โˆ’1 โˆˆ ๐ป1 โˆฉ ๐ป2

โˆด ๐ป1 โˆฉ ๐ป2 ๐‘–๐‘  ๐‘Ž ๐‘ ๐‘ข๐‘๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘ Show that monoid homomorphism preserves the property of invertibility. Solution: If ๐‘€,โˆ—, ๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘‡,โ‹…, ๐‘’ โ€ฒ ๐‘๐‘’ ๐‘Ž๐‘›๐‘ฆ ๐‘ก๐‘ค๐‘œ ๐‘š๐‘œ๐‘›๐‘œ๐‘–๐‘‘๐‘ , ๐‘ค๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘’ โ€ฒ๐‘Ž๐‘Ÿ๐‘’ ๐‘–๐‘‘๐‘’๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ elements of ๐‘€ and ๐‘‡ with respect to the operations โˆ— and . respectively, then a mapping ๐‘”: ๐‘€ โ†’ ๐‘‡ such that, for any two elements ๐‘Ž, ๐‘ โˆˆ ๐‘€,

๐‘” ๐‘Ž โˆ— ๐‘ = ๐‘” ๐‘Ž . ๐‘” ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘” ๐‘’ = ๐‘’โ€ฒ is called monoid homomorphism. Let ๐‘Žโˆ’1 โˆˆ ๐‘€ be the inverse of ๐‘Ž โˆˆ ๐‘€ Then ๐‘” ๐‘Ž โˆ— ๐‘Žโˆ’1 = ๐‘” ๐‘’ = ๐‘’ โ€ฒ ๐‘๐‘ฆ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›. Also ๐‘” ๐‘Ž โˆ— ๐‘Žโˆ’1 = ๐‘” ๐‘Ž . ๐‘” ๐‘Žโˆ’1 ๐‘๐‘ฆ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›

๐‘” ๐‘Ž . ๐‘” ๐‘Žโˆ’1 = ๐‘’โ€ฒ Hence the inverse of ๐‘” ๐‘Ž = ๐‘” ๐‘Žโˆ’1 = ๐‘”(๐‘Ž) โˆ’1 โˆด Monoid homomorphism preserves the property of invertibility. Prove that the intersection of two normal subgroup of a group will be a normal subgroup. Solution: Let ๐ป1 and ๐ป2 be two normal subgroups of a group (๐บ,โˆ—). Then ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐ป2 are subgroups. Since ๐‘’ โˆˆ ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐‘’ โˆˆ ๐ป2 โ‡’ ๐‘’ โˆˆ ๐ป1 โˆฉ ๐ป2

โˆด ๐ป1 โˆฉ ๐ป2 ๐‘–๐‘  ๐‘›๐‘œ๐‘› ๐‘’๐‘š๐‘๐‘ก๐‘ฆ. โˆ€๐‘Ž, ๐‘ โˆˆ ๐ป1 โˆฉ ๐ป2 โ‡’ ๐‘Ž, ๐‘ โˆˆ ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐‘Ž, ๐‘ โˆˆ ๐ป2โ‡’ ๐‘Ž โˆ— ๐‘โˆ’1 โˆˆ ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐‘Ž โˆ— ๐‘โˆ’1 โˆˆ ๐ป2

Since ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐ป2 are subgroups. โ‡’ ๐‘Ž โˆ— ๐‘โˆ’1 โˆˆ ๐ป1 โˆฉ ๐ป2

โˆด ๐ป1 โˆฉ ๐ป2 ๐‘–๐‘  ๐‘Ž ๐‘ ๐‘ข๐‘๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘ โˆ€๐‘Ž โˆˆ ๐บ, โˆ€๐‘• โˆˆ ๐ป1 โˆฉ ๐ป2 โ‡’ ๐‘• โˆˆ ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐‘• โˆˆ ๐ป2 , โ‡’ ๐‘Žโˆ’1 โˆ— ๐‘• โˆ— ๐‘Ž โˆˆ ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐‘Žโˆ’1 โˆ— ๐‘• โˆ— ๐‘Ž โˆˆ ๐ป2 Since ๐ป1 ๐‘Ž๐‘›๐‘‘ ๐ป2 are normal subgroups.

