Overheads Lecture Chapter 7

57
Chapter 7  Degenerate Perturbation Theory Chapter 7 – p.1/ ?

Transcript of Overheads Lecture Chapter 7

Page 1: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 1/57

Chapter 7

Degenerate Perturbation Theory

Chapter 7 – p.1/ ?

Page 2: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 2/57

Degenerate Perturbation Theory

The non-degenerate perturbation theory discussed in chapter 6 breaks down whenwe have degenerate energy levels E 01 = E 02 .

Note also that the results of 2nd order non-degenerate perturbation theory assume|V np | << E 0

p − E 0n so there is a problem if the spacing between levels is smallcompared to the perturbing matrix element.

| φ1

n = p p= n

φ0 p | V | φ0

n

E 0n − E 0 p | φ0

p (6 .15)

E 2n = − p

p= n

φ0

p |ˆV | φ

0

n

2

E 0 p − E 0n(6 .19)

Chapter 7 – p.2/ ?

Page 3: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 3/57

The Degeneracy Problem

Suppose an eigenvalue E 0n of the unperturbed Hamiltonian H 0 is s -fold degenerate.

Chapter 7 – p.3/ ?

Page 4: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 4/57

The Degeneracy Problem

Suppose an eigenvalue E 0n of the unperturbed Hamiltonian H 0 is s -fold degenerate.

There are |u 0nα , (α = 1 , 2 · · · , s ) linearly independent orthonormal eigenfunctions

belonging to this eigenvalue,

u 0nα | u 0

nβ = δαβ , with α, β = 1 , · · · , s (7.1)

and any linear combination of these eigenfunctions is also an eigenfunction of H 0 .

Chapter 7 – p.3/ ?

Page 5: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 5/57

The Degeneracy Problem

Suppose an eigenvalue E 0n of the unperturbed Hamiltonian H 0 is s -fold degenerate.

There are |u 0nα , (α = 1 , 2 · · · , s ) linearly independent orthonormal eigenfunctions

belonging to this eigenvalue,

u 0nα | u 0

nβ = δαβ , with α, β = 1 , · · · , s (7.1)

and any linear combination of these eigenfunctions is also an eigenfunction of H 0 .

So the zero-order states that we want to use in the PT expansions are not uniquelydened.

Chapter 7 – p.3/ ?

Page 6: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 6/57

The Degeneracy Problem

Suppose an eigenvalue E 0n of the unperturbed Hamiltonian H 0 is s -fold degenerate.

There are |u 0nα , (α = 1 , 2 · · · , s ) linearly independent orthonormal eigenfunctions

belonging to this eigenvalue,

u 0nα | u 0

nβ = δαβ , with α, β = 1 , · · · , s (7.1)

and any linear combination of these eigenfunctions is also an eigenfunction of H 0 .

We must therefore nd s normed states

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

where the ciα are constant coefcients which are the correct linear combinations forPT, i.e. they produce reasonable perturbation expansions.

Chapter 7 – p.3/ ?

Page 7: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 7/57

The Degeneracy Problem

That is we look for

E ni = E 0n + βE 1ni + β 2 E 2ni + β 3 E 3ni + · · · (7 .3)

and

| ψni = | φ0ni + β | φ

1ni + β

2

| φ2ni + β

3

| φ3ni + · · · (7 .4)

Chapter 7 – p.4/ ?

Page 8: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 8/57

The Degeneracy Problem

That is we look for

E ni = E 0n + βE 1ni + β 2 E 2ni + β 3 E 3ni + · · · (7 .3)

and

| ψni = | φ0ni + β | φ

1ni + β

2

| φ2ni + β

3

| φ3ni + · · · (7 .4)

withH | ψni = E ni | ψni all for i = 1 , · · · , s (7.5)

The states | ψni with i = 1 , 2 · · · , s will ideally have different energies E ni .

Chapter 7 – p.4/ ?

