PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ...

17
Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 16 (2015), No. 2, pp. 869–885 DOI: 10.18514/MMN.2015.1308 PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACES YUE HU AND YUESHAN WANG Received 05 September, 2014 Abstract. Let 0<<n and ˝ be the parametric Marcinkiewicz integral. In this paper we shall obtain the strong type and weak type estimates of ˝ on the weighted Herz spaces P K ˛;p q .! 1 ;! 2 / with general weights. The boundedness of the commutators generated by BMO functions and parametric Marcinkiewicz integral is also obtained. 2010 Mathematics Subject Classification: 42B25; 42B35 Keywords: parametric Marcinkiewicz integral, commutator, Muckenhoupt weight, BMO, Herz spaces, weak Herz space 1. I NTRODUCTION AND RESULTS Suppose that S n1 is the unit sphere in R n .n 2/ equipped with the normalized Lebesgue measure d: Let ˝ be a homogeneous function of degree zero on R n sat- isfying ˝ 2 L 1 .S n1 / and Z S n1 ˝.x 0 /d.x 0 / D 0; (1.1) where x 0 D x=jxj for any x ¤ 0: For 0 < < n; ormander in [6] defined the para- metric Marcinkiewicz integral operator ˝ of higher dimension as follows. ˝ .f /.x/ D Z 1 0 jF ˝;t .x/j 2 dt t 2C1 1=2 ; where F ˝;t .x/ D Z jxyjt ˝.x y/ jx y j n f .y/dy: The first author was supported in part by the National Natural Science Foundation of China, Grant No.11071057. c 2015 Miskolc University Press

Transcript of PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ...

Page 1: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

Miskolc Mathematical Notes HU e-ISSN 1787-2413Vol. 16 (2015), No. 2, pp. 869–885 DOI: 10.18514/MMN.2015.1308

PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTEDHERZ SPACES

YUE HU AND YUESHAN WANG

Received 05 September, 2014

Abstract. Let 0< � < n and ��˝

be the parametric Marcinkiewicz integral. In this paper we shallobtain the strong type and weak type estimates of��

˝on the weighted Herz spaces PK˛;pq .!1;!2/

with general weights. The boundedness of the commutators generated by BMO functions andparametric Marcinkiewicz integral is also obtained.

2010 Mathematics Subject Classification: 42B25; 42B35

Keywords: parametric Marcinkiewicz integral, commutator, Muckenhoupt weight, BMO, Herzspaces, weak Herz space

1. INTRODUCTION AND RESULTS

Suppose that Sn�1 is the unit sphere in Rn.n � 2/ equipped with the normalizedLebesgue measure d�: Let ˝ be a homogeneous function of degree zero on Rn sat-isfying ˝ 2 L1.Sn�1/ and Z

Sn�1˝.x0/d�.x0/D 0; (1.1)

where x0 D x=jxj for any x ¤ 0: For 0 < � < n; Hormander in [6] defined the para-metric Marcinkiewicz integral operator ��˝ of higher dimension as follows.

��˝.f /.x/D

�Z 10

jF�˝;t .x/j

2 dt

t2�C1

�1=2;

where

F�˝;t .x/D

Zjx�yj�t

˝.x�y/

jx�yjn��f .y/dy:

The first author was supported in part by the National Natural Science Foundation of China, GrantNo.11071057.

c 2015 Miskolc University Press

Page 2: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

870 YUE HU AND YUESHAN WANG

Let b be a locally integrable function, the commutator generated by parametric Mar-cinkiewcz integral ��˝ and b is defined by

Œb;��˝ �.f /.x/D

Z 10

ˇZjx�yj�t

˝.x�y/

jx�yjn��.b.x/�b.y//f .y/dy

ˇ2dt

t2�C1

! 12

:

When �D 1; we shall denote �1˝ simply by �˝ :The area of the Marcinkiewcz integrals have been under intensive research. This

operator �˝ was first introduced by Stein in [15]. He proved that if ˝2Lip˛.Sn�1/.0<˛� 1/; then�˝ is the operator of strong type .p;p/ for 1<p� 2and of weak type .1;1/: Here, we say that ˝ 2 Lip˛.Sn�1/ if

j˝.x0/�˝.y0/j � jx0�y0j˛; x0;y0 2 Sn�1:

In 1990, Torchinsky and Wang in [16] considered the weighted case and proved thatIf ˝ 2 Lip˛.Sn�1/.0 < ˛ � 1/; and b 2 BMO.Rn/; then for all 1 < p <1; and! 2 Ap (Muckenhoupt weight class), �˝ and Œb;�˝ � are all bounded in Lp.!/: Onthe other hand, in 1960, Hormander [6] showed that if˝ 2Lip˛.Sn�1/.0 < ˛ � 1/;then for 0 < � < n; ��˝ is of strong type .p;p/ for all 1 < p <1: In [14] Shi andJiang obtained the weighted Lp-boundedness of parametric Marcinkiewicz integraland its commutator.