โ‡’ ๐‘Žโˆ’1 โˆ— ๐‘• โˆ— ๐‘Ž โˆˆ ๐ป1 โˆฉ ๐ป2 โˆด ๐ป1 โˆฉ ๐ป2 ๐‘–๐‘  ๐‘Ž ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘ ๐‘ข๐‘๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘

Let ๐‘บ be a non-empty set and ๐‘ท(๐‘บ) denote the power set of ๐‘บ. Verify that (๐‘ท(๐‘บ),โˆฉ) is a group. Solution: โˆต ๐‘ƒ(๐‘†) denote the power set of ๐‘† โˆ€๐ด, ๐ต โˆˆ ๐‘ƒ(๐‘†) โ‡’ ๐ด โˆฉ ๐ต โˆˆ ๐‘ƒ(๐‘†)

โˆด ๐‘ƒ(๐‘†) is closed.

Page 9: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

โˆ€๐ด, ๐ต, ๐ถ โˆˆ ๐‘ƒ(๐‘†) โ‡’ ๐ด โˆฉ ๐ต โˆฉ ๐ถ = ๐ด โˆฉ ๐ต โˆฉ ๐ถ

โˆด ๐‘ƒ(๐‘†) is associative โˆ€๐ด โˆˆ ๐‘ƒ(๐‘†) , we have ๐ด โˆฉ ๐‘† = ๐ด = ๐‘† โˆฉ ๐ด โˆด ๐‘† โˆˆ ๐‘ƒ(๐‘†) be the identity element. โˆ€๐ด โˆˆ ๐‘ƒ ๐‘† , there exists some ๐ต โˆˆ ๐‘ƒ ๐‘† such that

๐ด โˆฉ ๐ต โ‰  ๐‘† โˆด Inverse does not exists for any subset except ๐‘† (๐‘ƒ(๐‘†),โˆฉ) is not a group but it is a monoid. Let (๐‘ฎ,โˆ—) and (๐‘ฏ, โˆ†) be groups and ๐’ˆ: ๐‘ฎ โ†’ ๐‘ฏ be a homomorphism. Then prove that kernel of ๐’ˆ is a normal sub-group of ๐‘ฎ. Solution: Let ๐พ = ๐‘˜๐‘’๐‘Ÿ ๐‘” = {๐‘” ๐‘Ž = ๐‘’ โ€ฒ \๐‘Ž โˆˆ ๐บ, ๐‘’ โ€ฒ โˆˆ ๐ป} To prove ๐พ is a subgroup of ๐บ: We know that ๐‘” ๐‘’ = ๐‘’ โ€ฒ โ‡’ ๐‘’ โˆˆ ๐พ โˆด ๐พ is a non-empty subset of ๐บ. By the definition of homomorphism ๐‘” ๐‘Ž โˆ— ๐‘ = ๐‘” ๐‘Ž โˆ† ๐‘” ๐‘ , โˆ€๐‘Ž, ๐‘ โˆˆ ๐บ Let ๐‘Ž, ๐‘ โˆˆ ๐พ โ‡’ ๐‘” ๐‘Ž = ๐‘’ โ€ฒ ๐‘Ž๐‘›๐‘‘ ๐‘” ๐‘ = ๐‘’ โ€ฒ

Now ๐‘” ๐‘Ž โˆ— ๐‘โˆ’1 = ๐‘” ๐‘Ž โˆ† ๐‘” ๐‘โˆ’1 = ๐‘” ๐‘Ž โˆ† ๐‘” ๐‘ โˆ’1

= ๐‘’ โ€ฒโˆ† ๐‘’ โ€ฒ โˆ’1

= ๐‘’ โ€ฒโˆ† ๐‘’ โ€ฒ = ๐‘’โ€ฒ โˆด ๐‘Ž โˆ— ๐‘โˆ’1 โˆˆ ๐พ

โˆด ๐พ is a subgroup of ๐บ To prove ๐พ is a normal subgroup of ๐บ: For any ๐‘Ž โˆˆ ๐บ ๐‘Ž๐‘›๐‘‘ ๐‘˜ โˆˆ ๐พ,

