Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter...

28
Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum 1,2,3 , D. Céli 1 , M. Schröter 2 , C. Maneux 3 Modeling of Systems AK Grenoble, France, March 12, 2015 1 STMicroelectronics, 38920 Crolles, France 2 CEDIC, Technische Universität Dresden, 01062 Dresden, Germany 3 IMS, Université Bordeaux I, 33405 Talence, France

Transcript of Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter...

Page 1: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Parameter extraction and enhanced

scaling laws for advanced SiGe

HBTs with HICUM Level 2

T. Rosenbaum1,2,3, D. Céli1, M. Schröter2, C. Maneux3

Modeling of Systems AK

Grenoble, France, March 12, 2015

1STMicroelectronics, 38920 Crolles, France2CEDIC, Technische Universität Dresden, 01062 Dresden, Germany3IMS, Université Bordeaux I, 33405 Talence, France

Page 2: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Outline

• Introduction & Motivation

• HICUM L2 overview

• Geometry scaling for HBTs

• Standard scaling approach (P/A)

• Transfer current scaling – 𝛾C approach

• Modeling the bias dependence of 𝛾C

• Example extraction for advanced SiGe HBTs

• Generic scaling method

• Transit time scaling

• Scaling of the internal collector resistance

• Results and Conclusion

2

Page 3: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Introduction

3

Page 4: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Introduction & motivation

• Circuit design

• Relies on accurately modeled characteristics

• DC behavior (I/V curves, e.g. collector & base current for a HBT)

- Affected by self-heating, external resistances

• AC behavior (small signal parameters vs. frequency)

- Affected by self-heating, external resistances & capacitances

non quasi-static effects

• Various kinds of circuits

• Focus on certain transistor characteristics

- e.g. mixers, power amplifiers at VHF require accurate S-parameter modeling

Modeling engineer needs to account for all eventualities

• Process engineering

• Focuses on achieving performance targets

• Targets are hard to achieve

Recent architectures are getting more complex

Modeling complexity increases

4

Page 5: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

HICUM L2 2.33 overview [1]

• Physics based compact model for BJTs/HBTs

• Targets high frequency applications and high currents

• Has been applied successfully to silicon- and III/V material-based HBTs

• Standard model available for most commercial simulators

• Large signal equivalent circuit

• Internal transistor

• Depletion charges

Transfer current

Int. base current

Int. base resistance

Transit-time charge

Avalanche

• External elements

• Ext. resistances

Ext. base current

Ext. capacitances

Substrate network

Substrate transistor

• Thermal network

[1] M. Schroter, A Chakravorty. «Compact hierarchical bipolar

transistor modeling with HICUM». World Scientific, 2010.

5

Page 6: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Geometry scaling for HBTs

6

Page 7: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Geometry scaling for HBTs

• Circuit design

• Requires different transistor sizes for

different types of applications

Necessary to perform geometry scaling

• Geometry conventions – top view

• Blue area

• Corresponds to drawn emitter area

• Red area

• Emitter area enclosed by BE-spacer

• Cross-section of typical HBT

• Consists of two transistors

• Transistor associated with area (AE0)

• Transistor associated with perimeter (PE0)

• Total transfer current

7

p mono

n+ poly E

n+ mono

n mono

BE spacer

TPTA TP

𝐼𝑇,𝑡𝑜𝑡 = 𝐽𝑇𝐴𝐴𝐸0 + 𝐽𝑇𝑃𝑃𝐸0

AE0

PE0

bsp

JTAJTP JTP

bsp

Page 8: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

-2 -1.5 -1 -0.5 0 0.5

2

2.5

3

3.5

4

VBC

(V)

CjC

i (fF

/µm

2)

meas

HICUM

-2 -1.5 -1 -0.5 0 0.50.25

0.3

0.35

0.4

0.45

0.5

0.55

VBC

(V)

CjC

x (

fF/µ

m)

meas

HICUM

Standard scaling approach (P/A)

• Example for base collector capacitance

• Measure capacitance for various transistor

widths and lengths

• Normalize on area

Offset corresponds to area component

Slope corresponds to perimeter

• Result (measurement data B55 [2])

[2] P. Chevalier et al. « A 55 nm Triple Gate Oxide 9 Metal Layers SiGe BiCMOS Technology

Featuring 320 GHz fT / 370 GHz fMAX HBT and High-Q Millimeter-Wave Passives ».

