Part 3. Spectrum Estimation - UMD ECE Class...

45
ENEE630 Part ENEE630 Part-3 Part 3. Spectrum Estimation Part 3. Spectrum Estimation 3.2 Parametric Methods for Spectral Estimation 3.2 Parametric Methods for Spectral Estimation Electrical & Computer Engineering Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The slides were made by Prof. Min Wu, ith dt f M Wi H Ch C t t i @ d d with updates from Mr. Wei-Hong Chuang. Contact: minwu@eng.umd.edu

Transcript of Part 3. Spectrum Estimation - UMD ECE Class...

Page 1: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

ENEE630 PartENEE630 Part--33

Part 3. Spectrum EstimationPart 3. Spectrum Estimation3.2 Parametric Methods for Spectral Estimation3.2 Parametric Methods for Spectral Estimation

Electrical & Computer EngineeringElectrical & Computer Engineering

University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The slides were made by Prof. Min Wu,

ith d t f M W i H Ch C t t i @ d dwith updates from Mr. Wei-Hong Chuang. Contact: [email protected]

Page 2: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Summary of Related Readings on PartSummary of Related Readings on Part--IIIIII

Overview Haykins 1.16, 1.10

3 1 Non-parametric method3.1 Non-parametric methodHayes 8.1; 8.2 (8.2.3, 8.2.5); 8.3

3 2 P t i th d3.2 Parametric methodHayes 8.5, 4.7; 8.4

3.3 Frequency estimationHayes 8.6

Review – On DSP and Linear algebra: Hayes 2.2, 2.3

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [3]

– On probability and parameter estimation: Hayes 3.1 – 3.2

Page 3: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

MotivationMotivation Implicit assumption by classical methods

– Classical methods use Fourier transform on either windowed data or i d d l i f i (AC )windowed autocorrelation function (ACF)

– Implicitly assume the unobserved data or ACF outside the window are zero => not true in reality

– Consequence of windowing: smeared spectral estimate (leading to low resolution)

If prior knowledge about the process is available If prior knowledge about the process is available– We can use prior knowledge and select a good model to

approximate the process– Usually need to estimate fewer model parameters (than non-

parametric approaches) using the limited data points we have– The model may allow us to better describe the process outside the

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [5]

The model may allow us to better describe the process outside the window (instead of assuming zeros)

Page 4: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

General Procedure of Parametric MethodsGeneral Procedure of Parametric Methods

Select a model (based on prior knowledge)

Estimate the parameters of the assumed model

Obtain the spectral estimate implied by the model (with the estimated parameters)

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [6]

Page 5: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Spectral Estimation using AR, MA, ARMA ModelsSpectral Estimation using AR, MA, ARMA Models

Physical insight: the process is generated/approximated by filtering white noise with an LTI filter of rational transfer func H(z)

Use observed data to estimate a few lags of r(k)– Larger lags of r(k) can be implicitly extrapolated by the model

Relation between r(k) and filter parameters {ak} and {bk}PARAMETER EQUATIONS f S ti 2 1 2(6)– PARAMETER EQUATIONS from Section 2.1.2(6)

– Solve the parameter equations to obtain filter parameters– Use the p.s.d. implied by the model as our spectral estimatep p y p

Deal with nonlinear parameter equations

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [7]

– Try to convert/relate them to the AR models that have linear equations

Page 6: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Review: Parameter EquationsReview: Parameter Equations

Yule-Walker equations (for AR process)

ARMA model MA model

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [8]

Page 7: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

3.2.1 AR Spectral Estimation3.2.1 AR Spectral Estimation(1) Review of AR process

– The time series {x[n], x[n-1], …, x[n-m]} is a realization of an AR process of order M if it satisfies the difference equation

[ ] + [ 1] + + [ M] [ ]x[n] + a1 x[n-1] + … + aM x[n-M] = v[n]where {v[n]} is a white noise process with variance 2 .