๐‘” ๐‘Žโˆ’1 โˆ— ๐‘˜ โˆ— ๐‘Ž = ๐‘” ๐‘Žโˆ’1 โˆ† ๐‘” ๐‘˜ โˆ†๐‘” ๐‘Ž = ๐‘” ๐‘Žโˆ’1 โˆ† ๐‘” ๐‘˜ โˆ† ๐‘” ๐‘Ž = ๐‘” ๐‘Žโˆ’1 โˆ† ๐‘’ โ€ฒโˆ† ๐‘” ๐‘Ž = ๐‘” ๐‘Žโˆ’1 โˆ† ๐‘” ๐‘Ž = ๐‘” ๐‘Žโˆ’1 โˆ— ๐‘Ž = ๐‘” ๐‘’ = ๐‘’โ€ฒ

๐‘Žโˆ’1 โˆ— ๐‘˜ โˆ— ๐‘Ž โˆˆ ๐พ โˆด ๐พ is a normal subgroup of ๐บ State and Prove Fundamental theorem of homomorphism. Statement: Let ๐‘” be a homomorphism from a group (๐บ,โˆ—) to a group (๐ป, โˆ†), and let ๐พ be the kernel of ๐‘” and ๐ปโ€ฒ โŠ† ๐ป be the image set of ๐‘” in ๐ป. Then ๐บ/๐พ is isomorphic to ๐ปโ€ฒ. Proof: Since ๐พ is the kernel of homomorphism, it must be a normal subgroup of G. Also we can define a mapping ๐‘“: (๐บ,โˆ—) โ†’ (๐บ/๐พ,โŠ—) where โŠ— is defined as ๐‘Ž โˆ— ๐‘ ๐ป = ๐‘Ž๐ป โŠ—๐‘๐ป, โˆ€๐‘Ž, ๐‘ โˆˆ ๐บ โ€ฆ (1) i.e., ๐‘“ ๐‘Ž = ๐‘Ž๐พ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ ๐‘Ž โˆˆ ๐บ โ€ฆ (2) Let us define a mapping ๐‘•: ๐บ/๐พ โ†’ ๐ปโ€ฒ such that ๐‘• ๐‘Ž๐พ = ๐‘” ๐‘Ž โ€ฆ (3) To prove that ๐‘• is well defined: For any ๐‘Ž, ๐‘ โˆˆ ๐บ,

โˆด ๐‘Ž๐พ = ๐‘๐พ ๐‘Ž โˆ— ๐‘โˆ’1 โˆˆ ๐พ โ‡’ ๐‘Ž โˆˆ ๐พ๐‘

๐‘” ๐‘Ž โˆ— ๐‘โˆ’1 = ๐‘’โ€ฒ ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘˜ ๐‘–๐‘  ๐‘˜๐‘’๐‘Ÿ๐‘›๐‘’๐‘™ ๐‘œ๐‘“ ๐‘•๐‘œ๐‘š๐‘œ๐‘š๐‘œ๐‘Ÿ๐‘๐‘•๐‘–๐‘ ๐‘š ๐‘“๐‘Ÿ๐‘œ๐‘š ๐บ ๐‘ก๐‘œ ๐ป

Page 10: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

๐‘” ๐‘Ž โˆ† ๐‘” ๐‘โˆ’1 = ๐‘’ โ€ฒ ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘” ๐‘–๐‘  ๐‘•๐‘œ๐‘š๐‘œ๐‘š๐‘œ๐‘Ÿ๐‘๐‘•๐‘–๐‘ ๐‘š ๐‘“๐‘Ÿ๐‘œ๐‘š ๐บ ๐‘ก๐‘œ ๐ป