Page 9: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 9/57

The Degeneracy Problem

That is we look for

E ni = E 0n + βE 1ni + β 2 E 2ni + β 3 E 3ni + · · · (7 .3)

and

| ψni = | φ0ni + β | φ

1ni + β

2

| φ2ni + β

3

| φ3ni + · · · (7 .4)

withH | ψni = E ni | ψni all for i = 1 , · · · , s (7.5)

The states | ψni with i = 1 , 2 · · · , s will ideally have different energies E ni .

i.e. the perturbation, V , will either lift the degeneracy of the s -fold degenerate levels or

in some cases V may just shift the level E 0

n .

Chapter 7 – p.4/ ?

Page 10: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 10/57

The Degeneracy Problem

| φ1n = p

p= n

φ0

p |ˆV | φ

0

nE 0n − E 0 p

| φ0 p (6 .15)

E 2n = − p

p= n

φ0 p | V | φ0n2

E 0 p − E 0n(6 .18)

For degenerate levels these expansions will only make sense if these terms also havevanishing numerators, i.e. we require for the degenerate states that

φ0ni | V | φ0

nj = φ0ni | V | φ0

ni δij for i, j = 1 , · · · , s (7.6)

Chapter 7 – p.5/ ?

Page 11: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 11/57

The Degeneracy Problem

| φ1n = p

p= n

φ0

p |ˆV | φ

0

nE 0n − E 0 p

| φ0 p (6 .15)

E 2n = − p

p= n

φ0 p | V | φ0n2

E 0 p − E 0n(6 .18)

For degenerate levels these expansions will only make sense if these terms also havevanishing numerators, i.e. we require for the degenerate states that

φ0ni | V | φ0

nj = φ0ni | V | φ0

ni δij for i, j = 1 , · · · , s (7.6)

That is, the s × s matrix φ0ni | V | φ0

nj i, j = 1 , 2, · · · , s is a diagonal matrix.

Chapter 7 – p.5/ ?

Page 12: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 12/57

The Degeneracy Problem

Givenφ0

ni | V | φ0ni δij for i, j = 1 , · · · , s (7.6)

That is, the s × s matrix is a diagonal matrix, we can carry out the same calculationsas in Chapter 6.

Chapter 7 – p.6/ ?

Page 13: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 13/57

The Degeneracy Problem

Givenφ0

ni | V | φ0ni δij for i, j = 1 , · · · , s (7.6)

That is, the s × s matrix is a diagonal matrix, we can carry out the same calculationsas in Chapter 6.

For example, in order to determine the rst-order shift in the energy levels we can usethe equivalent of Eq. 6.7

E 1ni = φ

0ni | V | φ

0ni (7 .7)

c.f. equation 6.10.

Chapter 7 – p.6/ ?

Page 14: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 14/57

The Degeneracy Problem

Givenφ0

ni | V | φ0ni δij for i, j = 1 , · · · , s (7.6)

That is, the s × s matrix is a diagonal matrix, we can carry out the same calculationsas in Chapter 6.

For example, in order to determine the rst-order shift in the energy levels we can usethe equivalent of Eq. 6.7

E 1ni = φ

0ni | V | φ

0ni (7 .7)

c.f. equation 6.10.

We now describe one method for nding the correct zero-order linear combinations ofeigenfunctions.

Chapter 7 – p.6/ ?

Page 15: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 15/57

Finding the zeroth-order eigenfunctions for PT

− V − E 1n | φ

0ni = H o − E

0n | φ

1ni . (7 .8)

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

Starting with the equivalent of equation 6.7 and eq. 7.2 we must determine thecoefcients ciα .

Chapter 7 – p.7/ ?

Page 16: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 16/57

Finding the zeroth-order eigenfunctions for PT

− V − E 1

n | φ0

ni = H o − E 0

n | φ1

ni . (7 .8)

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

Starting with the equivalent of equation 6.7 and eq. 7.2 we must determine thecoefcients ciα .

