OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational...

36
OVERVIEW I Introduction II. Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and the Primordial Helium Abundance IV.Pagel´s method to derive the O/H ratio in galaxies V.Chemical Evolution of the Galaxy: C,O, and N Gradients

Transcript of OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational...

Page 1: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

OVERVIEWI IntroductionII. Observational constraints based on H II Regions and Planetary NebulaeIII.Big-Bang Nucleosynthesis and the Primordial Helium AbundanceIV.Pagel´s method to derive the O/H ratio in galaxiesV.Chemical Evolution of the Galaxy: C,O, and N Gradients

Page 2: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

M. PeimbertInstituto de Astronomía, UNAM

Tonantzintla, August 2005

III. Big bang nucleosynthesisand the primordial helium

abundance

Page 3: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Antonio Peimbert (IA-UNAM, México)Valentina Luridiana (IA de Andalucía)Ma. Teresa Ruiz (Universidad de Chile)

Fernando Fabian Rosales Ortega Elena Terlevich

Roberto Terlevich

Page 4: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Y

106O/H

0.00

0.20

0.40

0.60

0.80

1.00

0 100 200 300

Steigman 2002

Primordial Helium Production

Page 5: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

S. Weinberg, The first threeminutes

If the barionic density increases theexpansion velocity increases > theUniverse gets colder earlier > nucleosynthesis starts earlier > a largerfraction of neutrons is available > and a larger fraction of helium atoms isproduced

Page 6: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and
Page 7: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Primordial Nucleosynthesis

The results depend onthe baryonic mass

of the Universe

Page 8: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Peimbert, Peimbert, & Luridiana 2002

Big BangNucleosynthesisandBaryonicContent of theUniverse

Page 9: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Steigman 2002

Neutrino families vs. DP and YP

Page 10: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Outline

1. Underlying Absorption2. Ionization Structure3. Temperature Structure4. Density Structure5. Collisional Excitation6. Optical Depth of the He I triplet lines7. ∆ Y / ∆ O

Page 11: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Underlying Absorption in H ILines

Peimbert, Peimbert, & Ruiz 2000

Region of NGC 346 (H II Region in the SMC)

Fraction Avoidingthe O & B Stars

WholeSlit

Page 12: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Ionization Structure

1) Density Bounded

He He0+He++He++

H H0+H+

H+, He+

=

He He++He++

H H+=

Page 13: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

H+, He+

H+, He+

H+, He0

H0, He+

He He0+He+

H H+

2a) T* ≲ 40 000 K

2b) T* ≳ 40 000 K

2) Ionization Bounded

He He++He++

H H0+H+

=

=

Y underestimated

Y overestimated

Page 14: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Temperature Structure

Te(4363/5007) = T0 [1 + (90800/T0 -3) t 2/2]

Te(Bac/Hβ) = T0 (1 – 1.70 t 2)

Te(4649/5007) = f1 (T0 , t 2)

T0 =

t 2 =

∫ Te Ne Ni dV∫ Ne Ni dV

∫ (Te - T0)2 Ne Ni dVT0

2 ∫ Ne Ni dV

Page 15: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Peimbert 2003

30 Dor

Balmer Continuum in EmissionT(Bac) < T([O III])

Page 16: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Peimbert, Peimbert, & Luridiana 2002

Effect of the Temperature Structureon the T(He II) / T(O III) value

Page 17: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Primordial Helium

Peimbert, Peimbert, & Luridiana, 2002

Page 18: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Density Structure

Density Diagnostic[S II]

[Fe III][Cl III][Ar IV]

f i (He+/H+, T0 , t 2, τ3889)

Volume Fraction~ 5%~ 15%~ 85%~ 5%~ 98%

Page 19: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Collisional Excitation of the He Ilines

He+ I(6678)H+ I(Hβ)

= 2.58 t 0.249 – 2.0 10�� n

He+ I(4471)H+ I(Hβ)

= 2.01 t 0.127 – 4.1 10�� n

He+ I(5876)H+ I(Hβ)

= 0.735 t 0.230 – 6.3 10�� n

t =10-4 Te K; n = electron density

Benjamin, Skillman, & Smits 1999

Page 20: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Collisional Excitation of the H I lines

Davidson & Kinman (1985).Stasinska & Izotov (2001).Peimbert, Peimbert, & Luridiana (2003).

•This is the least studied problem related to the YP determination.•It requires tailor-made models for each object.•Notice that simple photoionization models predictelectron temperatures smaller than observed.•It is extremely sensitive to temperature.•It is very important for objects with Te > 16000K.•It is negligible for objects with Te < 12000K.