๐‘” ๐‘Ž โˆ† ๐‘” ๐‘ โˆ’1

= ๐‘’ โ€ฒ โˆต ๐‘” ๐‘ โˆ’1

= ๐‘” ๐‘โˆ’1

๐‘” ๐‘Ž โˆ† ๐‘” ๐‘ โˆ’1

โˆ† ๐‘” ๐‘ = ๐‘’ โ€ฒโˆ† ๐‘” ๐‘ ๐‘” ๐‘Ž โˆ† ๐‘’ โ€ฒ = ๐‘” ๐‘ โ‡’ ๐‘” ๐‘Ž = ๐‘”(๐‘)

๐‘• ๐‘Ž๐พ = ๐‘• ๐‘๐พ ๐‘Ž๐พ = ๐‘๐พ โ‡’ ๐‘• ๐‘Ž๐พ = ๐‘• ๐‘๐พ

โˆด ๐‘• is well defined. To prove that ๐‘• is homomorphism:

๐‘• ๐‘Ž๐พ โŠ— ๐‘๐พ = ๐‘• ๐‘Ž โˆ— ๐‘ ๐พ ๐‘“๐‘Ÿ๐‘œ๐‘š(1)

= ๐‘” ๐‘Ž โˆ— ๐‘ ๐‘“๐‘Ÿ๐‘œ๐‘š(3) = ๐‘” ๐‘Ž โˆ† ๐‘” ๐‘ ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘” ๐‘–๐‘  ๐‘•๐‘œ๐‘š๐‘œ๐‘š๐‘œ๐‘Ÿ๐‘๐‘•๐‘–๐‘ ๐‘š ๐‘“๐‘Ÿ๐‘œ๐‘š ๐บ ๐‘ก๐‘œ ๐ป

= ๐‘• ๐‘Ž๐พ โˆ† ๐‘• ๐‘๐พ ๐‘“๐‘Ÿ๐‘œ๐‘š(3) โˆด ๐‘• is homomorphism To prove that ๐‘• is on to: The image set of the mapping ๐‘• is the same as the image set of the mapping ๐‘”, so that ๐‘•: ๐บ/๐พ โ†’ ๐ปโ€ฒ is on to. To prove that ๐‘• is one to one: For any ๐‘Ž, ๐‘ โˆˆ ๐บ,

๐‘• ๐‘Ž๐พ = ๐‘• ๐‘๐พ ๐‘” ๐‘Ž = ๐‘” ๐‘

๐‘” ๐‘Ž โˆ† ๐‘” ๐‘ โˆ’1

= ๐‘” ๐‘ โˆ† ๐‘” ๐‘ โˆ’1

๐‘” ๐‘Ž โˆ† ๐‘” ๐‘โˆ’1 = ๐‘’โ€ฒ ๐‘” ๐‘ โˆ’1

= ๐‘” ๐‘โˆ’1 & ๐‘” ๐‘ โˆ† ๐‘” ๐‘ โˆ’1

= ๐‘’โ€ฒ

๐‘” ๐‘Ž โˆ— ๐‘โˆ’1 = ๐‘’โ€ฒ ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘” ๐‘–๐‘  ๐‘•๐‘œ๐‘š๐‘œ๐‘š๐‘œ๐‘Ÿ๐‘๐‘•๐‘–๐‘ ๐‘š ๐‘“๐‘Ÿ๐‘œ๐‘š ๐บ ๐‘ก๐‘œ ๐ป ๐‘Ž โˆ— ๐‘โˆ’1 โˆˆ ๐พ โ‡’ ๐‘Ž โˆˆ ๐พ๐‘

โˆด ๐‘Ž๐พ = ๐‘๐พ โˆด ๐‘• is one to one โˆด ๐‘•: ๐บ/๐พ โ†’ ๐ปโ€ฒ is isomorphic. Show that every subgroup of a cyclic group is cyclic. Proof:

Let ๐บ be the cyclic group generated by the element ๐‘Ž and let ๐ป be a subgroup of ๐บ. If

๐ป = ๐บ ๐‘œ๐‘Ÿ {๐‘’}, ๐ป is cyclic. If not the elements of ๐ป are non-zero integral powers of ๐‘Ž,

since, if ๐‘Ž๐‘Ÿ๐œ– ๐ป , its inverse ๐‘Žโˆ’๐‘Ÿ๐œ– ๐ป.