Take the scalar product of eq. 7.8 with u 0

nβwe obtain

− u 0nβ | V − E 1n | φ0

ni = u 0nβ | H 0 − E 0n | φ1

ni

Chapter 7 – p.7/ ?

Page 17: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 17/57

Finding the zeroth-order eigenfunctions for PT

− V − E 1

n | φ0

ni = H o − E 0

n | φ1

ni . (7 .8)

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

Starting with the equivalent of equation 6.7 and eq. 7.2 we must determine thecoefcients ciα .

Take the scalar product of eq. 7.8 with u 0

nβwe obtain

− u 0nβ | V − E 1n | φ0

ni = u 0nβ | H 0 − E 0n | φ1

ni

On the RHS

u 0nβ | H 0 − E 0n | φ1

ni = u 0nβ | H 0 | φ1

ni − u 0nβ | E 0n | φ1

ni

Chapter 7 – p.7/ ?

Page 18: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 18/57

Finding the zeroth-order eigenfunctions for PT

− V − E 1

n | φ0

ni = H o − E 0

n | φ1

ni . (7 .8)

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

Starting with the equivalent of equation 6.7 and eq. 7.2 we must determine thecoefcients ciα .

Take the scalar product of eq. 7.8 with u 0

nβwe obtain

− u 0nβ | V − E 1n | φ0

ni = u 0nβ | H 0 − E 0n | φ1

ni

On the RHS

u 0nβ | H 0 − E 0n | φ1

ni = u 0nβ | H 0 | φ1

ni − u 0nβ | E 0n | φ1

ni

= E 0

n u0

nβ | φ1

ni − E 0

n u0

nβ | φ1

ni

Chapter 7 – p.7/ ?

Page 19: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 19/57

Finding the zeroth-order eigenfunctions for PT

− V − E 1

n | φ0

ni = H o − E 0

n | φ1

ni . (7 .8)

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

Starting with the equivalent of equation 6.7 and eq. 7.2 we must determine thecoefcients ciα .

Take the scalar product of eq. 7.8 with u 0

nβwe obtain

− u 0nβ | V − E 1n | φ0

ni = u 0nβ | H 0 − E 0n | φ1

ni

On the RHS

u 0nβ | H 0 − E 0n | φ1

ni = u 0nβ | H 0 | φ1

ni − u 0nβ | E 0n | φ1

ni

= E 0

n u0

nβ | φ1

ni − E 0

n u0

nβ | φ1

ni

= 0Chapter 7 – p.7/ ?

Page 20: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 20/57

Finding the zeroth-order eigenfunctions for PT

− V − E 1

n | φ0

ni = H o − E 0

n | φ1

ni . (7 .8)

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

Starting with the equivalent of equation 6.7 and eq. 7.2 we must determine thecoefcients ciα .

Take the scalar product of eq. 7.8 with u 0

nβwe obtain

− u 0nβ | V − E 1n | φ0

ni = u 0nβ | H 0 − E 0n | φ1

ni

and so

u 0nβ | V | φ0

ni = E 1ni u 0nβ | φ0

ni .

Chapter 7 – p.7/ ?

Page 21: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 21/57

Finding the zeroth-order eigenfunctions for PT

u 0nβ | V | φ0

ni = E 1ni u 0nβ | φ0

ni .

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

Chapter 7 – p.8/ ?

d h h d f f

Page 22: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 22/57

Finding the zeroth-order eigenfunctions for PT

u 0nβ | V | φ0

ni = E 1ni u 0nβ | φ0

ni .

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

Then substituting eq 7.2 into this equation we obtain

u 0nβ V

s

α =1ciα u 0nα = E 1ni u 0nβ

s

α =1ciα u 0nα

Chapter 7 – p.8/ ?

Fi di h h d i f i f PT

Page 23: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 23/57

Finding the zeroth-order eigenfunctions for PT

u 0nβ | V | φ0

ni = E 1ni u 0nβ | φ0

ni .

