Outline Surface, interface, and nanoscience—short...

76
Outline Surface, interface, and nanoscience—short introduction Some surface/interface concepts and techniques Experimental aspects: intro. to laboratory-based and SR-based Electronic structure—a brief review The basic synchrotron radiation techniques: more experimental and theoretical details Core-level photoemission Valence-level photoemission

Transcript of Outline Surface, interface, and nanoscience—short...

Page 1: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Outline

Surface, interface, and nanoscience—short introduction

Some surface/interface concepts and techniques

Experimental aspects:intro. to laboratory-based and SR-based

Electronic structure—a brief review

The basic synchrotron radiation techniques:more experimental and theoretical details

Core-level photoemission

Valence-level photoemission

Page 2: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

What properties do wave functions of overlapping(thus indistinguishable) particles have?—electrons as example:

1 1 2 2

2 21 1 2 2 2 2 1 1

1 1 2 2 2 2 1

( r ,s ; r ,s ), including spin of both electronsBut labels can' t affect any measurable quantity.E.g. probability density :

( r ,s ; r ,s ) ( r ,s ; r ,s )Therefore

( r ,s ; r ,s ) 1 ( r ,s ; r ,s

ψ ψ

ψ ψ

ψ ψ

=

=

= ± 1

12 1 1 2 2

12 1 1 2 2

12

)

P ( r ,s ; r ,s )

with P permutation operator r ,s ; r ,sand eigenvalues of 1

Finally , all particles in two classes :FERMIONS : ( incl. e ' s ) : ant

1 3 5s , , .

isymmetric

P 1

BOSONS : ( incl. photons )2 2 2

:

..

ψ

ψ

ψ ψ

ψ

=

=

±

= −

12s 0,1,2,...symmetric

P 1ψ ψ= = +

Probability of finding twoelectrons at the same point in space with the same spin is zero: “the Fermi Hole”

→the Exchange Interaction→Hund’s 1st rule & magnetism

e1-↑

e3-↑

e2-↑

Page 3: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Assume N-electron, P nucleus wave function to be:

and also require orthonormality of one-electron orbitals

Minimize total energy→ Hartree-Fock equations:

with:

One-electron integral:

Two-electron coulomb integral:

Two-electron exchange integral:

Lowers energy—”attractive”

* *1 1 1 2 1 2 1 2

12

1ˆ( ) | | ( ) ( ) ( ) ( ) ( )iij i j i j j iK r K r r r r r dV dV

rφ φ φ φ φ φ≡ = ∫∫

1 1 1 1 1 1

1 1

det min( ) ( ) ( ) ( )

1! ( ) ( ) ( ) ( )

N N

N N N N N N

Slater er antr r

N r r

φ χ σ φ χ σ

φ χ σ φ χ σ

Ψ ≈ Φ =

⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠

* ( ) ( )i j ijr r dVφ φ δ=∫

,

0

1s si j

N

i i ij m m ijj

J Kε ε δ=

= + −∑

0 21 1 1

1 1

1( ) | | ( )2

P

i i iZr rr

ε φ φ=

= − ∇ −∑

* *1 1 1 2 1 2 1 2

12

1ˆ( ) | | ( ) ( ) ( ) ( ) ( )iij i j i j i jJ r J r r r r r dV dV

rφ φ φ φ φ φ≡ = ∫∫

1 1 1ˆ ( ) ( ) ( ); 1,2,...i i iH r r r i Nφ ε φ= =

One-electron energiesor eigenvalues≈ binding energy

Koopmans’ Theorem

↑↑ or ↓↓

(35a)

(47)

(48)

(45)

(46)Paper [1]--Basic Concepts of XPS

space: like 1s, 2s,…spin: α(↑) or β(↓)

A fi

rst t

ry a

t man

y-el

ectr

on w

ave

func

tions

:Th

e H

artr

ee-F

ock

Met

hod

(42)

Note--Kij oftenJij in solid-state

Page 4: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Basic energetics—Many e- picture

kinetic kinetVacuum Fermibinding binding spectrometer

Vacuumbinding final initial

ichν E E φ

E (Qn j ,K ) E (N 1,Qn j hole,K ) ( N )

E E

E

= + = + +

= − −

Atom Q

Ion Q+

Kth state

n jhole

VacuumbindingE (Qn j ,K )

Relaxation/screening

N electrons

N-1

+ photoelectron @ ∞Ekin = 0

Page 5: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

What doesthe hole do?