– Generating an AR process with parameters {ai}:

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [9]

Page 8: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

3.2.1 AR Spectral Estimation3.2.1 AR Spectral Estimation(1) Review of AR process

– The time series {x[n], x[n-1], …, x[n-m]} is a realization of { [ ] [ ] [ ]}an AR process of order M if it satisfies the difference equation

x[n] + a1 x[n-1] + … + aM x[n-M] = v[n]where {v[n]} is a white noise process with variance 2 .

G ti AR ith t { }– Generating an AR process with parameters {ai}:

MzH 1)(

i

ii za

11

1def

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [10]

)(zA

Page 9: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

P.S.D. of An AR ProcessP.S.D. of An AR Process

Recall: the p.s.d. of an AR process {x[n]} is given by

)(ˆ2

AR zP )/1()(

)(AR zAzAzP

fjj eez 2 eez

2

2

AR )(ˆ M

fP 2

1

2AR

1

M

k

fkjkea

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [11]

Page 10: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

P.S.D. of An AR ProcessP.S.D. of An AR Process

Recall: the p.s.d. of an AR process {x[n]} is given by

)(ˆ2

AR zP )/1()(

)(AR zAzAzP

fjj eez 2 eez

2

2

AR )(ˆ M

fP 2

1

2AR

1

M

k

fkjkea

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [12]

Page 11: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Procedure of AR Spectral EstimationProcedure of AR Spectral Estimation Observe the available data points x[0], …, x[N-1], and

Determine the AR process order p

Estimate the autocorrelation functions (ACF) k=0,…p

Biased (low variance) Unbiased (may not non neg.definite)

kN

n

nxknxN

kr1

0

][][1)(ˆ

kN

n

nxknxkN

kr1

0

][][1)(ˆ

Biased (low variance) Unbiased (may not non neg.definite)

Solve { ai } from the Yule-Walker equations or the normal equation of forward linear prediction

2

)(ˆ fP

– Recall for an AR process, the normal equation of FLP is equivalent to the Yule-Walker equation

O (f) 2

12

AR

1)(

M

kfkj

keafP

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [13]

Obtain power spectrum PAR (f):

Page 12: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Procedure of AR Spectral EstimationProcedure of AR Spectral Estimation Observe the available data points x[0], …, x[N-1], and

Determine the AR process order p

Estimate the autocorrelation functions (ACF) k=0,…p

Biased (low variance) Unbiased (may not non-neg.definite)Biased (low variance) Unbiased (may not non neg.definite)

kN

n

nxknxkN

kr1

0

][][1)(ˆ

kN

n

nxknxN

kr1

0

][][1)(ˆ

Solve { ai } from the Yule-Walker equations or the normal equation of forward linear prediction– Recall for an AR process, the normal equation of FLP is

equivalent to the Yule-Walker equation

O (f)2

)(ˆ fP

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [14]

Obtain power spectrum PAR (f): 2

12

AR

1)(

M

kfkj

keafP

Page 13: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

3.2.2 Maximum Entropy Spectral Estimation 3.2.2 Maximum Entropy Spectral Estimation (MESE)(MESE) View point: Extrapolations of ACF

– {r[0], r[1], …, r[p]} is known; there are generally an infinite b f ibl l i f (k) l lnumber of possible extrapolations for r(k) at larger lags

– As long as { r[p+1], r[p+2], … } guarantee that the correlation matrix is non-negative definite, they all form valid ACFs for w.s.s.

Maximum entropy principle– Perform extrapolation s.t. the time series characterized by the

extrapolated ACF has maximum entropy– i.e. the time series will be the least constrained thus most random

one among all series having the same first (p+1) ACF valuesg g (p )

Maximizing entropy leads to estimated p.s.d. be the smoothest one

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [15]

– Recall white noise process has flat p.s.d.