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

Then substituting eq 7.2 into this equation we obtain

u 0nβ V

s

α =1ciα u 0nα = E 1ni u 0nβ

s

α =1ciα u 0nα

s

α =1

u 0nβ V u 0

nα ciα = E 1ni u 0nβ | u 0

n β ciβ

Chapter 7 – p.8/ ?

Fi di th th d i f ti f PT

Page 24: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 24/57

Finding the zeroth-order eigenfunctions for PT

u 0nβ | V | φ0

ni = E 1ni u 0nβ | φ0

ni .

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

Then substituting eq 7.2 into this equation we obtain

u0nβ V

s

α =1ciα u

0nα = E

1ni u

0nβ

s

α =1ciα u

0nα

s

α =1

u 0nβ V u 0

nα ciα = E 1ni u 0nβ | u 0

nβ ciβ

= E 1ni ciβ

Chapter 7 – p.8/ ?

Fi di g th th d ig f ti f PT

Page 25: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 25/57

Finding the zeroth-order eigenfunctions for PT

u 0nβ | V | φ0

ni = E 1ni u 0nβ | φ0

ni .

φ0ni =

s

α =1

ciα u 0nα , i = 1 , · · · , s (7 .2)

and so

s

α =1u

0nβ V u

0nα ciα = E

1ni ciβ

ors

α =1u

0nβ | V | u

0nα − E

1ni δβα ciα = 0 , i = 1 , · · · , s (7 .9)

Chapter 7 – p.8/ ?

Finding the zeroth order eigenfunctions for PT

Page 26: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 26/57

Finding the zeroth-order eigenfunctions for PT

s

α =1u 0nβ | V | u 0nα − E 1ni δβα ciα = 0 , i = 1 , · · · , s (7 .9)

This set of s equations 7.9 give the required values for ciα .

Chapter 7 – p.9/ ?

Finding the zeroth order eigenfunctions for PT

Page 27: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 27/57

Finding the zeroth-order eigenfunctions for PT

s

α =1u 0nβ | V | u 0nα − E 1ni δβα ciα = 0 , i = 1 , · · · , s (7 .9)

This set of s equations 7.9 give the required values for ciα .

The vanishing of the s × s determinant

det u 0nβ | V | u 0

nα − E 1ni δβα = 0

gives the s roots E 1ni , i = 1 , · · · , s that are the rst-order energy level shifts for the

states φ0ni with the (non-zero) coefcients ciα the solutions of eqs. 7.9.

Chapter 7 – p.9/ ?

A Simple Example

Page 28: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 28/57

A Simple Example

The simplest illustration of degenerate PT is to assume that there is a 2-fold

degeneracy in the unperturbed state.

As a rst step we note that there is a degeneracy.

H 0 | u01 = E

01 | u

01

H 0 | u 02 = E 02 | u 0

2 = E 01 | u 02

Chapter 7 – p.10/ ?

A Simple Example

Page 29: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 29/57

A Simple Example

The simplest illustration of degenerate PT is to assume that there is a 2-fold

degeneracy in the unperturbed state.

As a rst step we note that there is a degeneracy.

H 0 | u01 = E

01 | u

01

H 0 | u 02 = E 02 | u 0

2 = E 01 | u 02

We write down a perturbing Hamiltonian H which "lifts" the degeneracy of the system

H = H 0 + β V

H | ψn = E n | ψn

Chapter 7 – p.10/ ?

A Simple Example

Page 30: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 30/57

A Simple Example

The simplest illustration of degenerate PT is to assume that there is a 2-fold

degeneracy in the unperturbed state.

As a rst step we note that there is a degeneracy.