Page 6: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Paper [1]--“Basic Concepts of XPS”

Figure 18

Page 7: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

PLUS SPIN:α(σ)= msi = +½ = ↑β(σ)= msi = -½ = ↓

α(σ)β(σ)

α(σ)β(σ)

Δms = msf - msi= 0 !

Page 8: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties
Page 9: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Atomic orbitals:

Page 10: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

xy

z

Page 11: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

TotalNo e-

2

x2

x2

1s

2s

2p

3s

3p

3d

x2

x2

2

10

Fillingdegeneracy

MaximumOccupation =Degeneracy

2

2

6

2

6

10

+ 14 for nf

± ±Filling theAtomicOrbitals:

8

18

Page 12: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

And the same thing for the d orbitals:

eg

t2g3z2-r2 x2-y2

yz zx xy

x

yz

eg

t2g3z2-r2 x2-y2

yz zx xy

x

yz

eg and t2g notequivalent in

octahedral (cubic) environment

TransitionMetal (e.g. Mn)

Ligand(e.g. O)

Page 13: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Intraatomic electron screening in many-electron atoms--a simple model

kC ≡ 1/(4πε0)

[Zeff]

In many-electron atoms:For a given n, s feels nuclear chargemore than p, more than d, more than f

Lifts degeneracy on in hydrogenicatom

Page 14: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Intraatomicelectron screening in many-electron atoms--a self-consistent Q.M.calculation

Plus radial one-electron functions:Pn (r) ≡ rRn (r)

Page 15: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties
Page 16: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties
Page 17: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

WITH C1 AND C2 TABULATED CLEBSCH-GORDANOR WIGNER 3j SYMBOLS

Page 18: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties
Page 19: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

The energies are given in eV relative to the vacuum level for the rare gases and for H2, N2, O2, F2, and Cl2; relative to the Fermi level for the metals; and relative to the top of the valence bands for semiconductors (and insulators).

X-Ray Data Booklet--Section 1.1 ELECTRON BINDING ENERGIES

MissingvalenceB.E.s

Electronicconfiguration

∼ 45 ∼ 17 ∼ 17

∼ 9 ∼ 9∼ 13 ∼ 13 Interpolated,

extrapolated

Valence levels

Valence levels

Page 20: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

X-Ray Data Booklet--Section 1.1 ELECTRON BINDING ENERGIES

Valence levels

Valence levels

Page 21: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

ϕ- = ϕantibonding≅ ϕ1sa - ϕ1sb

ϕ+ = ϕbonding≅ ϕ1sa + ϕ1sb

The quantum mechanics of covalent bonding in molecules: H2

+ with one electron

=R

TotalEnergy ϕantibonding

Page 22: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

a.u. = -16.16 eV(Compare – 13.61 for H atom 1s)

a.u. = +7.21 eV

ε negative(occupied)

ε positive(unoccupied)

Bonding

Anti-Bondingϕanti

MO ≅ ϕ1sa - ϕ1sa

ϕbondingMO ≅ ϕ1sa + ϕ1sa

ε

ε

HaHb

Page 23: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

36

Page 24: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

–+

Ni 3dxyπ “backbond”

++–

Zangwill,p. 307, plusPRL 55, 2618 (’85)

TheoreticalCalculations of charge density for CO bound to Ni(001)- “on-top”:

O|

C|

Ni

CO 5σ

Ni 3dzσ bond

+

–+

CO 2π = π*

Densitygain

Ni

2

Page 25: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

“Basic Concepts of XPS”Chapter 3

Page 26: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

A typical Bloch functioniK rRe or Im part of e •

Ku (r) has periodicity of lattice, same in each unit cell

iK rK K K

For all states in crystalline (ordered) solids:

Ψ ( r ) u ( r )e , where u ( r ) u( r A) a Bloch function•= = + − −

A

Page 27: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Different directions in k-space:

The first (reduced)Brillouin zone:

fcc crystal bcc crystal

Δ

kz

ky

kx

kz

ky

ky

Page 28: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

L

Page 29: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

DIRECT TRANSITIONS FOR NEARLY-FREE ELECTRONS IN A WEAK PERIODIC POTENTIAL—1 DIMENSION

Page 30: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Valence-band photoemission:Angle-Resolved Photoemission (ARPES)

f ,|| f ,||k K=

f ,||k f ,||K

fK

fk

SurfaceBarrier

=V0

bulk surfg (and / or g )

2 2f f i i f eE (k ) hν E (k ) k / 2m≈ − ≈

ik

i iE (k )

BrillouinZone

e

exp(

L / 2Λ

)

−f f

2 2f f 0 f e

E (K )

E (k ) V K / 2m

=

− ≈

+ + += +bulk s hν phonoi nurff g ( g kk kk )High energy a/o

High temp.

∝ = +• +=f f photoe f i f2

i i iE ,k φ (E E k k ) φ(Eε hνI( ) , ,kr )g“Direct” or k-conserving transitionsFig. 13

Page 31: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties
Page 32: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Electronic bands and density of states for “free-electron” metals-Rydberg = 13.605 eV

Lithium—bcc, a = 3.49 Å1s22s1

a

2π/a=1.8Å

-1

kx

0

2 2x

x( k )E(k )2m

Page 33: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Aluminum—fcc,a = 4.05 Å1s22s2 2p63s2 3p1

Electronic bands and density of states for “free-electron” metals-Rydberg = 13.605 eV

a

02π/a

=1.55Å-1

Lithium—bcc, a = 3.49 Å1s22s1

a

2π/a=1.8Å

-1

kx

0

2 2x

x( k )E(k )2m

2 2x

x( k )E(k )2m

Page 34: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

V0,Cu=13.0eV

- 8.6 eV

Vacuum levelThe electronic structure of a transition metal—fcc Cu

φCu = 4.4 eV = work function

Experimentalpoints from angle-resolvedphotoelectronspectroscopy(more later)

Page 35: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

And the d orbitals are not equivalent in different bonding environments:

eg

t2g3z2-r2 x2-y2

yz zx xy

x

yz

eg

t2g3z2-r2 x2-y2

yz zx xy

x

yz

eg and t2g notequivalent in

octahedral (cubic) environment

TransitionMetal (e.g. Mn)

Ligand(e.g. O)

eg and t2g notequivalent in

octahedral (cubic) environment

TransitionMetal (e.g. Mn)

Ligand(e.g. O)

Face-centered cubic—12 nearest neighbors

x

y

z

xy

yz

zx

Page 36: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Copper densities of states-total and by orbital type:

x

y

z

xy

yz

zx

Page 37: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

The electronic structures of the 3d transition metals—≈ “rigid-band model”

3s23p6 filled + 3d,4s CB 3d24s2 3d34s2 3d54s1 3d64s2

3d74s2 3d84s2 3d104s1 3d104s2

+ Flat “core-like” Zn 3d bands at ∼-0.8 Rydberg

+ Flat “core-like” Ar 3s, 3p bands at ∼-1.0-1.5 Rydbergs

+ Exchange!+ Exchange!

+ Exchange!+ Exchange!

