csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer...

16
2.1 Biodiversity and Evolution Classification – Page 2 Completed 1. Watch the ‘Brainpop’ video on ‘What’s in a name?’ 2. Read 1. ‘Why we classify living things’ and answer the following: a. What is a taxon? b. Distinguish between the terms classification and taxonomy. c. Which scientist developed the binomial naming system? d. Describe the essential features of this system. e. Why was a universal system of naming organisms adopted? f. Give a general definition for a species. 3. Read 2. ‘What features are used in classification?’ Watch the pbs video Using DNA as evidence of evolution. a. Natural classification is based on homology. Explain the words in bold. b. Complete the question looking at the amino acid sequence similarity of haemoglobin in different organisms. c. Distinguish between the terms divergent (adaptive radiation is an example of this) and convergent evolution. d. Complete the questions on the fish and convergent evolution. Classification is the grouping together of organisms based on shared characteristics . The type of classification most often employed groups organisms according to evolutionary relationships (called natural or phylogenetic classification) i.e. all the organisms in a group show a range of similarities because of a

Transcript of csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer...

Page 1: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

2.1 Biodiversity and Evolution

Classification – Page 2

Completed1. Watch the ‘Brainpop’ video on ‘What’s in a name?’

2. Read 1. ‘Why we classify living things’ and answer the following:a. What is a taxon?b. Distinguish between the terms classification and

taxonomy.c. Which scientist developed the binomial naming system?d. Describe the essential features of this system.e. Why was a universal system of naming organisms

adopted?f. Give a general definition for a species.

3. Read 2. ‘What features are used in classification?’ Watch the pbs video Using DNA as evidence of evolution.a. Natural classification is based on homology. Explain the

words in bold.b. Complete the question looking at the amino acid sequence

similarity of haemoglobin in different organisms.c. Distinguish between the terms divergent (adaptive radiation

is an example of this) and convergent evolution.d. Complete the questions on the fish and convergent

evolution.

1. WHY WE CLASSIFY LIVING THINGS.

Classification is essential to biology because there are too many different living things to sort out and compare unless they are managed into manageable categories. The scheme of classification has to be flexible, enabling newly discovered organisms to be added to the scheme where they best fit. It should also be able to accommodate fossil organisms as they are discovered, since Biologists believe that living and extinct species are related.The process of classification involves:

Classification is the grouping together of organisms based on shared characteristics. The type of classification most often employed groups organisms according to evolutionary relationships (called natural or phylogenetic classification) i.e. all the organisms in a group show a range of similarities because of a shared ancestry. Classification is hierarchical and thus as the groups get smaller the members become more closely related.

Page 2: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

Giving every organism an agreed name Arrangement of organisms into groupings of apparently related organisms.

TAXONOMY

Taxonomists study the differences and similarities between organisms in order to place them into different groups, called taxa (sing. taxon). They also study and discuss which features should be taken into account. Organisms that share similar features are grouped together whereas organisms that are different will be placed into different groups. The whole of the living world is today organised into a hierarchy of ranked groups, which reflects evolutionary closeness between organisms. The science of classification is called ‘taxonomy’.

The basic unit of biological classification is the species. A species is a group of organisms, which have numerous features in common and are capable of interbreeding and producing viable offspring.

The binomial system of naming

The system of naming organisms using two names is called binomial nomenclature. ‘Bi’ means two; ‘nomial’ meaning name and ‘nomenclature’ refers to a system used to name things. The first name (a noun) in the binomial nomenclature system is always capitalized and it refers to the genus; the second name (an adjective) always begins with a small letter and refers to the species. Both are always written in italics when typed or underlined when written by hand. Most words used in binomial nomenclature are Latin or Greek in origin.

Closely related organisms have the same generic name (belong to the same genus); only their species name differs.

generic name + specific name(noun) (adjective)

Water buttercup = Ranunculus aqauticusCreeping buttercup = Ranunclulus repens

The system of naming organisms was consolidated and popularized by the Swedish naturalist Carolus Linnaeus. In his book Systema Naturae (The Natural World, 1735) he listed and explained the binomial system of nomenclature for species, which had been brought to him from all over the world.

Page 3: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

One clear advantage of the binomial nomenclature system is that scientists from all over the world working in any language can share data about a species and be sure that they are conversing about the same organism. Globally we speak a range of different languages and we will have a multitude of different names for an organism. Even when we speak the language we may have regional differences in the names we give to organisms.

What’s in a name? (reading for fun!!)By Richard Conniff

In the 1750s, the Swedish botanist Carolus Linnaeus devised a system for naming species, and zoologists have been fooling around with it ever since. There's a beetle named Agra vation and a spider named Draculoides bramstokeri. There's a fish named after Frank Zappa, a crustacean genus named for Godzilla, and a fly called Dicrotendipes thanatogratus after the Grateful Dead.

At least one entomologist named a genus of bugs after his mistress. A well-known American entomologist, who was also a bigamist, named a couple of species for his two wives. Having scientific colleagues name a new species after you can be an honor or an insult, however unintended. The genus name Dyaria was coined by an amateur lepidopterist who thought he was honoring a colleague named Dyar.

The potential for bizarre and jokey nomenclature is almost unlimited. A Smithsonian researcher estimates that there are 30 million species on earth, almost all of them insects in need of names.