Theorem A ([14]). Let 0 < � < n and ˝ 2 L1.Sn�1/: If ! 2 Ap.1 < p <1/and b 2 BMO.Rn/; then there exists a constant C > 0 independent of f such that

k��˝.f /kLp.!/ � Ckf kLp.!/

and

kŒb;��˝ �.f /kLp.!/ � Ckbk�kf kLp.!/:

Notice that Lip˛.Sn�1/.0 < ˛ � 1/ ¤ L1.Sn�1/ ¤ L1.Sn�1/; then the resultsof Theorem A are extend and improve the results of Torchinsky and Wang in [16].

Let us recall the definition of Littlewood-Paley function

S˚ .f /.x/D

�ZRnj˚t �f .x/j

2dt

t

�1=2;

where ˚t .x/ D t�n˚.x=t/ and ˚ 2 L1.Rn/ which satisfiesR

Rn˚.x/dx D 0: It iswell known that the Littlewood-Paley function have long played important roles inharmonic analysis. When ˚ is given by

˚.x/D jxj�nC�˝.x/�Œ0;1�.jxj/;

where ˝ be a homogeneous function of degree zero on Rn satisfying (1.1), then˚.x/ becomes the parametric Marcinkiewicz integral operator. Therefore, many au-thors have been interested in studying the boundedness properties of ��˝ on variousfunction spaces, it can be seen in [1–3, 18].

Page 3: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACES 871

In [13], Lu, Yabuta and Yang obtained the boundedness results for sublinear oper-ators on weighted Herz spaces with general Muckenhoupt weights. Recently, manyauthors considered the boundedness of operators on weighted Herz spaces with gen-eral Muckenhoupt weights. In [8], Komori and Matsuoka showed the boundednessof singular integral operators and fractional integrals on weighted Herz spaces. In[5], Guo and Jiang discussed the boundedness of commutators of singular integraloperators on weighted Herz spaces, and as an application, they obtained the interiorestimates on weighted Herz spaces for the solutions of some nondivergence ellipticequations. Hu , He and Wang [19] studied the boundedness of commutators of frac-tional integrals in generalized Herz spaces. More results concerning the boundednessof operators on Herz spaces can be seen in [12, 17].

The main purpose of this paper is to consider the boundedness of parametric Mar-cinkiewicz integral on weighted Herz spaces with Ap weights. At the extreme case,we will also prove that��˝ is bounded from the weighted Herz spaces to the weightedweak Herz spaces. The boundedness of commutators generated by parametric Mar-cinkiewicz integral and BMO functions on weighted Herz spaces is also considered.

Our main results in the paper are formulated as follows.

Theorem 1. Let 0 < � < n and ˝ 2 L1.Sn�1/: Suppose 0 < p <1;1 < q <1;!1 2 Aq1 and !2 2 Aq2 : Then ��˝ is bounded on PK˛;pq .!1;!2/ provided that !1and !2 satisfy either of the following

(i) !1 D !2;1� q1 D q2 � q and �nq1=q < ˛q1 < n.1�q1=q/I(ii) !1 ¤ !2;1� q1 <1;1� q2 � q and 0 < ˛q1 < n.1�q2=q/:

Theorem 2. Let 0 < � < n and ˝ 2 L1.Sn�1/: Suppose 0 < p < 1;1 < q <1;!1 2Aq1 and !2 2Aq2 : If 1� q1 <1;1� q2 � q and ˛q1 D n.1�q2=q/, then��˝ is bounded from PK

˛;pq .!1;!2/ to W PK˛;pq .!1;!2/:

Theorem 3. Let 0 < � < n and ˝ 2 L1.Sn�1/: Suppose 1 < q <1;!1 2 Aq1 ;!2 2 Aq2 and b 2 BMO: Then Œb;��˝ � is bounded on PK˛;pq .!1;!2/ provided that!1 and !2 satisfy either of the following

(i) !1 D !2;1� q1 D q2 � q and �nq1=q < ˛q1 < n.1�q1=q/I(ii) !1 ¤ !2;1� q1 <1;1� q2 � q and 0 < ˛q1 < n.1�q2=q/:

Throughout this paper, unless otherwise indicated, C will be used to denote apositive constant that is not necessarily the same at each occurrence.

2. DEFINITIONS AND PRELIMINARIES

We begin this section with some properties of Ap weights which play importantrole in the proofs of our main results.