H 0 | u01 = E

01 | u

01

H 0 | u 02 = E 02 | u 0

2 = E 01 | u 02

We write down a perturbing Hamiltonian H which "lifts" the degeneracy of the system

H = H 0 + β V

H | ψn = E n | ψn

So for our two-fold degenerate system

H | ψ 1 = E 1 | ψ 1

H | ψ 2 = E 2 | ψ 2 where E 1 > E2

Chapter 7 – p.10/ ?

A Simple Example

Page 31: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 31/57

A Simple Example

We note that u01∗u 0

2 dτ = 0 as well as u0n

∗u 0m dτ = δnm for all other n, m .

Chapter 7 – p.11/ ?

A Simple Example

Page 32: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 32/57

A Simple Example

We note that u01∗u 0

2 dτ = 0 as well as u0n

∗u 0m dτ = δnm for all other n, m .

If this is not the case we must rst choose a different set of eigenfunctions that areorthonormal.

Chapter 7 – p.11/ ?

A Simple Example

Page 33: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 33/57

p p

We note that u01∗u 0

2 dτ = 0 as well as u0n

∗u 0m dτ = δnm for all other n, m .

If this is not the case we must rst choose a different set of eigenfunctions that areorthonormal.

Ideally we would like to obtain the correct eigenfunctions | ψn of the perturbed state.

Chapter 7 – p.11/ ?

A Simple Example

Page 34: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 34/57

p p

Here we write down the eigenfunctions we require to rst order; these include some

linear combination of the degenerate wavefunctions.

| φ11 = a 1 | u 0

1 + a 2 | u 02 + β | u 1

1 and E 1 = E01 + β E1

1

Chapter 7 – p.12/ ?

A Simple Example

Page 35: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 35/57

p p

Here we write down the eigenfunctions we require to rst order; these include some

linear combination of the degenerate wavefunctions.

| φ11 = a 1 | u 0

1 + a 2 | u 02 + β | u 1

1 and E 1 = E 01 + β E1

1

| φ12 = b1 | u 0

1 + b2 | u 02 + β | u 1

2 and E 2 = E02 + β E1

2 = E01 + β E1

2 .

Chapter 7 – p.12/ ?

A Simple Example

Page 36: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 36/57

p p

Here we write down the eigenfunctions we require to rst order; these include some

linear combination of the degenerate wavefunctions.

| φ11 = a 1 | u 0

1 + a 2 | u 02 + β | u 1

1 and E 1 = E 01 + β E1

1

| φ12 = b1 | u 0

1 + b2 | u 02 + β | u 1

2 and E 2 = E 02 + β E1

2 = E 01 + β E1

2 .

H | φ11 = H 0 + β V a 1 | u 0

1 + a 2 | u 02 + β | u 1

1

= E 01 + βE 11 a 1 | u 0

1 + a 2 | u 02 + β | u 1

1 .

Chapter 7 – p.12/ ?

A Simple Example

Page 37: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 37/57

Here we write down the eigenfunctions we require to rst order; these include some

linear combination of the degenerate wavefunctions.

| φ11 = a 1 | u 0

1 + a 2 | u 02 + β | u 1

1 and E 1 = E 01 + β E1

1

| φ12 = b1 | u 0

1 + b2 | u 02 + β | u 1

2 and E 2 = E 02 + β E1

2 = E 01 + β E1

2 .

H | φ11 = H 0 + β V a 1 | u 0

1 + a 2 | u 02 + β | u 1

1

= E 01 + βE 11 a 1 | u 0

1 + a 2 | u 02 + β | u 1

1 .

H | φ12 = H 0 + β V b1 | u 01 + b2 | u 02 + β | u 12

= E 01 + βE 12 b1 | u 0

1 + b2 | u 02 + β | u 1

2 .

Chapter 7 – p.12/ ?

A Simple Example

Page 38: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 38/57

Collect terms of order β

H 0 | u 11 + a 1 V | u 0

1 + a 2 V | u 02 = E 11 a 1 | u 0

1 + E 11 a 2 | u 02 + E 01 | u 1

1 (7 .10)

Chapter 7 – p.13/ ?