2. What features are used in classification?The quickest way to classify organisms would be to do so according to obvious visual similarities. For example birds and insects could be classified together because they have wings. However, upon closer inspection it can be seen that classifying these together is superficial as they are built from different tissues and have different origins in terms of their development. Structures that have similar functions but differ in their basic structure are called analogous structures. A classification based on analogous structures would be referred to as an artificial classification.

Conversely a natural classification system is based on homologous structures, these are structures that are thought to reflect evolutionary relationships. A classification based upon evolutionary relationships is called phylogenetic.

Analogous structures Homologous structuresResemble each other in function Are similar in position and development

but not necessarily functionDiffer in their structure Are similar in basic structureIllustrate only superficial similarities Similar due to common ancestry

e.g. the wings of birds and insects e.g. the limbs of vertebrates, which appear to be modifications of an ancestral five-fingered pentadactyl limb

The system of naming organisms was consolidated and popularized by the Swedish naturalist Carolus Linnaeus. In his book Systema Naturae (The Natural World, 1735) he listed and explained the binomial system of nomenclature for species, which had been brought to him from all over the world.

Page 4: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

Today similarities and difference in the biochemistry of organisms, as well as structural features have become important in taxonomy. The composition of nucleic acids and cell proteins indicates a degree of relatedness between organisms, arguably more precisely than structural features. Organisms, which have a closer evolutionary relationship, show fewer differences in the composition of specific nucleic acids and cell proteins that they possess.

DNA and protein analysis can reduce the mistakes made due to convergent evolution (the tendency of unrelated organisms to acquire similar structures).

DNA hybridization is the technique that involves the extraction and comparison of the DNA sequences of two different species. The sequence of amino acids in a protein is determined by DNA, therefore the more similar the sequence the more similar the protein will be between species.

Variations in protein molecules – looking at variations in the sequence of amino acidsThe β chain of haemoglobin, which is built from 146 amino acids, shows variation in the sequence of amino acids in different species that share this molecule. The longer it is since two different species diverged from a common ancestor, the more likely it is that differences will have arisen.

Table 1 summarises the similarities and differences in haemoglobin between 8 species

Page 5: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

The top number in each cell is the number of positions on the molecule where the two species have identical amino acids. The lower number is the % of positions with identical amino acids.Complete the table (look at the information on the next 2 pages) by filling in the blank cells. First, count the number of positions where the two species have identical amino acids. Second, calculate the % similarity using the formula below:

% Similarity = 100 X number of identical positions / 147Compare your calculations with you peers. Why do you think that computers are almost always used to construct these comparison tables?

Page 6: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms
Page 7: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

The proteins of different species can also be compared using immunological techniques. The principal relies on the antibodies of one species will respond to specific proteins in the blood serum of another. Injecting human blood serum into rabbits forms antibodies against human blood serum. When rabbit antibodies are mixed with human blood a precipitate is formed. By comparing the amount of precipitate formed when the antihuman antibodies react with a foreign blood serum hints at biological relatedness - the greater the reaction, the closer the supposed relationship.Man versus Man: 100%Man versus Chimpanzee: 97%Man versus Baboon: 50% Man versus the dog: 0%

Convergent Evolution

Page 8: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

Summary:

Page 9: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

Classification :

Grouping organisms based on their evolutionary relationships

Taxonomy – branch of Biology concerned with naming and classifying life forms

Looks at:

physical features

biochemical features (DNA ‘genetic fingerprinting’ and enzyme studies)

Is dynamic and changes

with expanding knowledge about organisms

with differences of opinion about whether morphology or genetics are more central for the basis of classification

Page 10: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

Ways:

Binomial Nomenclature - Two part name (Genus & species names in italics or underlines if written) ex: Panthera tigris

Hierarchical Classification –ranks groups in ascending order from large to small groups - Seven Taxonomic Categories (Kingdom, Phylum, Class, Order Family, Genus, Species)

Phylogenetic - study of the evolutionary relationship between organisms -usually uses a phylogenetic tree diagram with the oldest species at the base and more recent ones on the branches

Ex: simple phylogenetic tree (shows evolutionary relationship)

Ex: cladogram (similar but based on common traits) (often both terms are used interchangeably)

Page 11: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

Mammals Turtles Lizards and Crocodiles Birds Snakes

Phylogenetic Tree

Closely related species:

recognised by:

their similar morphology (eg: the homology of the pentadactyl limb in the four classes of terrestrial vertebrates)

Biochemical methods

Looks at the proportion of genes or proteins shared between species to estimate relatedness (uses a process called gel electrophoresis that shows bands on a gel which can be looked at to see if they have the same proteins/genes)

Biochemical methods can reduce the mistakes made in classification due to convergent evolution.

Page 12: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

Homologous V. Analogous:

Homology - traits inherited by two different organisms from a common ancestor

Analogy - similarity due to convergent evolution, not common ancestry Homologous:

Ex: pentadactyl limbs

Analogous- organisms evolve a similar characteristic independently of one another. This often occurs because both lineages face similar environmental challenges and selective pressures.

Ex: Wings in birds and insects Fins in sharks and dolphins

Simple observation tells us that these limbs are probably not homologous because they have such different structure

Page 13: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms

Sharks Dolphins

skeleton made of cartilage

use gills to get oxygen from the water in which they swim

don't nurse their young

don't have hair

skeleton made of bone

go to the surface and breathe atmospheric air in through their blowholes

do nurse their young

do have hair — they are born with hair around their "noses"

Page 14: csfcbiology.wikispaces.compage+2.docx  · Web view‘Why we classify living things’ and answer the following: ... Organisms that share similar features are ... Analogous- organisms