A weight ! is a nonnegative, locally integrable function on Rn: Let B D B.x0; r/denote the ball with the center x0 and radius r , and let �B DB.x0;�r/ for any �> 0:

Page 4: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

872 YUE HU AND YUESHAN WANG

For a given weight function ! and a measurable set E, we also denote the Lebesguemeasure of E by jEj and set weighted measure !.E/D

RE !.x/dx:

Definition 1. A weight ! is said to belong to Ap for 1 < p <1; if there exists aconstant C such that for every ball B � Rn;�

1

jBj

ZB

!.x/dx

��1

jBj

ZB

!.x/1�p0

dx

�p�1� C; (2.1)

where s0 is the dual of s such that 1=sC1=s0 D 1:

The class A1 is defined by replacing the above inequality with

1

jBj

ZB

!.y/dy � C � ess infx2B

w.x/:

By (2.1), we have�ZB

!.x/dx

��ZB

!.x/1�p0

dx

�p�1� C jBjp: (2.2)

The classical Ap weight theory was first introduced by Muckenhoupt in the studyof weighted Lp-boundedness of Hardy-Littlewood maximal function in [10].

Lemma 1 ([4, 10]). Let 1 � p <1 and ! 2 Ap: Then the following statementsare true:

(i) There exists constant C such that

!.Bk/

!.Bj /� C2np.k�j / for k > j I (2.3)

(ii) For any 1 < p <1; there exists 1 < q < p such that ! 2 Aq.Rn/I(iii) There exist two constants C and ı > 0 such that for any measurable set E �

B;

!.E/

!.B/� C

�jEj

jBj

�ıI (2.4)

(iv) For any 1 < p <1; one has !1�p0

2 Ap0.Rn/:

If ! satisfies (2.4), we say ! 2 A1.Rn/: It is well known that

A1.Rn/D

[1�p<1

Ap.Rn/:

Let Bk D B.0;2k/ D fx 2 Rn W jxj � 2kg and Ck D Bk nBk�1 for any k 2 Z:Denote �k D �Ck for k 2Z; where �

Eis the characteristic function of the set E: In

[9], Lu and Yang introduced weighted Herz spaces.

Page 5: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACES 873

Definition 2. Let ˛ 2 R;0 < p;q <1 and !1;!2 be two weight functions on Rn:The homogenous weighted Herz space PK˛;pq .!1;!2/ is defined by

PK˛;pq .!1;!2/Dnf 2 L

q

loc.Rn n f0g;!2/ W kf k PK˛;pq .!1;!2/

<1o;

where

kf k PK˛;pq .!1;!2/D

1X

kD�1

!1.Bk/˛p=nkf�kk

p

Lq.!2/

!1=p:

For any k 2Z;� > 0 and any measurable function f on Rn; we write Ek.�;f /Dfx 2 Ck W jf .x/j> �g:

Definition 3 ([13]). Let ˛ 2R;0 < p;q <1 and !1;!2 be two weight function onRn: A measurable function f on Rn is said to belong to the homogeneous weightedweak Herz space W PK˛;pq .!1;!2/ if

kf kW PK

˛;pq .!1;!2/

D sup�>0

1X

kD�1

!1.Bk/˛p=nŒ!2.Ek.�;f //�

p=q

!1=p<1:

Obviously, if ˛ D 0; then PK0;pp .!1;!2/D Lp.!2/ and W PK0;pp .!1;!2/

DWLp.!2/ for any 0 < p <1: Thus, weighted Herz spaces are generalizations ofthe weighted Lebesgue spaces.

Definition 4. A locally integrable function b is said to be in BMO.Rn/ if

supB

1

jBj

ZB

jb.x/�bB jdx D kbk� <1;

where bB D 1jBj

RB b.y/dy:

Lemma 2. (John-Nirenberg inequality, see [7]) Let b 2 BMO.Rn/: Then for anyball B � Rn; there exist constant C1;C2 such that for all � > 0;

jfx 2 B W jb.x/�bB j> �gj � C1jBjexp.�C2�=kbk�/:

Lemma 3 ([11]). Let ! 2 A1: Then the norm of BMO.!;Rn/ is equivalent tothe norm of BMO.Rn/; where

BMO.!;Rn/D˚b W kbk�;! D sup

B�Rn

1

!.B/

ZB

jb.x/�bB;! j!.x/dx;

andbB;! D

1

!.B/

ZB

b.´/!.´/d´:

Lemma 4. Suppose ! 2 A1.Rn/;b 2 BMO.Rn/: Then for any p � 1 we have�1

!.B/

ZB

jb.x/�bB;! jp!.x/dx

�1=p� Ckbk�:

Page 6: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

874 YUE HU AND YUESHAN WANG

Proof. Since !.x/ 2 A1.Rn/; then (iii) of Lemma 1 and Lemma 2 imply

! .fx 2 B W jb.x/�bB j> �g/� C!.B/exp.�C2ı�=kbk�/:

So ZB

jb.x/�bB jp!.x/dx �

Z 10

p�p�1! .fx 2 B W jb.x/�bB j> �g/d�

� C!.B/

Z 10

p�p�1exp.�C2ı�kbk�/d�

� C!.B/kbkp� :

Thus1

!.B/

ZB

jb.x/�bB;! jp!.x/dx �

C

!.B/

ZB

jb.x/�bB jp!.x/dx � Ckbk

p� :

3. PROOF OF THEOREM 1

Let f 2 PK˛;pq .!1;!2/: Then ��˝.f / pPK˛;pq .!1;!2/

� C

1XjD�1

�!1.Bj /

�˛pn

0@ j�2XkD�1

.��˝.f�k/�j .x/ Lq.!2/1Ap

C C

1XjD�1

�!1.Bj /

�˛pn

0@ jC1XkDj�1

.��˝.f�k/�j .x/ Lq.!2/1Ap

C C

1XjD�1

�!1.Bj /

�˛pn

0@ 1XkDjC2

.��˝.f�k/�j .x/ Lq.!2/1Ap

D E1CE2CE3:

By the fact that ��˝ is a bounded operator on Lq.!2/, we get

E2 DC

1XjD�1

�!1.Bj /

�˛pn

0@ jC1XkDj�1

.��˝.f�k/�j .x/ Lq.!2/1Ap

� C

1XjD�1

�!1.Bj /

�˛pn

0@ jC1XkDj�1

f�k Lq.!2/1Ap

� Ckf kp

PK˛;pq .!1;!2/

:

Page 7: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACES 875

For any x 2Cj and y 2Ck\fy W jx�yj< tgwith j � kC2, we have t > jx�yj �jxj� jyj � jxj=2� C2jn: So

ˇ��˝.f�k/�j .x/

ˇD

Z 10

ˇZjx�yj�t

˝.x�y/

jx�yjn��fk.y/dy

ˇ2dt

t2�C1

!1=2

� C2�j.n��/kf�kkL1

�Z 1C2jn

dt

t2�C1

�1=2:

Then ˇ��˝.f�k/�j .x/

ˇD C2�jnkf�kkL1 ; (3.1)

and ��˝.f�k/�j .x/ Lq.!2/ � C2�jn!2.Bj /1=qkf�kkL1 :

By Holder’s inequality,

kf�kkL1 � Ckf�kkLq.!2/.

ZBk

!2.x/1�q0dx/1=q

0

: (3.2)

Since !2 2 Aq2.Rn/� Aq.Rn/; by (2.2) and (2.3) we get,

.

ZBk

!2.x/1�q0dx/1=q

0�ZBj

!2.x/dx�1=q

D .

ZBk

!2.x/1�q0dx/1=q

0�ZBk

!2.x/dx�1=q�!2.Bj /

!2.Bk/

�1=q� C2knC.j�k/nq2=q: (3.3)

Then, for j � kC2 we have ��˝.f�k/�j .x/ Lq.!2/ � Ckf�kkLq.!2/2.j�k/n.q2=q�1/:

Thus

E1 D C

1XjD�1

�!1.Bj /

�˛pn

0@ j�2XkD�1

��˝.f�k/�j .x/ Lq.!2/1Ap

� Ckbkp�

1XjD�1

0@ j�2XkD�1

�!1.Bj /

�˛n kf�kkLq.!2/2

.j�k/n.q2=q�1/

1Ap

� Ckbkp�

1XjD�1

0@ j�2XkD�1

.!1.Bk//˛n kf�kkLq.!2/2

.j�k/.˛q1Cq2n=q�n/

1Ap :

Page 8: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

876 YUE HU AND YUESHAN WANG

When 0 < p � 1; we get

E1 � Ckbkp�

1XkD�1

.!1.Bk//˛pn kf�kk

p

Lq.!2/

kC2XjD�1

2.j�k/p.˛q1Cq2n=q�n/

� Ckbkp�

1XkD�1

.!1.Bk//˛pn kf�kk

p

Lq.!2/

� Ckbkp�kf k

p

PK˛;pq .!1;!2/.Rn/

:

When p > 1; by Holder’s inequality we get

E1 � Ckbkp�

1XjD�1

0@ j�2XkD�1

.!1.Bk//˛pn kf�kk

p

Lq.!2/2.j�k/.˛q1Cq2n=q�n/

1A0@ j�2XkD�1

2.j�k/.˛q1Cq2n=q�n/

1Ap=p0

� Ckbkp�

1XkD�1

.!1.Bk//˛pn kf�kk

p

Lq.!2/

� Ckbkp�kf k

p

PK˛;pq .!1;!2/.Rn/

:

Let us now turn to estimate the last term E3. In the case k � j C2, for any x 2 Cjand y 2 Ck \ fy W jx � yj < tg, we have t > jx � yj � jyj � jxj � jyj=2 � C2kn:Then, similar to the estimates of (3.1),ˇ

��˝.f�k/�j .x/

ˇ� C2�knkf�kkL1 : (3.4)

So,

��˝.f�k/�j .x/ Lq.!2/ � C2�kn!2.Bj /1=qkf�kkL1 : (3.5)

By (2.2) and (2.4),

.