Proc. IEEE IEDM, 2014.

8

𝐶𝐵𝐶,𝑚𝑒𝑎𝑠 = 𝐶𝑗𝐶𝑖𝐴𝐸0 + 𝐶𝑗𝐶𝑥𝑃𝐸0

𝐶𝐵𝐶,𝑚𝑒𝑎𝑠/𝐴𝐸0 = 𝐶𝑗𝐶𝑖 + 𝐶𝑗𝐶𝑥𝑃𝐸0/𝐴𝐸0

8 10 12 14 16 18 20

4

6

8

10

12

14

16

PE0

/AE0

(µm)

CB

C/A

E0 (

fF/µ

m2)

VBC

Page 9: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Transfer current scaling - 𝛾C

• HICUM model description

• Consists of various elements for perimeter and area

• Capacitances, base current

• Does not feature peripheral transfer current due to various reasons

• Was not necessary up to now, as 𝛾C approach worked reasonably well

(P & A components behaved similarily)

• Would increase simulation runtime and extraction effort

• The 𝛾C approach – example on TCAD data

• Associate perimeter contribution to effective area

• Perform standard P/A scaling and calculate 𝛾C

• Usual characteristics of 𝛾C

• Bias independent up to medium current range

• For high injection, self-heating and external resistances vary for different transistor sizes

=> will cover variable 𝛾C

𝛾C approach is valid if observed function is constant for low current range

9

𝐼𝑇,𝑡𝑜𝑡 = 𝐽𝑇𝐴𝐴𝐸0 + 𝐽𝑇𝑃𝑃𝐸0𝐼𝑇,𝑡𝑜𝑡 = 𝐽𝑇𝐴 𝐴𝐸0 + 𝐽𝑇𝑃/𝐽𝑇𝐴𝑃𝐸0

𝐴𝐸,𝑒𝑓𝑓 = 𝐴𝐸0 + 𝛾𝐶𝑃𝐸0𝛾𝐶 = 𝐽𝑇𝑃/𝐽𝑇𝐴

0.3 0.4 0.5 0.6 0.7 0.8 0.9 127

29

31

33

35

VBE

(V) C

(nm

)

VBC = 0 V

Page 10: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

𝛾C approach - consistency with

capacitances• Simplified transfer current description

• Weight factor hjEi describes low current behavior

• Scaling of transfer current vs. capacitances

• Transfer current is scaled with effective emitter area

=>

• Capacitances are scaled with actual emitter dimensions

(must match AC characteristics)

Will lead to discrepancy for transfer current

• Solution

• Adjust weight factor hjEi to fulfill scaling of IT,tot

10

𝐼𝑇,𝑡𝑜𝑡 =𝑐10𝑒𝑥𝑝 𝑉𝐵𝐸𝑖/𝑉𝑇𝑄𝑝0 + ℎ𝑗𝐸𝑖𝑄𝑗𝐸𝑖

𝐼𝑇,𝑡𝑜𝑡 = 𝐽𝑇𝐴𝐴𝐸,𝑒𝑓𝑓

𝑄𝑗𝐸𝑖 = 𝑄𝑗𝐸𝑖𝐴𝐴𝐸0

𝑐10 = 𝑐10𝐴𝐴𝐸,𝑒𝑓𝑓2 𝑄𝑝0 = 𝑄𝑝0𝐴𝐴𝐸,𝑒𝑓𝑓

ℎ𝑗𝐸𝑖 = ℎ𝑗𝐸𝑖𝐴𝐴𝐸,𝑒𝑓𝑓

𝐴𝐸0

𝐼𝑇,𝑡𝑜𝑡 =𝑐10𝐴𝐴𝐸,𝑒𝑓𝑓

2𝑒𝑥𝑝 𝑉𝐵𝐸𝑖/𝑉𝑇

𝑄𝑝0𝐴𝐴𝐸,𝑒𝑓𝑓 + ℎ𝑗𝐸𝑖𝐴𝐴𝐸,𝑒𝑓𝑓𝐴𝐸0

𝑄𝑗𝐸𝑖𝐴𝐴𝐸0

= 𝐴𝐸,𝑒𝑓𝑓𝑐10𝐴𝑒𝑥𝑝 𝑉𝐵𝐸𝑖/𝑉𝑇𝑄𝑝0𝐴 + ℎ𝑗𝐸𝑖𝐴𝑄𝑗𝐸𝑖𝐴

= 𝐽𝑇𝐴𝐴𝐸,𝑒𝑓𝑓

Page 11: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

IT for recent technologies

• 𝛾C approach for measurement data (B55)

• Exhibits linear bias dependence

=> Standard 𝛾C approach not applicable

• Possible solution

• Similar behavior observed for process of IHP [3]

• Method tries to merge different bias dependence

of JTA & JTP by adjusting weight factor hjEi

• Several prerequisites

• Similar voltage dependence of QjEp & QjEi

• Similar voltage dependence of hjEi & hjEp

• Several simplifications in equations

[3] A. Pawlak et al. « Geometry scalable model parameter extraction for mm-wave

SiGe-heterojunction transistors ». Proc. IEEE BCTM, 2013.

11

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.820

25

30

35

40

VBE

(V)

C (

nm

)

P/A separation

linearization

0.4 0.5 0.6 0.7 0.810

-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

VBE

(V)

JC

a (

mA

/µm

2),

JC

p (

mA

/µm

)

JCa

JCp

𝐼𝑇,𝑡𝑜𝑡 =𝑐10𝑒𝑥𝑝 𝑉𝐵𝐸𝑖/𝑉𝑇𝑄𝑝0 + ℎ𝑗𝐸𝑖𝑄𝑗𝐸𝑖

Page 12: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.80

10

20

30

40

VBE

(V)

C (

nm

)

measurement

model

Bias dependent 𝛾C [3]

• Methodology

• Perform standard P/A separation to obtain area

and parameter components

• Run extraction for area component

• Run extraction for perimeter component

• Fix QjEp = QjEi & fix ahjEi = ahjEp

(identical voltage dependence of hjEi and hjEp and charge)

• Scaling

• Effective hjEi

• Courtesy of Didier Céli

• Identical result to [3], but HICUM L2 description

• Verification

• Run simulations for all transistors

considered in extraction

• Perform P/A separation on synthetic data

• Compare 𝛾C

Reasonable deviation, valid for low currents

12

ℎ𝑗𝐸𝑖,𝑒𝑓𝑓 = ℎ𝑗𝐸𝑖

1 + 𝛾𝐶0ℎ𝑗𝐸𝑝ℎ𝑗𝐸𝑖𝐴

𝑃𝐸0𝐴𝐸0

1 + 𝛾𝐶0𝑃𝐸0𝐴𝐸0

0.4 0.5 0.6 0.7 0.810

-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

VBE

(V)

JC

a (

mA

/µm

2),

JC

p (

mA

/µm

)

JCa,model

JCa,meas

JCp,model

JCp,meas

Page 13: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Example extraction for B55(focusing on selected characteristics)

13

Page 14: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

8 10 12 14

0.65

0.7

0.75

0.8

PE0

/AE0

(µm)

hjE

i (1

)

extraction

model

model [2][3]

A generic scaling approach

• Methodology

• Run single transistor extraction for available geometries

• Check geometry dependence of extracted parameters

• Bias dependent hjEi and ahjEi

• Weight factor hjEi

• Dotted line (blue):

approach of [3]

• Dashed line (green):

model of [3] applied to single

transistor extraction data

• Assume linear dependence

for ahjEi

• For PE0/AE0 = 0 the area value is obtained

• Verification

• Run simulations for all transistors

considered in extraction

• Perform P/A separation on synthetic data

• Compare 𝛾C

14

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.80

10

20

30

40

VBE

(V)

C (

nm

)

measurement

model

𝑎ℎ𝑗𝐸𝑖 = 𝑎ℎ𝑗𝐸𝑖0 + 𝑎𝑠𝑙𝑜𝑝𝑒𝑃𝐸0𝐴𝐸0

8 10 12 143.2

3.3

3.4

3.5

3.6

PE0

/AE0

(µm)

ahjE

i (1)

extraction

model

Page 15: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

-1 -0.5 0 0.5

6.5

7

7.5

8

8.5

VBE

(V)

CjE

i (fF

/µm

2)

meas

HICUM

-1 -0.5 0 0.5

0.16

0.18

0.2

0.22

0.24

0.26

VBE

(V)

CjE

p (

fF/µ

m)

meas

HICUM

Base emitter capacitance

• Perform standard P/A scaling

• Capacitance partitioning

• Peripheral components

• Need to be distributed

between junction- and spacer capacitance (bias independent)

• Portions cannot be distinguished from geometry variation

Perform EM simulation

• Field distribution of BE-spacer

• Geometry information can be obtained from

SEM/TEM pictures

• Structure consists of Oxide, Nitride and

(assumed) ideal contacts for Poly region

• CBEpar = 0.35 fF/µm

[4] G. Wedel. « POICAPS - A multidimensional numerical

capacitance simulator ». CEDIC internal document, 2012.

15

𝐶𝐵𝐸,𝑚𝑒𝑎𝑠

= 𝐶𝑗𝐸𝑖𝐴𝐸0 + 𝐶𝑗𝐸𝑝𝑃𝐸0+ 𝐶𝐵𝐸𝑝𝑎𝑟𝑃𝐸0

0

100

200

300

0 100 200 300

x (

nm

)

y (nm)

E

B

Oxide

Page 16: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Transit time scaling

• Scaling equation for low current transit time [6]

• Similar to description of hjEi

• Performs weighting between internal

and peripheral transit time

• Various extraction methodologies

• Usually involve circuit simulation of different transistor sizes

• Manual fine tuning of parameters

• Global optimization on selected parameters

• Alternative

• Use method of [5] for performing single transitor extraction

and use obtained parameter values for scaling

• Result using method of [5]

• τ0a and ftpi are very sensitive to

extracted values of τ0

• Variability of τ0 is very low (~7.5%)

=> Extraction method must be accurate

[5] T. Rosenbaum et al. « Automated transit time and

transfer current extraction for single transistor

geometries ». Proc. IEEE BCTM, 2013.

16

τ0 = τ0𝑎

1 + 𝑓𝑡𝑝𝑖𝛾𝐶𝑃𝐸0𝐴𝐸0

1 + 𝛾𝐶0𝑃𝐸0𝐴𝐸0

8 10 12 14

0.29

0.295

0.3

0.305

0.31

PE0

/AE0

(µm)

0 (

ps)

extraction

model

𝑓𝑡𝑝𝑖 =τ0𝑝

τ0𝑎

Page 17: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Internal collector resistance

• Modeling approach [6]

• rCi0 mainly depends on emitter area

• Current spreading

• Is taken into account by current spreading factor

• Basic idea behind current spreading model

• Linear increase of current path envelope

• Integration over 1/AC(x) leads to logarithm

[6] M. Schroter et al. « Physical modeling of lateral scaling in bipolar transistors ».

IEEE Journal of Solid-State Circuits, 1996.

17

r𝐶𝑖0 =r𝐶𝑖0𝑎𝑓𝑐𝑠𝐴𝐸

𝑓𝑐𝑠 =𝐿𝐴𝑇𝑏 − 𝐿𝐴𝑇𝑙

𝑙𝑛 1 + 𝐿𝐴𝑇𝑏 / 1 + 𝐿𝐴𝑇𝑙

𝐿𝐴𝑇𝑏 = 2𝑤𝐶𝑖 tan δ𝐶 /𝑏𝐸

𝐿𝐴𝑇𝑙 = 2𝑤𝐶𝑖 tan δ𝐶 /𝑙𝐸 0.7 0.9 1.1

12

14

16

18

20

1/AE,eff

(1/µm2)

r ci0

(

)

extraction

model

[6]

𝐴𝐶 𝑥 = 𝐴𝐸,𝑒𝑓𝑓 1 + 2tan(δ𝐶)𝑥

𝑏𝐸 • Result

• Perform optimization for rCi0a & 𝛿C

Page 18: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Results using scalable model(for selected transistors)

18

Page 19: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Assessing extraction quality

• Collector current

• Allows to identify discrepancies at high current region

• Will not help to evaluate extraction for low currents

• Normalized collector current

• Is equal to 1 for low currents

• Allows to assess bias dependent hjEi

• Normalized transconductance

• Similar to IC,norm

• Useful to identify correct modeling of medium/high current fall-off

• Transit frequency

• Allows to assess correct transit time modeling

• Useful to include measurements at VCE = const

• Shows model reliability in saturation

19

𝐼𝐶,𝑛𝑜𝑟𝑚 =𝐼𝐶

𝐼𝑆𝑒𝑥𝑝 𝑉𝐵𝐸𝑖/𝑉𝑇=

1

1 + ℎ𝑗𝐸𝑖𝑄𝑗𝐸𝑖/𝑄𝑝0

𝑔𝑚,𝑛𝑜𝑟𝑚 =𝑔𝑚𝐼𝐶

𝑉𝑇

Page 20: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Small high speed transistor

• bE0 = 100 nm, lE0 = 4.42 µm

• VBC = [-0.5 -0.25 0.0 0.25 0.5] V, VCE = [0.1 0.25 0.5 1 1.5] V

20

10-1

100

101

0

50

100

150

200

250

300

350

IC

(mA)

f T (

GH

z)

model

measurement

0.7 0.75 0.8 0.85 0.9 0.95 10

50

100

150

200

250

300

350

VBE

(V)

f T (

GH

z)

model

measurement

10-1

100

101

0

50

100

150

200

250

300

350

IC

(mA)

f T (

GH

z)

model

measurement

10-4

10-3

10-2

10-1

100

101

0

0.2

0.4

0.6

0.8

1

IC

(mA)

I C,n

orm

(1

)

model

measurement

VBC VBC

VCE

VBC

0.7 0.75 0.8 0.85 0.9 0.95 1

10-1

100

101

VBE

(V)

I C (

mA

)

model

measurement

VBC

10-1

100

101

0.1

0.3

0.5

0.7

0.9

IC

(mA)g

m,n

orm

(1

)

model

measurement

VBC

Page 21: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Large high speed transistor

• bE0 = 300 nm, lE0 = 8.92 µm

• VBC = [-0.5 -0.25 0.0 0.25 0.5] V, VCE = [0.1 0.25 0.5 1 1.5] V

21

100

101

0

50

100

150

200

250

300

350

IC

(mA)

f T (

GH

z)

model

measurement

0.7 0.75 0.8 0.85 0.9 0.95 10

50

100

150

200

250

300

350

VBE

(V)

f T (

GH

z)

model

measurement

100

101

0

50

100

150

200

250

300

350

IC

(mA)

f T (

GH

z)

model

measurement

10-3

10-2

10-1

100

101

0

0.2

0.4

0.6

0.8

1

IC

(mA)

I C,n

orm

(1

)

model

measurement

VBC VBC

VCE

VBC

0.7 0.75 0.8 0.85 0.9 0.95 1

10-1

100

101

102

VBE

(V)

I C (

mA

)

model

measurement

VBC

10-1

100

101

102

0

0.5

1

1.5

IC

(mA)g

m,n

orm

(1

)

model

measurement

VBC

Page 22: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Results overview for VBC = 0 V(for all transistors)

22

Page 23: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

10-1

100

101

0

50

100

150

200

250

300

350

IC

(mA)

f T (

GH

z)

model

measurement

wE0

Selected quantities at VBC = 0 V

• Transit frequency (VBC = 0 V)

• wE0 = [100 145 190 235 300] nm

• Collector current (VBC = 0 V)

• wE0 = [100 145 190 235 300] nm

23

100

101

0

50

100

150

200

250

300

350

IC

(mA)

f T (

GH

z)

model

measurement

wE0

0.7 0.75 0.8 0.85 0.9 0.95 1

10-1

100

101

VBE

(V)

I C (

mA

)

model

measurement

wE0

0.7 0.75 0.8 0.85 0.9 0.95 1

10-1

100

101

102

VBE

(V)

I C (

mA

)

model

measurement

wE0

lE0 = 4.42 µm lE0 = 8.92 µm

lE0 = 4.42 µm lE0 = 8.92 µm

Page 24: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

10-6

10-5

10-4

10-3

10-2

10-1

100

101

0

0.2

0.4

0.6

0.8

1

IC

(mA)

I C,n

orm

(1)

model

measurement

Selected quantities at VBC = 0 V

• Normalized collector current (VBC = 0 V)

• wE0 = [100 145 190 235 300] nm

• Normalized transconductance (VBC = 0 V)

• wE0 = [100 145 190 235 300] nm

24

10-5

10-4

10-3

10-2

10-1

100

101

0

0.2

0.4

0.6

0.8

1

IC

(mA)

I C,n

orm

(1)

model

measurement

10-2

10-1

100

101

0.1

0.3

0.5

0.7

0.9

IC

(mA)

gm

,norm

(1)

model

measurement

10-2

10-1

100

101

102

0.1

0.3

0.5

0.7

0.9

IC

(mA)

gm

,norm

(1)

model

measurement

lE0 = 4.42 µm lE0 = 8.92 µm

lE0 = 4.42 µm lE0 = 8.92 µm

wE0wE0

wE0wE0

Page 25: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Conclusion

• Introduction on geometry scaling for HBTs

• Standard scaling approach (P/A)

• Remains sufficient for Capacitance modeling

• Transfer current scaling – 𝛾C approach

• Is not suitable anymore for advanced HBTs

• Voltage dependence of area and perimeter differ too much

• Enhanced transfer current scaling

• Enables to model the bias dependence of 𝛾C(VBE) by modulating the weight factor hjEi

• Result can be enhanced by adding a linear geometry dependence for ahjEi

• Example extraction for an advanced SiGe technology [2]

• Shows excellent agreement for both bias and geometry dependence

• Bias dependent 𝛾C can be observed for normalized transfer current

• Model features single geometry scalable modelcard for all transistors

• Important conerstones for geometry dependence of fT• Proper geometry modeling of the low current transit time

and internal collector resistance

[2] P. Chevalier et al. « A 55 nm Triple Gate Oxide 9 Metal Layers SiGe BiCMOS Technology

Featuring 320 GHz fT / 370 GHz fMAX HBT and High-Q Millimeter-Wave Passives ».

Proc. IEEE IEDM, 2014.

25

Page 26: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Thank you for your attention!

26

Page 27: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

References[1] M. Schroter, A Chakravorty. «Compact hierarchical bipolar

transistor modeling with HICUM». World Scientific, 2010.

[2] P. Chevalier et al. « A 55 nm Triple Gate Oxide 9 Metal Layers SiGe BiCMOS Technology

Featuring 320 GHz fT / 370 GHz fMAX HBT and High-Q Millimeter-Wave Passives ».

Proc. IEEE IEDM, 2014.

[3] A. Pawlak et al. « Geometry scalable model parameter extraction for mm-wave

SiGe-heterojunction transistors ». Proc. IEEE BCTM, 2013.

[4] G. Wedel. « POICAPS - A multidimensional numerical

capacitance simulator ». CEDIC internal document, 2012.

[5] T. Rosenbaum et al. « Automated transit time and

transfer current extraction for single transistor

geometries ». Proc. IEEE BCTM, 2013.

[6] M. Schroter et al. « Physical modeling of lateral scaling in bipolar transistors ».

IEEE Journal of Solid-State Circuits, 1996.

27

Page 28: Parameter extraction and enhanced scaling laws for advanced … · 2015-03-20 · Parameter extraction and enhanced scaling laws for advanced SiGe HBTs with HICUM Level 2 T. Rosenbaum1,2,3,

Appendix

• Bias dependence of hjEi

• Vj is the smoothed Base emitter voltage VBEi

• Range: 0 < Vj < VDEi

28

ℎ𝑗𝐸𝑖 = ℎ𝑗𝐸𝑖0𝑒𝑥𝑝 𝑢 − 1

𝑢

𝑢 = 𝑎ℎ𝑗𝐸𝑖 1 − 1 −𝑣𝑗

𝑉𝐷𝐸𝑖

𝑧𝐸𝑖