I(Hβ)2-6%1-3%

0.5-1%

Te18 000 K15 000 K12 000 K

Page 21: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Optical Depth of the He I triplet lines

2 3S

2 3P

3 3D

3 3S

4 3S4 3D

λ10830

λ7065

λ4713

λ3889

λ4471λ3188

λ5876

•Singlets are not affected

•Triplets have 3 times more photons

•Taken together there are 4 times the photons + twice the number ofindependent measurements

Page 22: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

•Computations for spherical geometry were carried out by Benjamin, Skillman, & Smits (2002).

•Real objects are not spherically symmetric; for largeτ3889 there can be large discrepancies.

•These authors recommend not to use theircomputations for τ3889 > 2.

•For objects with large optical depth the τ3889 derived from 7065/6678 is more representative for 4471 and 5876 than the τ3889 derived from 3889/6678.

Page 23: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

∆ Y / ∆ O

3.5±0.63.5±1.0Peimbert (2002). . .2.7±1.2Izotov & Thuan (1998). . .4.5±1.0Carigi et al. (1995)

The GalaxyIrregularsObservations

2.9 - 4.6. . .Carigi (2000). . .4.2Carigi et al. (1999)3.15. . .Chiappini et al. (1997). . .2.95Carigi et al. (1995)

The GalaxyIrregularsTheory

∆Y/∆O = 3.5 ± 0.9YP = Y - O(∆Y/∆O)

Irregulars: closed box models and outflow models of well mixedmaterial. For O-rich outflows the models enter in contradiction withobserved C/O values.

Galaxy: two infall models with an inside-out formation scenario

Page 24: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

∆ Y / ∆ O

. . .5.7 ± 1.8Izotov & Thuan (2004)

3.57 ± 0.67 2.93 ± 0.85Peimbert (2003)

. . .4.3 ± 0.7Izotov & Thuan (2004)

The GalaxyIrregularsObservations

Page 25: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Peimbert 2003

30 Doradus

O II Recombination LinesN(O++, t2>0)FL = N(O++)RL > N(O++, t2=0)FL

Page 26: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Steigman: from Peimbert 2003

SMC, LMC & M17

Page 27: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and
Page 28: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

NOAO

M17

Page 29: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Summary

1. Underlying Absorption in H I Lines2. Underlying Absorption in He I Lines3. He I and H I Line Intensities4. Ionization Structure5. Temperature Structure6. Density Structure7. Collisional Excitation of the He I lines8. Collisional Excitation of the H I lines9. Optical Depth of the He I triplet lines10. He I and H I Atomic Parameters11. ∆ Y / ∆ O

Page 30: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Error Budget*

1. Underlying Absorption in H I Lines2. Underlying Absorption in He I Lines3. He I and H I Line Intensities4. Ionization Structure5. Temperature Structure6. Density Structure7. Collisional Excitation of the He I Lines8. Collisional Excitation of the H I Lines9. Optical Depth of the He I Triplet Lines10. He I and H I Atomic Parameters11. ∆ Y / ∆ O

5725

1510 7

203

1510

-50+70

212

-6045

-90+50

10 3015

* In 1/10,000 of mass fraction

StatisticalIgnoringthis effect

Page 31: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Primordial Value

YP = 0.2452 ± 0.0015 ± 0.0070 (1999) IzotovYP = 0.2391 ± 0.0020 ± 0.0045? (2003) Luridiana

YP = 0.2421 ± 0.0021 ± 0.0045? (2004) Izotov

YP = 0.249 ± 0.009 ± 0.0045? (2004) Olive & Skillman

YP = 0.243 ± 0.004 ± 0.0045? (2004) Rosales

WMAP, YP = 0.2484 ±0.0005 (2003)

Page 32: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

SuggestionsBright ObjectsLow Stellar ContinuumHigh Degree of IonizationLow Optical DepthLow Density16000 KTailor-made Models For Each ObjectSimple Photoionization Models DO NOT reproduce the Observed Temperatures

Page 33: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Summary III

For O poor H II regions the models by CLOUDY predict 4363/5007 temperatures smaller thanobserved, this indicates the presence ofadditional heating sources not considered by CLOUDY.

The presence of a typical t2 value reduces Yp by about 0.007. For example from 0.250 to 0.243.

Page 34: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

Primordial Value

YP = 0.2452 ± 0.0015 ± 0.0070 (1999)

YP = 0.2391 ± 0.0020 ± 0.0045? (2003)

YP = 0.2??? ± 0.0020 ± 0.0010 (2006?)

Page 35: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and

The end

Page 36: OVERVIEW - INAOEisya28/lecciones/manuel_3.pdf · OVERVIEW I Introduction II.Observational constraints based on H II Regions and Planetary Nebulae III.Big-Bang Nucleosynthesis and