ZBk

!2.x/1�q0dx/1=q

0�ZBj

!2.x/dx�1=q� C2knC.j�k/ı2n=q: (3.6)

Combining with (3.2), (3.5) and (3.6), we have ��˝.f�k/�j .x/ Lq.!2/ � Ckf�kkLq.!2/2.j�k/ı2n=q

for j � k�2:

Page 9: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACES 877

When 0 < p � 1; we get

E3 � Ckbkp�

1XjD�1

!1.Bj /˛pn

1XkDjC2

kf�kkp

Lq.!2/2.j�k/pı2n=q

� Ckbkp�

1XkD�1

.!1.Bk//˛pn kf�kk

p

Lq.!2/

k�2XjD�1

�!1.Bj /

!1.Bk/

�˛pn

2.j�k/pı2n=q

� Ckbkp�

1XkD�1

.!1.Bk//˛pn kf�kk

p

Lq.!2/

k�2XjD�1

2.j�k/p.ı1˛Cı2n=q/

� Ckbkp�kf k

p

PK˛;pq .!1;!2/

:

When q > 1; by Holder’s inequality we get

E3 � Ckbkp�

1XjD�1

0@ 1XkDjC2

.!1.Bk//˛n kf�kkLq.!2/2

.j�k/.ı1˛Cı2n=q/

1Ap

� Ckbkp�

1XjD�1

0@ 1XkDjC2

.!1.Bk//˛pn kf�kk

p

Lq.!2/2.j�k/.ı1˛Cı2n=q/

1A0@ 1XkDjC2

2.j�k/.ı1˛Cı2n=q/

1Ap=p0

� Ckbkp�

1XkD�1

.!1.Bk//˛pn kf�kk

p

Lq.!2/

k�2XjD�1

2.j�k/.ı1˛Cı2n=q/

� Ckbkp�kf k

p

PK˛;pq .!1;!2/

:

Combining the above estimates for E1;E2 and E3, the proof of Theorem 1 iscompleted.

4. PROOF OF THEOREM 2

Let f 2 PK˛;pq .!1;!2/: Then

�p1X

jD�1

�!1.Bj /

�˛pn�!2.fx 2 Cj W j�

�˝.f /.x/j> �g/

�p=q

� �p1X

jD�1

�!1.Bj /

�˛pn

0@!2�nx 2 Cj W j�2XkD�1

j��˝.fk/.x/j> �=3

o�1Ap=q

Page 10: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

878 YUE HU AND YUESHAN WANG

C�p1X

jD�1

�!1.Bj /

�˛pn

0@!2�nx 2 Cj W jC1XkDj�1

j��˝.fk/.x/j> �=3

o�1Ap=q

C�p1X

jD�1

�!1.Bj /

�˛pn

0@!2�nx 2 Cj W 1XkDj�2

j��˝.fk/.x/j> �=3

o�1Ap=qD F1CF2CF3:

Applying Chebyshev’s inequality [4] and Theorem A, we obtain

F2 � C�p1X

jD�1

�!1.Bj /

�˛pn

0@ 1

�q

jC1XkDj�1

k��˝.fk/k

q

Lq.!2/

1Ap=q

� C

1XjD�1

�!1.Bj /

�˛pn

0@ jC1XkDj�1

f�k Lq.!2/1Ap

� Ckf kp

PK˛;pq .!1;!2/

:

For any x 2 Cj and y 2 Ck \fy W jx�yj< tg with j � kC2, by the inequalities(3.1), (3.2) and (3.3) we have

ˇ��˝.f�k/�j .x/

ˇ� C

�!2.Bj /

��1=q2�jnCknC.j�k/nq2=qkf�kkLq.!2/:

Noting the fact ˛q1 D n.1�q2=q/; thenˇ��˝.f�k/�j .x/

ˇ� C

�!2.Bj /

��1=q2.k�j /˛q1kf�kkLq.!2/:

Moreover, since 0 < p � 1; then for any x 2 Cj ;

j�2XkD�1

ˇ��˝.fk/.x/

ˇ� C

�!2.Bj /

��1=q �!1.Bj /

��˛=nj�2XkD�1

2.k�j /˛q1 .!1.Bk//˛n kf�kkLq.!2/

�!1.Bj /

!1.Bk/

�˛n

� C�!2.Bj /

��1=q �!1.Bj /

��˛=n j�2XkD�1

.!1.Bk//˛n kf�kkLq.!2/

Page 11: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACES 879

� C�!2.Bj /

��1=q �!1.Bj /

��˛=n0@ j�2XkD�1

.!1.Bk//˛pn kf�kk

p

Lq.!2/

1A1=p

� C�!2.Bj /

��1=q �!1.Bj /

��˛=nkf k PK˛;pq .!1;!2/

:

If nx 2 Cj W

j�2XkD�1

j��˝.fk/.x/j> �=3

oD¿;

thenF1 � Ckf k

p

PK˛;pp .!1;!2/

holds is trivially. Now we supposenx 2 Cj W

j�2XkD�1

j��˝.fk/.x/j> �=3

o¤¿:

LetSj D

�!2.Bj /

��1=q �!1.Bj /

��˛=n:

Since ˛ > 0; it is easy to see that

limj!1

Sj D 0:

Then for any � > 0; we can find a maximal positive integer j� such that

�=3� CSj�kf k PK˛;pq .!1;!2/:

So

F1 � �pj�X

jD�1

�!2.Bj /

�p=q �!1.Bj /

�˛p=n� Ckf k

p

PK˛;pp .!1;!2/

j�XjD�1

�!1.Bj /

!1.Bj�/

�˛pn�!2.Bj /

!2.Bj�/

�pq

� Ckf kp

PK˛;pp .!1;!2/

j�XjD�1

2.j�j�/.ı1˛pCı2pn=q/

� Ckf kp

PK˛;pq .!1;!2/

:

Let us now estimate F3. From (3.2), (3.4) and (3.6) we haveˇ��˝.f�k/�j .x/

ˇ� C

�!2.Bj /

��1=q2.j�k/ı2n=qkf�kkLq.!2/

Page 12: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

880 YUE HU AND YUESHAN WANG

for j � k�2: So1X

kDj�2

j��˝.fk/.x/j

� C�!2.Bj /

��1=q �!1.Bj /

��˛=n1X

kDj�2

.!1.Bk//˛=nkf�kkLq.!2/2

.j�k/ı2n=q

�!1.Bj /

!1.Bk/

�˛=n

� C�!2.Bj /

��1=q �!1.Bj /

��˛=n 1XkDj�2

.!1.Bk//˛=nkf�kkLq2

.j�k/.ı2n=qC˛ı1/

� C�!2.Bj /

��1=q �!1.Bj /

��˛=n 1XkDj�2

.!1.Bk//˛=nkf�kkLq :

Noting that 0 < p � 1; we have1X

kDj�2

j��˝.fk/.x/j

� C�!2.Bj /

��1=q �!1.Bj /

��˛=n0@ 1XkDj�2

j.!1.Bk//˛p=nkf�kk

pLq

1A1=p

� C�!2.Bj /

��1=q �!1.Bj /

��˛=nkf k PK˛;pq .!1;!2/

:

Repeating the arguments used for the term F1, we can also obtain

F3 � C PK˛;pq .!1;!2/:

Combining the above estimates for F1;F2 and F3; and taking the supremum forall � > 0; the proof of Theorem 2 is finished.

5. PROOF OF THEOREM 3

Let f 2 PK˛;pq .!1;!2/; then Œb;��˝ �.f / pPK˛;pq .!1;!2/

� C

1XjD�1

�!1.Bj /

�˛pn

0@ j�2XkD�1

.Œb;��˝ �.f�k/�j .x/ Lq.!2/1Ap

C C

1XjD�1

�!1.Bj /

�˛pn

0@ jC1XkDj�1

.Œb;��˝ �.f�k/�j .x/ Lq.!2/1Ap

Page 13: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACES 881

C C

1XjD�1

�!1.Bj /

�˛pn

0@ 1XkDjC2

.Œb;��˝ �.f�k/�j .x/ Lq.!2/1Ap

D G1CG2CG3:

By the fact that Œb;��˝ � is a bounded operator on Lq.!2/, we obtain

G2 � C

1XjD�1

�!1.Bj /

�˛pn

0@ jC1XkDj�1

f�k Lq.!2/1Ap � Ckbkp�kf kpPK˛;pq .!1;!2/

:

Obviously, Œb;��˝ �.f�k/�j .x/ Lq.!2/� C

ZCj

ˇ.b.x/�bBk /�

�˝.fk/.x/

ˇq!2.x/dx

!1=q

C C

ZCj

ˇ��˝..b.�/�bBk /fk/.x/

ˇq!2.x/dx

!1=qDH1CH2:

For the term G1; since j � kC2; by (3.1) we have

H1 D C

ZCj

ˇ.b.x/�bBk /�

�˝.fk/.x/

ˇq!2.x/dx

!1=q

� C2�jnkf�kkL1

ZBj

jb.x/�bBk jq!2.x/dx

!1=q� C2�jnkf�kkL1

��ZBj

jb.x/�bBj ;!2 jq!2.x/dx

�1=qC .jbBj �bBj ;!2 jC jbBj �bBk j/

�ZBj

!2.x/dx�1=q�

:

By Lemma 4 and the definition of BMO.Rn/, we have�ZBj

jb.x/�bBj ;!2 jq!2.x/dx

�1=q� Ckbk�.