A Simple Example

Page 39: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 39/57

Collect terms of order β

H 0 | u 11 + a 1 V | u 0

1 + a 2 V | u 02 = E 11 a 1 | u 0

1 + E 11 a 2 | u 02 + E 01 | u 1

1 (7 .10)

ˆH 0 | u

1

2 + b1ˆV | u

0

1 + b2ˆV | u

0

2 = E 1

2 b1 | u0

1 + E 1

2 b2 | u0

2 + E 0

2 | u1

2 (7 .11)

Chapter 7 – p.13/ ?

A Simple Example

Page 40: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 40/57

Collect terms of order β

H 0 | u 11 + a 1 V | u 0

1 + a 2 V | u 02 = E 11 a 1 | u 0

1 + E 11 a 2 | u 02 + E 01 | u 1

1 (7 .10)

ˆH 0 | u

1

2 + b1ˆV | u

0

1 + b2ˆV | u

0

2 = E 1

2 b1 | u0

1 + E 1

2 b2 | u0

2 + E 0

2 | u1

2 (7 .11)multiply 7.10 by u 0

1

and integrate

u0

1 |ˆ

H 0 | u1

1 + u0

1 | a 1ˆV | u

0

1 + u0

1 | a 2ˆV | u

0

2

= E 11 a 1 u 01 | u 0

1 + E 11 a 2 u 01 | u 0

2 + E 01 u 01 | u 1

1

Chapter 7 – p.13/ ?

A Simple Example

Page 41: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 41/57

Collect terms of order β

H 0 | u 11 + a 1 V | u 0

1 + a 2 V | u 02 = E 11 a 1 | u 0

1 + E 11 a 2 | u 02 + E 01 | u 1

1 (7 .10)

ˆH 0 | u

1

2 + b1ˆV | u

0

1 + b2ˆV | u

0

2 = E 1

2 b1 | u0

1 + E 1

2 b2 | u0

2 + E 0

2 | u1

2 (7 .11)multiply 7.10 by u 0

1

and integrate

u0

1 |ˆ

H 0 | u1

1 + u0

1 | a 1ˆV | u

0

1 + u0

1 | a 2ˆV | u

0

2

= E 11 a 1 u 01 | u 0

1 + E 11 a 2 u 01 | u 0

2 + E 01 u 01 | u 1

1

giving

a 1 V 11+ a 2 V 12 = a 1 E 11 (7 .12)

Chapter 7 – p.13/ ?

A Simple Example

Page 42: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 42/57

a 1 V 11+ a 2 V 12 = a 1 E 11 (7 .12)

Chapter 7 – p.14/ ?

A Simple Example

Page 43: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 43/57

a 1 V 11+ a 2 V 12 = a 1 E 11 (7 .12)

H 0 | u 11 + a 1 V | u 0

1 + a 2 V | u 02 = E 11 a 1 | u 0

1 + E 11 a 2 | u 02 + E 01 | u 1

1 (7 .10)

multiply 7.10 by u 02∗

and integrate to give

a 1 V 21+ a 2 V 22 = a 2 E 11 (7 .13)

Chapter 7 – p.14/ ?

A Simple Example

Page 44: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 44/57

a 1 V 11+ a 2 V 12 = a 1 E 11 (7 .12)

a 1 V 21+ a 2 V 22 = a 2 E 11 (7 .13)

Chapter 7 – p.14/ ?

A Simple Example

Page 45: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 45/57

a 1 V 11+ a 2 V 12 = a 1 E 11 (7 .12)

a 1 V 21+ a 2 V 22 = a 2 E 11 (7 .13)

Write these two equations as a simultaneous equation in matrix form.

V 11 − E 11 V 12

V 21 V 22 − E 11

a 1

a 2= 0 (7 .14)

Chapter 7 – p.14/ ?