Page 38: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

(e)Spin-down Spin-up

FerromagneticConductor

(The exchange interaction)

Page 39: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

k = 0k = 0

Spin-down (Minority)Spin-up (Majority)

The electronic bands and densities of states of ferromagnetic iron

ExchangesplittingμS = 2.2 Bohr

magnetons(Atomic iron:2.0 Bohrmagnetons)

4 x ½ = 2

Page 40: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Hathaway et al., Phys. Rev. B 31, 7603 (’85)

ΔEexch

V0,Fe=12.4 eV

Vacuum level

φFe = 4.3 eV

-8.1 eV

Page 41: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Fe: ANGLE AND SPIN-RESOLVEDSPECTRA AT Γ POINT

Page 42: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Electronic bands and density of states for a semiconductor-Germanium—1s22s2 2p63s2 3p63d104s24p2

Bonding(filled at T = 0)

Anti-Bonding(empty at T = 0)

Page 43: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

The Soft X-Ray Spectroscopies

Core

VBEF

CB

e-e-Valence PE Core PE

PE = photoemission = photoelectron spectroscopyXAS = x-ray absorption spectroscopyAES = Auger electron spectroscopyXES = x-ray emission spectroscopy

RIXS = resonant inelastic x-ray scattering / x-ray Raman scatt.

Page 44: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

hv

ϕi(bound)

ϕf(free)Vacuum

MATRIX ELEMENTS IN THE SOFT X-RAY SPECTROSCOPIES: DIPOLE LIMIT• Photoelectron spectroscopy/photoemission:

2ˆ (1) (1)f iI e rϕ ϕ∝ ••

Page 45: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties
Page 46: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

“Basic Concepts of XPS”Figure 1

Page 47: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties
Page 48: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

× NO. ATOMS → QUANTITATIVE SURFACE ANALYSIS

Page 49: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

36

Page 50: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Vibrationalfine structure

Kimura et al.,“Handbook of HeI

Photoelectron Spectra”

Page 51: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

SAME SUBSHELL COUPLING +TOTAL L,S→”MONOPOLE”

(N-1)e- SHAKE-UP/SHAKE-OFF→”MONOPOLE”1e- DIPOLE→dσ/dΩ “Basic Concepts of XPS”

Chapter 3

Page 52: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

36

Page 53: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Valence-levelPhotoelectron spectra of CO adsorbed on various transition metal surfaces

Page 54: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

–+

Ni 3dxyπ “backbond”

++–

Zangwill,p. 307, plusPRL 55, 2618 (’85)

TheoreticalCalculations of charge density for CO bound to Ni(001)- “on-top”:

O|

C|

Ni

CO 5σ

Ni 3dzσ bond

+

–+

CO 2π = π*

Densitygain

Ni

2

Page 55: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

The Soft X-Ray Spectroscopies

Core

VBEF

CB

e-e-Valence PE Core PE

PE = photoemission = photoelectron spectroscopyXAS = x-ray absorption spectroscopyAES = Auger electron spectroscopyXES = x-ray emission spectroscopy

RIXS = resonant inelastic x-ray scattering / x-ray Raman scatt.

XAS

Page 56: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

hv

ϕi(bound)

ϕf(free)Vacuum

MATRIX ELEMENTS IN THE SOFT X-RAY SPECTROSCOPIES: DIPOLE LIMIT• Photoelectron spectroscopy/photoemission:

2ˆ (1) (1)f iI e rϕ ϕ∝ •

• Near-edge x-ray absorption:2ˆ (1) (1)f iI e rϕ ϕ∝ •

ϕi(bound)

ϕf(bound)Vacuum

hv

Page 57: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Variation of Near-Edge X-Ray Absorption Fine

Structure (NEXAFS) with Atomic

No. for Some 3d Transition Metals

“White lines”

4 :ATOM3.5 :SOLID

32.4

21.8

00.5

Number of d-holes

= 2p3/2

= 2p1/2

J. Stohr, “NEXAFS Spectroscopy”

Page 58: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Magnetic Circular Dichroism in X-Ray Absorption (XMCD)

Ferromagnetic cobalt with magnetizationalong incident light direction

RCP

LCP

Page 59: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Variation of Near-Edge X-Ray Absorption Fine Structure (NEXAFS) for Different Polymers