ZBj

!2.x/dx/1=q; (5.1)

jbBj �bBj ;!2 j � Ckbk�; (5.2)

and

jbBj �bBk j � C.j �k/kbk�: (5.3)

Page 14: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

882 YUE HU AND YUESHAN WANG

From (3.2),(3.3) and (5.1)-(5.3), we get

H1 � Ckbk�kf�kkLq.!2/.j �k/2�jn.

ZBj

!2.x/dx/1=q.

ZBk

!2.x/1�q0dx/1=q

0

� Ckbk?kf�kkLq.!2/.j �k/2.j�k/n.q2=q�1/

for j � kC2:Similar to the estimate of (3.1),ˇ

��˝..b.�/�bBk /fk/.x/

ˇ� C2�jn

�ZCk

jb.´/�bBk jjf .´/jd´

�:

So ZCj

ˇ��˝..b.�/�bBk /fk/.x/

ˇq!2.x/dx

!1=q� C2�jn

�!2.Bj /

�1=q�ZCk

jb.´/�bBk jjf .´/jd´

�:

Since !2 2Aq2 ; by Lemma 1 we know that !1�q022 2Aq02

: Therefore by Lemma 4 wehave�Z

Bk

jb.x/�bBk jq0!2.x/

1�q0dx

�1=q0� Ckbk�.

ZBk

!2.x/1�q0dx/1=q

0

: (5.4)

Using Holder’s inequality , (3.3) and (5.4) we get

H2 � C2�jn

ZBk

jb.y/�bBk jjf�k.y/jdy�ZBj

!2.x/dx�1=q

� C2�jn�ZBk

jb.y/�bBk jq0!2.y/

1�q0dy

�1=q0kf�kkLq.!2/

�ZBj

!2.x/dx�1=q

� Ckbk�kf�kkLq.!2/2�jn.

ZBk

!2.x/1�q0dx/1=q

0�ZBj

!2.x/dx�1=q

� Ckbk�kf�kkLq.!2/2.j�k/n.q2=q�1/:

Summarizing the above estimates, we have that for j � kC2; Œb;��˝ �.f�k/�j .x/ Lq.!2/ � Ckbk�kf�kkLq.!2/.j �k/2.j�k/n.q2=q�1/:

(5.5)

Using (5.5) and repeating the estimation process of E1, we obtain

G1 � Ckbkp�kf k

p

PK˛;pq .!1;!2/

for 0 < p <1:

Page 15: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACES 883

Finally, let us estimate G3: Since j � k�2; by (3.4) we have

H1 D C

ZCj

ˇ.b.x/�bBk /�

�˝.fk/.x/

ˇq!2.x/dx

!1=q

� C2�knkf�kkL1

ZBj

jb.x/�bBk jq!2.x/dx

!1=q:

From (3.2),(5.1)-(5.3) and (3.6), we get

H1 � Ckbk�kf�kkLq.!2/.j �k/2�jn.

ZBj

!2.x/dx/1=q.

ZBk

!2.x/1�q0dx/1=q

0

� Ckbk?kf�kkLq.!2/.j �k/2.j�k/ı2n=q

for j � k�2:Similar to the estimate of (3.4),ˇ

��˝..b.�/�bBk /fk/.x/

ˇ� C2�kn

�ZCk

jb.´/�bBk jjf .´/jd´

�:

So ZCj

ˇ��˝..b.�/�bBk /fk/.x/

ˇq!2.x/dx

!1=q� C2�kn

�!2.Bj /

�1=q�ZCk

jb.´/�bBk jjf .´/jd´

�:

Using Holder’s inequality, (5.4) and (3.6),

H2 � C2�kn

ZBk

jb.y/�bBk jjf�k.y/jdy�ZBj

!2.x/dx�1=q

� C2�kn�ZBk

jb.y/�bBk jq0!2.y/

1�q0dy

�1=q0kf�kkLq.!2/

�ZBj

!2.x/dx�1=q

� Ckbk�kf�kkLq.!2/2�kn.

ZBk

!2.x/1�q0dx/1=q

0�ZBj

!2.x/dx�1=q

� Ckbk�kf�kkLq.!2/2.j�k/ı2n=q:

Thus Œb;��˝ �.f�k/�j .x/ Lq.!2/ � Ckbk�kf�kkLq.!2/.k�j /2.j�k/ı2n=qfor j � k�2: Repeating the estimation process of E3, we obtain

G3 � Ckbkp�kf k

p

PK˛;pq .!1;!2/

for 0 < p <1:

Page 16: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

884 YUE HU AND YUESHAN WANG

Summing up the estimates of G1;G2 and G3; it completes the proof of Theorem3.