Page 14: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

3.2.2 Maximum Entropy Spectral Estimation 3.2.2 Maximum Entropy Spectral Estimation (MESE)(MESE) Extrapolations of ACF

– {r[0], r[1], …, r[p]} is known; there are generally an infinite b f ibl l i f (k) l lnumber of possible extrapolations for r(k) at larger lags

– As long as { r[p+1], r[p+2], … } guarantee that the correlation matrix is non-negative definite, they all form valid ACFs for w.s.s.

Maximum entropy principle– Perform extrapolation s.t. the time series characterized by the

extrapolated ACF has maximum entropy– i.e. the time series will be the least constrained thus most random

one among all series having the same first (p+1) ACF valuesg g (p )

=> Maximizing entropy leads to estimated p.s.d. be the smoothest one

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [16]

– Recall white noise process has flat p.s.d.

Page 15: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

MESE for Gaussian Process: FormulationMESE for Gaussian Process: Formulation

For a Gaussian random process, the entropy per sample is proportional to

21

21 )(ln dffP

The max entropy spectral estimation is1

2

21

21 )(lnmax dffP

subject to

pkkrdfefP fkj ,...,1,0for ),()(21

21

2

subject to

2

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [17]

Page 16: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

MESE for Gaussian Process: FormulationMESE for Gaussian Process: Formulation

For a Gaussian random process, the entropy per sample is proportional to

21

21 )(ln dffP

Thus the max entropy spectral estimation is1

2

21

21 )(lnmax dffP

subject to

pkkrdfefP fkj ,...,1,0for ),()(21

21

2

subject to

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [18]

2

Page 17: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

MESE for Gaussian Process: SolutionMESE for Gaussian Process: Solution

Using the Lagrangian multiplier technique, the solution can be found ascan be found as

2

2

ME )(ˆ fP

h { } f d b l i th Y l W lk

2

121

p

kfkj

kea

where {ak} are found by solving the Yule-Walker equations given the ACF values r(0), …, r(p)

For Gaussian processes, the MESE is equivalent to AR spectral estimator and the PME(f) is an all-pole spectrum

Diff i h G i AR

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [19]

– Different assumptions on the process: Gaussian vs AR processes

Page 18: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

MESE for Gaussian Process: SolutionMESE for Gaussian Process: Solution

Using the Lagrangian multiplier technique, the solution can be found ascan be found as

2

2

ME )(ˆ fP

h { } f d b l i th Y l W lk

2

121

p

kfkj

kea

where {ak} are found by solving the Yule-Walker equations given the ACF values r(0), …, r(p)

For Gaussian processes, the MESE is equivalent to AR spectral estimator and the PME(f) is an all-pole spectrum

Diff i h G i AR

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [20]

– Different assumptions on the process: Gaussian vs AR processes

Page 19: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

3.2.3 MA Spectral Estimation3.2.3 MA Spectral Estimation

An MA(q) model

q

kq

bBkb )(][][

can be used to define an MA spectral estimator

k

kk

kk zbzBknvbnx

00)( ][][

p

222

MA 1)(ˆ q

fkjkebfP

Recall important results on MA process: 1

MA 1)(

k

kebfP

(1) The problem of solving for bk given {r(k)} is to solve a set of nonlinear equations;

(2) An MA process can be approximated by an AR process of

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [21]

(2) An MA process can be approximated by an AR process of sufficiently high order.

Page 20: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Basic Idea to Avoid Solving Nonlinear EquationsBasic Idea to Avoid Solving Nonlinear Equations

Consider two processes:

Process#1: we observed N samples and need to perform Process#1: we observed N samples, and need to perform spectral estimate– We first model it as a high-order AR process, generated by 1/A(z) filter

Process#2: an MA-process generated by A(z) filter– Since we know A(z), we can know process#2’s autocorrelation function;

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [22]

– We model process#2 as an AR(q) process => the filter would be 1/B(z)

Page 21: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Use AR Model to Help Finding MA ParametersUse AR Model to Help Finding MA Parameters

)()()( 12 BBPNote

– For simplicity, we consider the real coefficients for the MA model.