Let ๐‘š be the least positive integer for which ๐‘Ž๐‘š๐œ– ๐ป

Now let ๐‘Ž๐‘› be any arbitrary element of H. Let ๐‘ž be the quotient and ๐‘Ÿ be the remainder

when ๐‘› is divided by ๐‘š.

Then ๐‘› = ๐‘š๐‘ž + ๐‘Ÿ, ๐‘ค๐‘•๐‘’๐‘Ÿ๐‘’ 0 โ‰ค ๐‘Ÿ < ๐‘š

Since, ๐‘Ž๐‘š๐œ– ๐ป, ๐‘Ž๐‘š ๐‘ž๐œ– ๐ป, ๐‘๐‘ฆ ๐‘๐‘™๐‘œ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ

๐‘Ž๐‘š๐‘ž ๐œ– ๐ป โ‡’ ๐‘Ž๐‘š๐‘ž โˆ’1๐œ– ๐ป, ๐‘๐‘ฆ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘’๐‘›๐‘๐‘’ ๐‘œ๐‘“ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’, ๐‘Ž๐‘  ๐ป ๐‘–๐‘  ๐‘Ž ๐‘ ๐‘ข๐‘๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘

๐‘Žโˆ’๐‘š๐‘ž ๐œ– ๐ป. Now since, ๐‘Ž๐‘›๐œ– ๐ป ๐‘Ž๐‘›๐‘‘ ๐‘Žโˆ’๐‘š๐‘ž ๐œ– ๐ป โ‡’๐‘Ž๐‘›โˆ’๐‘š๐‘ž ๐œ– ๐ป โ‡’๐‘Ž๐‘Ÿ๐œ– ๐ป

๐‘Ÿ = 0 โˆด ๐‘› = ๐‘š๐‘ž

โˆด ๐‘Ž๐‘› = ๐‘Ž๐‘š๐‘ž = ๐‘Ž๐‘š ๐‘ž

Thus, every element ๐‘Ž๐‘›๐œ– ๐ป is of the form ๐‘Ž๐‘š ๐‘ž .

Page 11: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

Hence H is a cyclic subgroup generated by ๐‘Ž๐‘š . State and prove Cayleyโ€™s theorem on permutation groups. Statement: Every group ๐บ is isomorphic to a subgroup of the group of permutation ๐‘†๐ด for some set ๐ด. Proof: We know that ๐‘ƒ โŠ† ๐‘†๐บ is the subgroup of permutation group ๐‘†๐บ . We prove the result by choosing ๐ด to be ๐บ. In fact, we prove that the mapping ๐œ‘: ๐บ,โˆ— โ†’ ๐‘ƒ, ๐‘œ given by ๐œ‘ ๐‘Ž = ๐‘๐‘Ž is an

isomorphism from ๐บ on to ๐‘ƒ. To prove ๐œ‘ is homomorphism: Let ๐‘Ž, ๐‘ โˆˆ ๐บ, then

๐œ‘ ๐‘Ž โˆ— ๐‘ = ๐‘๐‘Žโˆ—๐‘ = ๐‘๐‘Ž๐‘œ๐‘๐‘ = ๐œ‘ ๐‘Ž ๐‘œ๐œ‘ ๐‘ โˆด ๐œ‘ is homomorphism To prove ๐œ‘ is one to one:

๐œ‘ ๐‘Ž = ๐œ‘ ๐‘ ๐‘๐‘Ž = ๐‘๐‘ โ‡’๐‘๐‘Ž ๐‘’ = ๐‘๐‘ (๐‘’)