ACKNOWLEDGEMENT

The author is very grateful to the anonymous referees and the editor for their in-sightful comments and suggestions.

REFERENCES

[1] A. Al-Salman, “On the l2-boundedness of parametric marcinkiewicz integral operator,” J. Math.Anal. Appl., vol. 375, no. 2, pp. 745–752, 2011, doi: 10.1016/j.jmaa.2010.09.062.

[2] S. Aliev and V. Guliev, “Boundedness of the parametric marcinkiewicz integral operator and itscommutators on generalized morrey spaces,” Georgian Math. J., vol. 19, no. 2, pp. 195–208, 2012.

[3] Q. Fang and X. Shi, “Estimates for parametric marcinkiewicz integrals in bmo and cam-panato spaces,” Appl. Math. J. Chinese Univ. Ser. B, vol. 26, no. 2, pp. 230–252, 2011, doi:10.1007/s11766-011-2685-7.

[4] L. Grafakos, “Classical and modern fourier analysis,” Pearson Education, Inc., Upper SaddleRiver, NJ, 2004.

[5] Y. Guo and Y. Jiang, “Weighted herz space and regularity results,” J. Funct. Spaces Appl., no.283730, p. 13, 2012.

[6] L. Hormander, “Estimates for translation invariant operators in lp spaces,” Acta Math., vol. 104,pp. 93–140, 1960, doi: 10.1007/BF02547187.

[7] F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math.,vol. 14, pp. 415–426, 1961, doi: 10.1002/cpa.3160140317.

[8] Y. Komori and K. Matsuoka, “Boundedness of several operators on weighted herz spaces,” J.Funct. Spaces Appl., vol. 7, no. 1, pp. 1–12, 2009, doi: 10.1155/2009/739134.

[9] S. Lu and D. Yang, “The decomposition of weighted herz space on Rn and its applications,” Sci.China Ser. A., vol. 38, no. 2, pp. 147–158, 1995.

[10] B. Muckenhoupt, “Weighted norm inequalities for the hardy maximal function,” Trans. Amer.Math. Soc., vol. 165, pp. 207–226, 1972, doi: 10.1090/S0002-9947-1972-0293384-6.

[11] B. Muckenhoupt and R. Wheeden, “Weighted bounded mean oscillation and the hilbert trans-form,” Studia Math., vol. 54, no. 3, pp. 221–237, 1975/76.

[12] Z. F. S Gong and B. Ma, “Weighted multilinear hardy operators on herz type spaces,” The ScientificWorld Journal, no. 420408, p. 10, 2014.

[13] K. Y. S. Lu and D. Yang, “Boundedness of some sublinear operators in weighted herz-type spaces,”Kodai Math. J., vol. 23, no. 3, pp. 391–410, 2000, doi: 10.2996/kmj/1138044267.

[14] X. Shi and Y. Jiang, “Weighted boundedness of parametric marcinkiewicz integral and higherorder commutator,” Anal. Theory Appl., vol. 25, no. 1, pp. 25–39, 2009, doi: 10.1007/s10496-009-0025-z.

[15] E. Stein, “On the functions of littlewood-paley,” Lusin and Marcinkiewicz, Trans. Amer. Math.Soc., vol. 88, pp. 430–466, 1958, doi: 10.1090/S0002-9947-1958-0112932-2.

[16] A. Torchinsky and S. Wang, “A note on the marcinkiewicz integral,” Colloq. Math., vol. 60/61,no. 2, pp. 235–243, 1990.

[17] H. Wang, “The boundedness of intrinsic square functions on the weighted herz spaces,” J. Funct.Spaces, no. 274521, p. 14, 2014.

[18] Q. X. Y. Ding and K. Yabuta, “Ba remark to the l2 boundedness of parametric marcinkiewicz in-tegral,” J. Math. Anal. Appl., vol. 387, no. 2, pp. 691–697, 2012, doi: 10.1016/j.jmaa.2011.09.020.

Page 17: PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACESmat76.mat.uni-miskolc.hu/mnotes/download_article/1308.pdf · be a homogeneous function of degree zero on Rnsatisfying (1.1),

PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACES 885

[19] Y. H. Y. Hu and Y. Wang, “The commutators of fractional integrals on generalized herz spaces,”J. Funct. Spaces, no. 428493, p. 6, 2014.

Authors’ addresses

Yue HuHenan Polytechnic University, College of Mathematics and Informatics, 454003, Jiaozuo, Henan,

ChinaE-mail address: [email protected]

Yueshan WangJiaozuo University, Department of Mathematics, 454003, Jiaozuo, Henan, ChinaE-mail address: [email protected]