)()()( 12 zBzBzPMA

L

Note

To approximate it with an AR(L) model, i.e.,

)()()( 1

2

zAzA

zPMA

L

k

kk zazA

11)(qL

1

where

)()(1)()( 1

1

zBzB

zAzA

d Lorder L order q The RHS represents power spectrum of an AR(q) process The unverse ZT of LHS is the ACF of the AR(q) process The unverse ZT of LHS is the ACF of the AR(q) process

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [23]

Page 22: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Use AR Model to Help Finding MA ParametersUse AR Model to Help Finding MA Parameters– For simplicity, we consider the real coefficients for the MA model.

)()()( 12 BBPNote )()()( 12 zBzBzPMA

L

Note

To approximate it with an AR(L) model, i.e.,

)()()( 1

2

zAzA

zPMA

L

k

kk zazA

11)(qL

1

where

)()(1)()( 1

1

zBzB

zAzA

d Lorder L order q The RHS represents power spectrum of an AR(q) process The unverse ZT of LHS is the ACF of the AR(q) process

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [24]

The unverse ZT of LHS is the ACF of the AR(q) process

Page 23: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Use AR Model to Find MA Parameters: SolutionsUse AR Model to Find MA Parameters: Solutions– For simplicity, we consider the real coefficients for the MA model.

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [25]

Page 24: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Recall: ACF of Output Process After LTI FilteringRecall: ACF of Output Process After LTI Filtering

w.s.s. processprocess

stable LTI filter

filter filterfilter filter

deterministic autocorrelation of filter’s impulse response

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [26]

Page 25: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Recall: ACF of Output Process After LTI FilteringRecall: ACF of Output Process After LTI Filtering

w.s.s. processprocess

stable LTI filter

filter filterfilter filter

deterministic autocorrelation of filter’s impulse response

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [27]

Page 26: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Use AR to Help Finding MA Parameters Use AR to Help Finding MA Parameters (cont’d)(cont’d)

A random process with power spectrum A(z)A(z-1) can be viewed as filtering a white process by a filter A(z), and has autocorrelation

proportional to for lag kkL

kaaproportional to for lag k

Knowing such autocorrelation function,

n

knnaa0

Knowing such autocorrelation function, we can use Levinson-Durbin recursion to find the optimal linear prediction parameters for the process (or equivalently its AR approximation parameters)(or equivalently its AR approximation parameters)

Thus we get {bk} as1)()( 1 zAzAThus we get {bk} as

)()()()( 1

zBzBzAzA

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [28]

Page 27: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Use AR to Help Finding MA Parameters Use AR to Help Finding MA Parameters (cont’d)(cont’d)

A random process with power spectrum A(z)A(z-1) can be viewed as filtering a white process by a filter A(z), and has autocorrelation

proportional to for lag kkL

aaproportional to for lag k

Knowing such autocorrelation function,

n

knnaa0

Knowing such autocorrelation function, we can use Levinson-Durbin recursion to find the optimal linear prediction parameters for the process (or equivalently its AR approximation parameters)(or equivalently its AR approximation parameters)

Thus we get {bk} as1)()( 1 zAzA

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [29]

Thus we get {bk} as)()(

)()( 1zBzB

zAzA

Page 28: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Durbin’s MethodDurbin’s Method

1. Use Levinson-Durbin recursion and solve for

here

– That is we first approximate the observed data sequence {x[0]

where

– That is, we first approximate the observed data sequence {x[0], …, x[N]} with an AR model of high order (often pick L > 4q)

– We use biased ACF estimate here to ensure nonnegative definiteness

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [30]

and smaller variance than unbiased estimate (dividing by N-k)

Page 29: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Durbin’s MethodDurbin’s Method

1. Use Levinson-Durbin recursion and solve for

where

We first approximate the observed data sequence {x[0] x[N]}– We first approximate the observed data sequence {x[0], …, x[N]} with an AR model of high order (often pick L > 4q)