๐‘’ โˆ— ๐‘Ž = ๐‘’ โˆ— ๐‘ ๐‘Ž = ๐‘

โˆด ๐œ‘ is one to one To prove ๐œ‘ is on to: โˆต ๐œ‘ ๐‘Ž = ๐‘๐‘Ž , For every image ๐‘๐‘Ž in ๐‘ƒ there is a pre image ๐‘Ž in ๐บ. โˆด ๐œ‘ is on to. โˆด ๐œ‘ is isomorphism. Prove that every finite integral domain is a field. Proof:

Let ๐ท, +, . be a finite integral domain. Then ๐ท has a finite number of distinct elements,

say, ๐‘Ž1, ๐‘Ž2, โ€ฆ , ๐‘Ž๐‘› . Let ๐‘Ž โ‰  0 be an element of ๐ท.

Then the elements ๐‘Ž. ๐‘Ž1, ๐‘Ž. ๐‘Ž2 , โ€ฆ , ๐‘Ž. ๐‘Ž๐‘›๐œ– ๐ท, since ๐ท is closed under multiplication. The

elements ๐‘Ž. ๐‘Ž1, ๐‘Ž. ๐‘Ž2 , โ€ฆ , ๐‘Ž. ๐‘Ž๐‘› are distinct, because if ๐‘Ž. ๐‘Ž๐‘– = ๐‘Ž. ๐‘Ž๐‘— , ๐‘ก๐‘•๐‘’๐‘›

๐‘Ž. ๐‘Ž๐‘– โˆ’ ๐‘Ž๐‘— = 0. But ๐‘Ž โ‰  0. Hence ๐‘Ž๐‘– โˆ’ ๐‘Ž๐‘— = 0, since ๐ท is an integral domain i.e.,

๐‘Ž๐‘– = ๐‘Ž๐‘— , which is not true, since ๐‘Ž1, ๐‘Ž2, โ€ฆ , ๐‘Ž๐‘› are distinct elements of ๐ท.

Hence the sets {๐‘Ž. ๐‘Ž1 , ๐‘Ž. ๐‘Ž2, โ€ฆ , ๐‘Ž. ๐‘Ž๐‘› } and ๐‘Ž1 , ๐‘Ž2 , โ€ฆ , ๐‘Ž๐‘› are the same.

Since ๐‘Ž๐œ– ๐ท is in both sets, let ๐‘Ž. ๐‘Ž๐‘˜ = ๐‘Ž for some ๐‘˜ โ€ฆ (1)

Then ๐‘Ž๐‘˜ is the unity of ๐ท, detailed as follows

Let ๐‘Ž๐‘— = ๐‘Ž. ๐‘Ž๐‘– โ€ฆ (2)

Now ๐‘Ž๐‘— . ๐‘Ž๐‘˜ = ๐‘Ž๐‘˜ . ๐‘Ž๐‘— , ๐‘๐‘ฆ ๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ

= ๐‘Ž๐‘˜ . ๐‘Ž. ๐‘Ž๐‘– by (2)

= ๐‘Ž๐‘˜ . ๐‘Ž . ๐‘Ž๐‘–

= ๐‘Ž. ๐‘Ž๐‘˜ . ๐‘Ž๐‘–

= ๐‘Ž. ๐‘Ž๐‘– ๐‘๐‘ฆ (1)

Page 12: Part A - TranquilEducationย ยท Part A Define Algebraic structure. The operations and relations on the set define a structure on the elements of , an algebraic system is called an algebraic

www.tranquileducation.weebly.com

= ๐‘Ž๐‘— ๐‘๐‘ฆ (2)

Since, ๐‘Ž๐‘— is an arbitrary element of ๐ท

๐‘Ž๐‘˜ is the unity of ๐ท

Let it be denoted by 1.

Since 1๐œ– ๐ท, there exist ๐‘Ž โ‰  0 and ๐‘Ž๐‘–๐œ– ๐ท such that ๐‘Ž. ๐‘Ž๐‘– = ๐‘Ž๐‘– . ๐‘Ž = 1

๐‘Ž has an inverse.

Hence ๐ท, +, . is a field.