A Simple Example

Page 46: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 46/57

a 1 V 11+ a 2 V 12 = a 1 E 11 (7 .12)

a 1 V 21+ a 2 V 22 = a 2 E 11 (7 .13)

Write these two equations as a simultaneous equation in matrix form.

V 11 − E 11 V 12

V 21 V 22 − E 11

a 1

a 2= 0 (7 .14)

We can go through the same thing for E 2 giving

V 11 − E 12 V 12

V 21 V 22 − E 12

b1

b2= 0 (7 .15)

Chapter 7 – p.14/ ?

A Simple Example

Page 47: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 47/57

a 1 V 11+ a 2 V 12 = a 1 E 11 (7 .12)

a 1 V 21+ a 2 V 22 = a 2 E 11 (7 .13)

Write these two equations as a simultaneous equation in matrix form.

V 11 − E 11 V 12

V 21 V 22 − E 11

a 1

a 2= 0 (7 .14)

We can go through the same thing for E 2 giving

V 11 − E 12 V 12

V 21 V 22 − E 12

b1

b2= 0 (7 .15)

We obtain non-trivial solutions to 7.14 and 7.15 (i.e. a 1 , a 2 , b1 , b2 = 0) if and only if thedeterminant of the matrix on the LHS vanishes

Chapter 7 – p.14/ ?

A Simple Example

Page 48: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 48/57

We obtain non-trivial solutions to 7.14 and 7.15 (i.e. a 1 , a 2 , b1 , b2 = 0) if and only if the

determinant of the matrix on the LHS vanishes

V 11 − E 1 V 12

V 21 V 22 − E 1= 0 (7 .16)

Chapter 7 – p.15/ ?

A Simple Example

Page 49: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 49/57

We obtain non-trivial solutions to 7.14 and 7.15 (i.e. a 1 , a 2 , b1 , b2 = 0) if and only if the

determinant of the matrix on the LHS vanishes

V 11 − E 1 V 12

V 21 V 22 − E 1= 0 (7 .16)

Note that the E 1 ’s (here E 11 and E 12 ) are the eigenvalues of the secular matrix

V 11 V 12

V 21 V 22

Chapter 7 – p.15/ ?

A Simple Example

Page 50: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 50/57

We obtain non-trivial solutions to 7.14 and 7.15 (i.e. a 1 , a 2 , b1 , b2 = 0) if and only if the

determinant of the matrix on the LHS vanishes

V 11 − E 1 V 12

V 21 V 22 − E 1= 0 (7 .16)

Note that the E 1 ’s (here E 11 and E 12 ) are the eigenvalues of the secular matrix

V 11 V 12

V 21 V 22

There are two solutions to 7.16. One gives E 11 (and hence a 1 , a 2 )

E 11 = 12

(V 11 + V 22 ) + 12

(V 11 − V 22 )2 + 4 V 12 V 21

12

(7 .17)

Chapter 7 – p.15/ ?

A Simple Example

Page 51: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 51/57

We obtain non-trivial solutions to 7.14 and 7.15 (i.e. a 1 , a 2 , b1 , b2 = 0) if and only if the

determinant of the matrix on the LHS vanishes

V 11 − E 1 V 12

V 21 V 22 − E 1= 0 (7 .16)

Note that the E 1 ’s (here E 11 and E 12 ) are the eigenvalues of the secular matrix

V 11 V 12

V 21 V 22

There are two solutions to 7.16. One gives E 11 (and hence a 1 , a 2 ), while the othergives E 12 (and hence b1 , b2 ).

E 11 =

12 (V 11 + V 22 ) +

12 (V 11 − V 22 )

2

+ 4 V 12 V 21

12

(7 .17)

E 12 =12

(V 11 + V 22 ) −12

(V 11 − V 22 )2 + 4 V 12 V 21

12

(7 .18)

Chapter 7 – p.15/ ?

A Simple Example

Page 52: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 52/57

E 1

1 =12 (V 11 + V 22 ) +

12 (V 11 − V 22 )

2

+ 4 V 12 V 21

12

(7 .17)

E 12 =12

(V 11 + V 22 ) − 12

(V 11 − V 22 )2 + 4 V 12 V 21

12

(7 .18)

Frequently we nd from the symmetry of the physical problem that V 11 = V 22 = 0 .giving

E 11 = + |V 12 | and E 12 = − | V12 |

Chapter 7 – p.15/ ?

A Simple Example

Page 53: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 53/57

E 1

1 =12 (V 11 + V 22 ) +

12 (V 11 − V 22 )

2

+ 4 V 12 V 21

12

(7 .17)

E 12 =12

(V 11 + V 22 ) − 12

(V 11 − V 22 )2 + 4 V 12 V 21

12

(7 .18)

Frequently we nd from the symmetry of the physical problem that V 11 = V 22 = 0 .giving

E 11 = + |V 12 | and E 12 = − | V12 |

E 11 and E 12 can be substituted back into the simultaneous equations 7.14, 7.15 to nda 1 , a 2 , b1 , b2 .

Chapter 7 – p.15/ ?

A Simple Example

Page 54: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 54/57

E 1

1 =12 (V 11 + V 22 ) +

12 (V 11 − V 22 )

2

+ 4 V 12 V 21

12

(7 .17)

E 12 =12

(V 11 + V 22 ) − 12

(V 11 − V 22 )2 + 4 V 12 V 21

12

(7 .18)

Frequently we nd from the symmetry of the physical problem that V 11 = V 22 = 0 .giving

E 11 = + |V 12 | and E 12 = − | V12 |

E 11 and E 12 can be substituted back into the simultaneous equations 7.14, 7.15 to nda 1 , a 2 , b1 , b2 .

So we can write down the two zeroth-order eigenfunctions we were looking for which

are

| φ01 = a 1 | u 0

1 + a 2 | u 02 (7 .19)

| φ02 = b1 | u 0

1 + b2 | u 02 (7 .20)

Chapter 7 – p.15/ ?

A Simple Example

Page 55: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 55/57

So we can write down the two zeroth-order eigenfunctions we were looking for which

are

| φ01 = a 1 | u 0

1 + a 2 | u 02 (7 .19)

| φ02 = b1 | u 0

1 + b2 | u 02 (7 .20)

Chapter 7 – p.16/ ?

A Simple Example

Page 56: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 56/57

So we can write down the two zeroth-order eigenfunctions we were looking for which

are

| φ01 = a 1 | u 0

1 + a 2 | u 02 (7 .19)

| φ02 = b1 | u 0

1 + b2 | u 02 (7 .20)

It is usual to normalise i.e. |a 1 |2 + |a 2 |2 = 1 and |b1 |2 + |b2 |2 = 1 .

These eigenfunctions (| φ01 , | φ0

2 ) are the appropriate combinations of the

unperturbed states which split to give the energy levels E 11 and E

12 .

Chapter 7 – p.16/ ?

A Simple Example

d h h d f l k f h h

Page 57: Overheads Lecture Chapter 7

8/7/2019 Overheads Lecture Chapter 7

http://slidepdf.com/reader/full/overheads-lecture-chapter-7 57/57

So we can write down the two zeroth-order eigenfunctions we were looking for which

are| φ0

1 = a 1 | u 01 + a 2 | u 0

2 (7 .19)

| φ02 = b1 | u 0

1 + b2 | u 02 (7 .20)

It is usual to normalise i.e. |a 1 |2 + |a 2 |2 = 1 and |b1 |2 + |b2 |2 = 1 .

These eigenfunctions (| φ01 , | φ0

2 ) are the appropriate combinations of the

unperturbed states which split to give the energy levels E 11 and E

12 .

We can then proceed further to determine expressions for | φ11 , | φ1

2 and higher ordercorrections in a similar way to the non-degenerate case.

Chapter 7 – p.16/ ?