– We use biased ACF estimate here to ensure nonnegative definiteness

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [31]

and smaller variance than unbiased estimate (dividing by N-k)

Page 30: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Durbin Method (cont’d)Durbin Method (cont’d)

2. Fit the data sequence to an AR(q) model:}ˆ,...,ˆ,ˆ,1{ 21 Laaa

where

– The result {bi} is the estimated MA parameters for original{x[n]}– Note we add 1/(L+1) factor to allow the interpretation of ra(k) as an

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [32]

( ) p a( )autocorrelation function estimator

Page 31: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Durbin Method (cont’d)Durbin Method (cont’d)

2. Fit the data sequence to an AR(q) model:}ˆ,...,ˆ,ˆ,1{ 21 Laaa (q)}, ,,,{ 21 L

where

– The result {bi} is the estimated MA parameters for original {x[n]}– Note we add 1/(L+1) factor to allow the interpretation of ra(k) as an

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [33]

( ) p a( )autocorrelation function estimator

Page 32: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

3.2.4 ARMA Spectral Estimation3.2.4 ARMA Spectral Estimation

qp

Recall the ARMA(p,q) model

q

kk

p

kk knvbknxanx

01][][][

22ˆ

qfkj

We define an ARMA(p,q) spectral estimator

21

2

2ARMA

1ˆ)(ˆ

p

k

fkjkeb

fP

1

2ˆ1

p

k

fkjkea

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [34]

Page 33: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

3.2.4 ARMA Spectral Estimation3.2.4 ARMA Spectral Estimation

qp

Recall the ARMA(p,q) model

q

kk

p

kk knvbknxanx

01][][][

We define an ARMA(p,q) spectral estimator2

2ˆq

fkj

21

2

2ARMA

1ˆ)(ˆ

p

k

fkjk eb

fP

1

2ˆ1

p

k

fkjk ea

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [35]

Page 34: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Modified YuleModified Yule--Walker EquationsWalker Equations

Recall the Yule-Walker Eq. for ARMA(p,q) process

We can use the equations for k≥q+1 to solve for {al}

“Modified Yule Walker Equations”Modified Yule-Walker Equations

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [36]

Page 35: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Modified YuleModified Yule--Walker EquationsWalker Equations

Recall the Yule-Walker Eq. for ARMA(p,q) process

We can use the equations for k≥q+1 to solve for {al}

“Modified Yule Walker Equations”

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [37]

Modified Yule-Walker Equations

Page 36: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Estimating ARMA ParametersEstimating ARMA Parameters

1. By solving the modified Yule-Walker eq., we get

p

k

kk zazA

1

ˆ1)(ˆ

We first filter {x[n]} with , and model the output )(ˆ zA2. To estimate {bk},

with an MA(q) model using Durbin’s method.)(

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [38]

Page 37: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Estimating ARMA ParametersEstimating ARMA Parameters

1. By solving the modified Yule-Walker eq., we get

p

k

kk zazA

1

ˆ1)(ˆ

We first filter {x[n]} with , and model the output )(ˆ zA2. To estimate {bk},

with an MA(q) model using Durbin’s method.)(

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [39]

Page 38: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Extension: LSMYWE EstimatorExtension: LSMYWE Estimator

Performance by solving p modified Yule-Walker equations followed by Durbin’s method– May yield highly variable spectral estimates (esp. when the matrix

involving ACF is nearly singular due to poor ACF estimates)

Improvement: use more than p equations to solve {a1 .. ap} in a least square sense

U Y l W lk ti f k ( +1) M i || t S ||2– Use Yule-Walker equations for k = (q+1), … M: min || t – S a ||2

– Least square solution: a = (SH S) —1 SH tThen obtain {b } by Durbin’s method– Then obtain {bi} by Durbin s method

“Least-square modified Yule-Walker equation” (LSMYWE)

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [40]

Ref: review in Hayes’ book Sec.2.3.6 on least square solution

Page 39: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Comparison of Different Methods: RevisitComparison of Different Methods: Revisit Test case: a process consists of narrowband components

(sinusoids) and a broadband component (AR)– x[n] = 2 cos(1 n) + 2 cos(2 n) + 2 cos(3 n) + z[n]

where z[n] = a1 z[n-1] + v[n], a1 = 0.85, 2 = 0.11/2 = 0.05, 2/2 = 0.40, 3/2 = 0.421/2 0.05, 2/2 0.40, 3/2 0.42

– N=32 data points are available periodogram resolution f = 1/32

Examine typical characteristics f i t i dof various non-parametric and

parametric spectral estimators

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [41]

(Fig.2.17 from Lim/Oppenheim book)

Page 40: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [42]

Page 41: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [43]

Page 42: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

3.2.5 Model Order Selection3.2.5 Model Order Selection

The best way to determine the model order is to base it on the physics of the data generation process

Example: speech processing– Studies show the vocal tract can be modeled as an all-pole filter p

having 4 resonances in a 4kHz band, thus at least 4 pairs of complex conjugate poles are necessary Typically 10 12 poles are used in an AR modeling for speech Typically 10-12 poles are used in an AR modeling for speech

When no such knowledge is available, we can use somegstatistical test to estimate the order

Ref for in-depth exploration: “Model-order selection ” by P Stoica and Y Selen

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [44]

Ref. for in-depth exploration: Model-order selection, by P. Stoica and Y. Selen, IEEE Signal Processing Magazine, July 2004.

Page 43: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

Considerations for Order SelectionConsiderations for Order Selection

Modeling error – Modeling error measures the (statistical) difference between the true g ( )

data value and the approximation by the model e.g. estimating linear prediction MSE in AR modeling

U ll f i f d l ( AR ARMA) h d li– Usually for a given type of model (e.g. AR, ARMA), the modeling error decreases as we increase the model order

Balance between the modeling error and the amount of Balance between the modeling error and the amount of model parameters to be estimated– The number of parameters that need to be estimated and represented

increases as we use higher model order Cost of overmodeling– Can balance modeling error and the cost of going to higher model by

imposing a penalty term that increases with the model order

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [45]

imposing a penalty term that increases with the model order

Page 44: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

A Few Commonly Used CriteriaA Few Commonly Used Criteria

Akaike Information Criterion (AIC)– A general estimate of the Kullback-Leibler divergence between g g

assumed and true p.d.f., with an order penalty term increasing linearly– Choose the model order that minimize AIC

iNi p 2 ln)(AIC size of model order:

i=p for AR(p)

Minimum Description Length (MDL) Criterion

available data model error i=p for AR(p)i=p+q for ARMA(p,q)

– Impose a bigger penalty term to overcome AIC’s overestimation– Estimated order converges to the true order as N goes to infinity

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [46]

iNNi p )(log ln)(MDL

Page 45: Part 3. Spectrum Estimation - UMD ECE Class Sitesclassweb.ece.umd.edu/enee630.F2012/slides/part-3_sec2... · 2012. 11. 28. · ENEE630 PartENEE630 Part--33 Part 3. Spectrum Estimation

A Few Commonly Used CriteriaA Few Commonly Used Criteria

Akaike Information Criterion (AIC)– A general estimate of the Kullback-Leibler divergence between g g

assumed and true p.d.f., with an order penalty term increasing linearly– Choose the model order that minimize AIC

iNi p 2 ln)(AIC size of model order:

i=p for AR(p)

Minimum Description Length (MDL) Criterion

available data model error i=p for AR(p)i=p+q for ARMA(p,q)

– Impose a bigger penalty term to overcome AIC’s overestimation– Estimated order converges to the true order as N goes to infinity

UMD ENEE630 Advanced Signal Processing (ver.1111) Parametric spectral estimation [47]

iNNi p )(log ln)(MDL