H. Ade, X-ray Microscopy 99,AIP Conf. Proc. 507, p.197

Page 60: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

The Soft X-Ray Spectroscopies

Core

VBEF

CB

e-e-

XAS

Valence PE

PE = photoemission = photoelectron spectroscopyXAS = x-ray absorption spectroscopyAES = Auger electron spectroscopyXES = x-ray emission spectroscopy

REXS/RIXS = resonant elastic/inelastic x-ray scattering

Electron-out:surface sensitive

e-2

Core PE e-1 e-

3

AES

Page 61: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

hv

ϕi(bound)

ϕf(free)Vacuum

MATRIX ELEMENTS IN THE SOFT X-RAY SPECTROSCOPIES: DIPOLE LIMIT• Photoelectron spectroscopy/photoemission:

2ˆ (1) (1)f iI e rϕ ϕ∝ •

• Near-edge x-ray absorption:2ˆ (1) (1)f iI e rϕ ϕ∝ •

ϕi(bound)

ϕf(bound)Vacuum

hv

• Auger electron emission:2 22

1 1 3 212

3 212

(1) (2) (1) (2) (1) (2) (1) (2)ffe eI

rrϕ ϕϕ ϕ ϕϕ ϕ ϕ∝ −

ϕ1

ϕ2

ϕ3

Vacuum

••

ϕfDirect Exchange

Page 62: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

“Basic Concepts of XPS”Figure 1

Auger kinetic energies do not change with photon energy

Photoelectron kinetic energies shift linearly with photon energy

Page 63: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Or more accurately:K.E. ≈ B.E.5Z - B.E.3Z+1- B.E.1Z

≈ B.E.5Z - B.E.3Z - B.E.1Z+1

≈ (average of two above)

ε negative

ε positive

+ +−

The equivalent core or Z+1 approximation

Page 64: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Ag MNN

1253.6 - Auger Energy (eV)

Ni LMM

1253.6 - Auger Energy (eV)

O KLL1253.6 - Auger Energy (eV)

65 70 75 80 85Kinetic Energy (eV)

65 70 75 80 85Kinetic Energy (eV)

65 70 75 80 85Kinetic Energy (eV)

Au N6,7O4,5O4,5

X-Ray DataBookletFig. 1.4

K.E. ≈ B.E.1s Z=8 - B.E.2p

9- B.E.2p8

≈ B.E.1s8 + B.E.2p

8 - B.E.2p9

≈ 543.1 - 17 - 13 ≈ 513 eV

1s1/2

2p3/22p1/2

2s1/2

Ekin =508.3

Page 65: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

The energies are given in eV relative to the vacuum level for the rare gases and for H2, N2, O2, F2, and Cl2; relative to the Fermi level for the metals; and relative to the top of the valence bands for semiconductors (and insulators).

X-Ray Data Booklet--Section 1.1 ELECTRON BINDING ENERGIES

MissingvalenceB.E.s

Electronicconfiguration

∼ 45 ∼ 17 ∼ 17

∼ 9 ∼ 9∼ 13 ∼ 13 Interpolated,

extrapolated

Valence levels

Valence levels

Page 66: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

The Soft X-Ray Spectroscopies

Core

VBEF

CB

e-e-

XAS

Valence PE

PE = photoemission = photoelectron spectroscopyXAS = x-ray absorption spectroscopyAES = Auger electron spectroscopyXES = x-ray emission spectroscopy

REXS/RIXS = resonant elastic/inelastic x-ray scattering

Photon-out:“bulk”, deeperinterfaces

Electron-out:surface sensitive

e-2

Core PE

XES

e-1 e-

3

AES

hν’

Page 67: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Or more accurately:hν’ = B.E.5 - B.E.3 or core

ε negative

ε positive

+

+

Page 68: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

hv

ϕi(bound)

ϕf(free)Vacuum

MATRIX ELEMENTS IN THE SOFT X-RAY SPECTROSCOPIES: DIPOLE LIMIT• Photoelectron spectroscopy/photoemission:

2ˆ (1) (1)f iI e rϕ ϕ∝ •

• Near-edge x-ray absorption:2ˆ (1) (1)f iI e rϕ ϕ∝ •

ϕi(bound)

ϕf(bound)Vacuum

hv

• Auger electron emission:2 22

1 1 3 212

3 212

(1) (2) (1) (2) (1) (2) (1) (2)ffe eI

rrϕ ϕϕ ϕ ϕϕ ϕ ϕ∝ −

ϕ1

ϕ2

ϕ3

Vacuum

••

ϕfDirect Exchange

Page 69: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

If fluorescence yield ≡ FY

FY = probability of radiativedecay → x-ray emission)

1 - FY = probability of non-radiativedecay → Auger electron emission

“X-Ray Data Booklet”Section 1.3

Page 70: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

2p3/22p1/2

2s1/2

1s1 (

2s2p

)6

1s1 (

2s2p

)5

1s1 (

2s2p

)4

1s1 (

2s2p

)3

3s1/2

3p1/2,3/2Kβ

1s1/2

1s1 (

2s2p

)6

Mg K series of x-rays:atomic no. = 12Fluorescence Yield ≈ 0.03

≈ Eb(Mg 1s) - Eb(Mg 2p1/2,3/2)= 1303.0 - 49.7 = 1253.3 eV

“Basic Concepts of XPS”Figure 2

Page 71: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

The Soft X-Ray Spectroscopies

Core

VBEF

CB

e-e-

XAS

Valence PE

PE = photoemission = photoelectron spectroscopyXAS = x-ray absorption spectroscopyAES = Auger electron spectroscopyXES = x-ray emission spectroscopy

REXS/RIXS = resonant elastic/inelastic x-ray scattering

RIXS

hν”

Photon-out:“bulk”, deeperinterfaces

Electron-out:surface sensitive

e-2

Core PE

REXS

XES

e-1 e-

3

AES

hν’

Page 72: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

hvhv’=hv- ΔEΨm(N)

Ψi(N)Ψf(N)

ΔE

• Resonant inelastic x-ray scattering:

MATRIX ELEMENTS IN THE SOFT X-RAY SPECTROSCOPIES:RESONANT EFFECTS

f emi m m inc i

f m i m m

m i

hh

N e r N N e r NI

E N E N iE N E N

Ψ • Ψ Ψ • Ψ∝

+ − − Γ

× − −

∑ ∑2

ˆ ˆ( ) ( ) ( ) ( )( ) ( )

( ( ( ) ( )))δ

ν

ν

Vacuumince

emie

mlifetime

t2Γ tτ

m m mN (t ) N (0 )e N (0 )e−−

= =

Page 73: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

X-rayabsorptionspectroscopy(XAS)

Resonantinelastic

x-rayscattering

(RIXS)and

Resonant elastic

x-ray scattering

(REXS)

X-rayfluorescence

spectroscopy=X-ray

emissionspectroscopy

(XES)

Mn 2p3/2

2p1/2

NON-RESONANT

∼10.0 eV

2p3/22p1/2

3s3p3d

Vac.

RIX

SR

EXS

XES

Butorin et al., Phys. Rev.B 54, 4405 (’96)

Page 74: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

=1s

=2s1/2

=2p1/2

=2p3/2

=3s1/2=3p3/2=3d5/2

=4s1/2=4p3/2=4d5/2=4f7/2

X-RayNomenclature(from “X-RayData Booklet”)

See Section1.2 in “X-RayData Booklet”

nlnlj=l+1/2nlj=l-1/2

Spin-orbit

In general:

N6N4N2

M4M2

Δj=0,±1

Page 75: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

Electron binding energies

Diff. = 11.2

Diff. = 11.4

Page 76: Outline Surface, interface, and nanoscience—short ...fadley.physics.ucdavis.edu/Trieste08.Fadleylectures.no2...Core-level photoemission Valence-level photoemission What properties

“X-Ray Data Booklet”Section 3.1

The five ways inwhich x-raysInteract withMatter: