P I V P I V P == = V Design Equations—Commonly …...Op Amp Noise for Single-Pole System...

1
Op Amp Noise for Single-Pole System CLOSED- LOOP BW = f CL B A V N, R1 R1 R3 4kTR3 4kTR1 V N, R3 I N+ I N– V N 4kTR2 V N, R2 R2 NOISE GAIN = GAIN FROM “A” TO OUTPUT = NG = 1 + R2 R1 V OUT GAIN FROM “B” TO OUTPUT = – R2 R1 RTI NOISE = TOTAL BW × V N 2 + 4kTR3 + 4kTR1 R2 R1 + R2 2 + I N+ 2 R3 2 + I N– 2 R1 × R2 R1 + R2 2 + 4kTR2 R 1 R1 + R2 2 RTO NOISE = NG × RTI NOISE RTI = REFER TO INPUT RTO = REFER TO OUTPUT BW = 1.57 f CL Decibel (dB) Formulas (Equal Impedances) db = 10 Log = 20 Log P OUT P IN V OUT V IN = 20 Log (Gain) I OUT I IN Sinusoidal Voltages and Currents RMS = Root Mean Square = Effective V = 0.707 V = V V RMS = 0.707 V PEAK = V EFF V AVE = 0.637 V PEAK V EFF = 1.11 V AVE V PEAK = 1.57 V AVE V AVE = 0.9 V EFF Ohm’s Law (DC Circuits) P VI IR PR I P I 2 P P V 2 I V R P V P R V R V 2 I 2 R P I V R RESISTANCE () 10,000 1000 10 1 0 10 1k 100k 10M 100 10k 1M 100M 100 e n at 25°C nV Hz where: V R = resistor Johnson Noise spectral density k = Boltzmann’s constant (1.38 × 10 –23 J/K) T = absolute temperature in Kelvin R = resistance in Ohms B = bandwidth in Hz = 4kTRB V R At 25°C, 4kT = 1.65 × 10 –20 W/Hz, therefore, V R = 1.65 × 10 –20 RB Resistor Johnson Noise Formula GAIN (dB) 6dB/OCTAVE ROLL-OFF LOOP GAIN, A A(S), OPEN-LOOP GAIN CLOSED- LOOP GAIN 1 NOISE GAIN, CLOSED-LOOP BANDWITH LOG FREQUENCY (HZ) Closed-Loop Frequency Response for Voltage Feedback Amplifiers Resistors in Parallel/Capacitors in Series Two Resistors in Parallel Equal Resistors in Parallel 1 + 1 + 1 + R 1 R 2 R 3 1 R TOTAL = 1 + 1 + 1 + C 1 C 2 C 3 1 C TOTAL = / R 1 +R 2 R 1 R 2 R TOTAL = Where R is the value of one of the equal resistors, and N is the number of equal resistors N R R TOTAL = Impedance Formulas (Series) Z = R 2 + X L 2 (Series RL) Z = R 2 + X C 2 (Series RC) Z = X L – X C (Series LC) Z = R 2 + (X L – X C ) 2 (Series RLC) Z = V A I Voltage and Impedance Formulas (Parallel) Z = RX L (RL) Z = V A R 2 + X L 2 I LINE Z = RX C (RC) V A = V L = V C = V R R 2 + X C 2 Z = X L X C (LC) V A = I LINE Z X L X C Z = RX (RLC) R 2 + X 2 Reactance Formulas X C = X L = 2π fL fC 1 Transformers (Step-Up or Step-Down Ratios) = = = N P N S E P E S I S I P Z P Z S Common Capacitor Values pF pF pF pF µF µF µF µF µF µF µF 1.0 10 100 1000 0.01 0.1 1.0 10 100 1000 10,000 1.1 11 110 1100 1.2 12 120 1200 1.3 13 130 1300 1.5 15 150 1500 0.015 0.15 1.5 15 150 1500 1.6 16 160 1600 1.8 18 180 1800 2.0 20 200 2000 2.2 22 220 2200 0.022 0.22 2.2 22 220 2200 2.4 24 240 2400 2.7 27 270 2700 3.0 30 300 3000 3.3 33 330 3300 0.033 0.33 3.3 33 330 3300 3.6 36 360 3600 3.9 39 390 3900 4.3 43 430 4300 4.7 47 470 4700 0.047 0.47 4.7 47 470 4700 5.1 51 510 5100 5.6 56 560 5600 6.2 62 620 6200 6.8 68 680 6800 0.068 0.68 6.8 68 680 6800 7.5 75 750 7500 8.2 82 820 8200 9.1 91 910 9100 Common 1% Resistor Values 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.0 13.3 13.7 14.0 14.3 14.7 15.0 15.4 15.8 16.2 16.5 16.9 17.4 17.8 18.2 18.7 19.1 19.6 20.0 20.5 21.0 21.5 22.1 22.6 23.2 23.7 24.3 24.9 25.5 26.1 26.7 27.4 28.0 28.7 29.4 30.1 30.9 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2 42.2 43.2 44.2 45.3 46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0 60.4 61.9 63.4 64.9 66.5 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9 93.1 95.3 97.6 Design Equations—Commonly Used Amplifier Configurations V OUT = V IN V OUT V IN BUFFER HIGH IMPEDANCE SOURCE TO LOW RESISTANCE LOAD Voltage Follower Noninverting Op Amp Inverting Op Amp AMPLIFY AND INVERT INPUT V IN R G R F V OUT V A V B R 1 R 1 R 2 V OUT R 2 V CM Voltage Subtractor/ Difference Amplifier R AMPLIFY THE DIFFERENCE BETWEEN TWO VOLTAGES, REJECT COMMON-MODE VOLTAGE SUM MULTIPLE VOLTAGES Voltage Adder V A V C V B V OUT R 1 R 2 R 3 R F V N R N Low-Pass Filter/Integrator LIMIT BANDWIDTH OF SIGNAL V IN V OUT R 1 C R F t = RC = R F C V OUT = V IN –R F 1 R 1 R F CS + 1 High-Pass Filter/Differentiator BLOCK DC, AMPLIFY AC C IN R IN V OUT V IN R F V OUT = V IN –R F R IN C IN S R IN R IN C IN S + 1 Differential Amplifier R F R F R G R G V OUT+ V OUT diff = R F V IN R G V OUT– V OCM V IN– V IN+ V OUT cm =V OCM DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL, REJECT COMMON-MODE SIGNAL Instrumentation Amplifier V OUT R G R1' R1 R2' R2 R3 R3' + + + V OUT =V SIG 1 + 2R1 R G R3 R2 IF R2 = R3, G = 1 + 2R1 R G ~ ~ ~ ~ ~ ~ V CM + + V SIG 2 V SIG 2 A1 A2 A3 Resistors in Series/Capacitors in Parallel R TOTAL = R 1 + R 2 + R 3 + … / C TOTAL = C 1 + C 2 + C 3 + 1% standard values decade multiples are available from 10.0 through 1.00 M(also 1.10 M, 1.20 M, 1.30 M, 1.50 M, 1.60 M, 1.80 M, 2.00 M, and 2.20 M). Standard base resistor values are given in the following table for the most commonly used tolerance (1%), along with typically available resistance ranges. To determine values other than the base, multiply the base value by 10, 100, 1000, or 10,000.

Transcript of P I V P I V P == = V Design Equations—Commonly …...Op Amp Noise for Single-Pole System...

Page 1: P I V P I V P == = V Design Equations—Commonly …...Op Amp Noise for Single-Pole System Closed-Loop Frequency Response for Voltage Feedback Amplifiers Resistor Johnson Noise Formula

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE =

TOTAL

BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOP GAIN,A

A(S),OPEN-LOOP

GAIN

CLOSED-LOOP GAIN

1

NOISE GAIN,

CLOSED-LOOP BANDWITH

LOG FREQUENCY (HZ)

RESISTANCE ()

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE =

TOTAL

BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOP GAIN,A

A(S),OPEN-LOOP

GAIN

CLOSED-LOOP GAIN

1

NOISE GAIN,

CLOSED-LOOP BANDWITH

LOG FREQUENCY (HZ)

RESISTANCE ()

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R √P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE =

TOTAL

BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOP GAIN,A

A(S),OPEN-LOOP

GAIN

CLOSED-LOOP GAIN

1

NOISE GAIN,

CLOSED-LOOP BANDWITH

LOG FREQUENCY (HZ)

RESISTANCE ()

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE =

TOTAL

BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOP GAIN,A

A(S),OPEN-LOOP

GAIN

CLOSED-LOOP GAIN

1

NOISE GAIN,

CLOSED-LOOP BANDWITH

LOG FREQUENCY (HZ)

RESISTANCE ()

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE =

TOTAL

BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOP GAIN,A

A(S),OPEN-LOOP

GAIN

CLOSED-LOOP GAIN

1

NOISE GAIN,

CLOSED-LOOP BANDWITH

LOG FREQUENCY (HZ)

RESISTANCE ()

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

Op Amp Noise for Single-Pole System Closed-Loop Frequency Responsefor Voltage Feedback Amplifiers

Resistor Johnson Noise Formula

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE =

TOTAL

BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = REFER TO INPUTRTO = REFER TO OUTPUT

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOP GAIN,A

A(S),OPEN-LOOP

GAIN

CLOSED-LOOP GAIN

1

NOISE GAIN,

CLOSED-LOOP BANDWITH

LOG FREQUENCY (HZ)

RESISTANCE ()

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

where:

VR = resistor Johnson Noise spectral density

k = Boltzmann’s constant (1.38 × 10–23 J/K)

T = absolute temperature in Kelvin

R = resistance in Ohms

B = bandwidth in Hz

= 4kTRBVR

At 25°C, 4kT = 1.65 × 10–20 W/Hz, therefore, VR = 1.65 × 10–20RB

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

Common Capacitor Values

pF pF pF pF µF µF µF µF µF µF µF1.0 10 100 1000 0.01 0.1 1.0 10 100 1000 10,0001.1 11 110 11001.2 12 120 12001.3 13 130 13001.5 15 150 1500 0.015 0.15 1.5 15 150 15001.6 16 160 16001.8 18 180 18002.0 20 200 20002.2 22 220 2200 0.022 0.22 2.2 22 220 22002.4 24 240 24002.7 27 270 27003.0 30 300 30003.3 33 330 3300 0.033 0.33 3.3 33 330 33003.6 36 360 36003.9 39 390 39004.3 43 430 43004.7 47 470 4700 0.047 0.47 4.7 47 470 47005.1 51 510 51005.6 56 560 56006.2 62 620 62006.8 68 680 6800 0.068 0.68 6.8 68 680 68007.5 75 750 75008.2 82 820 82009.1 91 910 9100

Common 1% Resistor Values

10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.013.3 13.7 14.0 14.3 14.7 15.0 15.4 15.8 16.2 16.5 16.9 17.417.8 18.2 18.7 19.1 19.6 20.0 20.5 21.0 21.5 22.1 22.6 23.223.7 24.3 24.9 25.5 26.1 26.7 27.4 28.0 28.7 29.4 30.1 30.931.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.242.2 43.2 44.2 45.3 46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.956.2 57.6 59.0 60.4 61.9 63.4 64.9 66.5 68.1 69.8 71.5 73.275.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9 93.1 95.3 97.6

Design Equations—Commonly Used Amplifier Configurations

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

VOUT = VIN

VOUTVIN

BUFFER HIGH IMPEDANCE SOURCETO LOW RESISTANCE LOAD

Voltage Follower

VIN

RG RF

VOUT

AMPLIFY AND INVERT INPUT

Inverting Op AmpNoninverting Op Amp

AMPLIFY THE DIFFERENCEBETWEEN TWO VOLTAGES,

REJECT COMMON-MODE VOLTAGE

Voltage Subtractor/Difference Amplifier

VA

VBR1

R1

R2

VOUT

R2

VCM

SUM MULTIPLE VOLTAGES

Voltage Adder Low-Pass Filter/Integrator

LIMIT BANDWIDTH OF SIGNAL

High-Pass Filter/Differentiator Differential Amplifier Instrumentation Amplifier

DRIVE A DIFFERENTIAL INPUT ADC FROM A DIFFERENTIAL OR SINGLE-ENDED SOURCE

AMPLIFY LOW LEVEL DIFFERENTIAL SIGNAL,REJECT COMMON-MODE SIGNAL

RF

RF

RG

RG

VOUT+

VOUTdiff = RF VIN

RG

VOUT–

VOCM

–VIN

+VIN

VREF

OUT

10k

10k

24.7k

10k

10k

RGVCM

VOUT = 1 + 2 × 24.7k VIN + VREF RG

BLOCK DC, AMPLIFY AC

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF 1

R1 RFCS + 1

CIN

RIN

VOUTVIN VIN–

VIN+

RF

VOUT = VIN

–RF RINCINS

RIN

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2 R3

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

RINCINS + 1

VOUTcm =VOCM

√P

Decibel (dB) Formulas (Equal Impedances)

db = 10 Log = 20 LogPOUT

PIN

VOUT

VIN

= 20 Log (Gain) IOUT

IIN

Transformers(Step-Up or Step-Down Ratios)

Sinusoidal Voltages and CurrentsRMS = Root Mean Square = Effective

VRMS = 0.707 VPEAK = VEFF VAVE = 0.637 VPEAK VEFF = 1.11 VAVE VPEAK = 1.57 VAVE VAVE = 0.9 VEFF

Ohm’s Law (DC Circuits)

Resistors in Series/Capacitors in ParallelRTOTAL = R1 + R2 + R3 + … / CTOTAL = C1 + C2 + C3 + …

Resistors in Parallel/Capacitors in Series

Two Resistors in Parallel

Equal Resistors in Parallel

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

1 + 1 + 1 + …C1 C2 C3

1CTOTAL =/

R1+R2

R1 R2RTOTAL =

Where R is the value of one of the equal resistors, and N is the number of equal resistors

NRRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

RP

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

Reactance Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

Impedance Formulas (Series)

Z = √R2 + XL2 (Series RL)

Z = √R2 + XC2 (Series RC)

Z = XL – XC (Series LC)

Z = √R2 + (XL – XC)2 (Series RLC)

Z = VA I

Voltage and Impedance Formulas (Parallel)

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

1% standard values decade multiples are available from 10.0 Ω through 1.00 MΩ (also 1.10 MΩ, 1.20 MΩ, 1.30 MΩ, 1.50 MΩ, 1.60 MΩ, 1.80 MΩ, 2.00 MΩ, and 2.20 MΩ).

Standard base resistor values are given in the following table for the most commonly used tolerance (1%), along with typically available resistance ranges. To determine values other than the base, multiply the base value by 10, 100, 1000, or 10,000.