Outline% - FOROST

17
4/5/11 1 Forensic DNA profiling: mitochondrial DNA and STR analyses Daniele Podini [email protected] Outline History of Forensic DNA Analysis STRs mtDNA Structure and funcCon mtDNA for human idenCficaCon AnalyCcal process ExtracCon AmplificaCon Sequencing Results and InterpretaCon QuesCons Where did it all start? Mendel showed that the inheritance of certain traits follows particular laws which were later named after him. The significance of Mendel's work was not recognized until the turn of the 20th century. The independent rediscovery of these laws formed the foundation of the modern science of genetics. James Watson & Francis Crick Using x-ray diffusion data they proposed the double helix or spiral staircase structure of the DNA molecule in 1953 Base-Pairing In double-stranded DNA the bases are paired up As with Ts and Gs with Cs The bases are held together by hydrogen bonds These bonds are weak (1/10 the strength of a C-C bond) The Human Genome Nuclear DNA 3 billion bp High Power Of DiscriminaCon Mitochondrial DNA 16.5 Kbp High Copy Number

Transcript of Outline% - FOROST

Page 1: Outline% - FOROST

4/5/11  

1  

Forensic  DNA  profiling:  mitochondrial  DNA  and  STR  analyses  

Daniele  Podini  [email protected]  

Outline  •  History  of  Forensic  DNA  Analysis  •  STRs  •  mtDNA  

–  Structure  and  funcCon  – mtDNA  for  human  idenCficaCon  – AnalyCcal  process  

•  ExtracCon  •  AmplificaCon  •  Sequencing  •  Results  and  InterpretaCon  

•  QuesCons    

Where did it all start?

•  Mendel showed that the inheritance of certain traits follows particular laws which were later named after him.

•  The significance of Mendel's work was not recognized until the turn of the 20th century.

•  The independent rediscovery of these laws formed the foundation of the modern science of genetics.

James Watson & Francis Crick

Using x-ray diffusion data they proposed the double helix or spiral staircase structure of the DNA molecule in 1953

Base-Pairing •  In double-stranded DNA the

bases are paired up –  As with Ts and –  Gs with Cs

•  The bases are held together by hydrogen bonds –  These bonds are weak

(∼1/10 the strength of a C-C bond)

The  Human  Genome    

Nuclear  DNA  

3  billion  bp  

High  Power  Of  DiscriminaCon  

Mitochondrial  DNA  

16.5  Kbp  

High  Copy  Number  

Page 2: Outline% - FOROST

4/5/11  

2  

Early 1980s: Restriction Fragment Length Polymorphism (RFLP)

•  Genetic variation in the distance between restriction enzyme sites

•  Template DNA digested by enzymes, electrophoresed, detected via Southern blotting

•  Power of discrimination in the range of 106-108 for a six probe analysis

Sir  Alec  Jeffreys  

Mechanisms

for RFLPs

Mid-1980s: The Colin Pitchfork Case

  Two  young  women  raped  and  murdered  in  Narborough,  England  

  5,000  local  men  are  asked  to  provide  blood/saliva  samples  

  1st  exoneraCon  and  convicCon  on  forensic  DNA  evidence    

THEN  THERE  WAS  PCR  

Polymerase Chain Reaction PCR

•  Polymerase Chain Reaction = molecular Xeroxing

•  “Amplify” the desired DNA fragment(s)

•  Increased sensitivity •  1988 FBI starts DNA section

Dr. Kary Mullis Eccentric Genius

1985  

h\p://www.youtube.com/watch?v=L51UvB5za7c  

h\p://www.karymullis.com/pcr.shtml  

  Repeat  unit  2-­‐7  b.p.  in  length    Repeated  5-­‐40  Cmes  

  Length    appropriate  for  PCR  ~  400  nt  

  Highly  polymorphic  

  Spread  throughout  the  genome  

Short Tandem Repeats1991

10  repeats  

GATA  

Page 3: Outline% - FOROST

4/5/11  

3  

STRBase  

h\p://www.cstl.nist.gov/biotech/strbase/  

Types  of  STR  Repeat  Units  

•  DinucleoCde  •  TrinucleoCde  •  TetranucleoCde  •  PentanucleoCde  •  HexanucleoCde  

(CA)(CA)(CA)(CA)  

(GCC)(GCC)(GCC)  (AATG)(AATG)(AATG)  (AGAAA)(AGAAA)  

(AGTACA)(AGTACA)  

Requires  size  based  DNA  separa1on  to  resolve  different  alleles  from  one  another  

Short  tandem  repeat  (STR)  =  microsatellite  =  simple  sequence  repeat  (SSR)  

Short  Tandem  Repeat  (STR)  Markers  

TCCCAAGCTCTTCCTCTTCCCTAGATCAATACAGACAGAAGACAGGTGGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATATCATTGAAAGACAAAACAGAGATGGATGATAGATACATGCTTACAGATGCACAC    

=  12  GATA  repeats  (“12”  is  all  that  is  reported)  

Target  region    (short  tandem  repeat)  

7  repeats  

8  repeats  

9  repeats  

10  repeats  

11  repeats  

12  repeats  

13  repeats  

The  number  of  consecu>ve  repeat  units  can  vary  between  people  

An  accordion-­‐like  DNA  sequence  that  occurs  between  genes  

5

D5S818  

10  repeats  

8  repeats  

Short Tandem Repeats

GATA  

LOCUS  

ALLELE  

Profile  8/10  

Mitochondrial  DNA  

The  Mitochondrion  Cytoplasmic  organelle  

Double  membrane  

Outer  membrane  –  porin  proteins  for  the    transportaCon  of  materials.  

Inner  membrane  –  highly  folded    (increased  surface  area)  and  highly  impermeable.  

Inner  Matrix  –  several  copies  of  mtDNA    

FuncCon  of  the  mitochondrion:  ProducCon  of  ATP  Apoptosis  –  programmed  cell  death  ElongaCon  of  fa\y  acids    OxidaCon  of  epinephrine  (adrenaline)    DegradaCon  of  tryptophan      Heme  synthesis    Heat  producCon    

Page 4: Outline% - FOROST

4/5/11  

4  

mtDNA  Genome  16,569  bp    

h\p://www.mitomap.org/  

Coding  Region  13  polypepCdes  2  rRNAs  22  tRNAs  

All  necessary  for  OXPHOS  

Highly  compact  (few  intergenic  spaces)  

LocaCon  and  Copy  Number  of  mtDNA  

•  Found  within  the  mitochondria  in  the  cellular  cytoplasm.  

•  On  average  4-­‐5  copies  of  mtDNA  molecules  per  mitochondria  (range  of  1-­‐15  mtDNA  copies).  

•  Number  of  mitochondria  vary  by  cell  type  (e.g.,  muscles  have  more…).  

•  Generally,  hundreds  of  mitochondria  per  cell.  

Control  region  (D-­‐loop)  

1/16,569  

cyt  b  

ND5  ND6  

ND4  

ND4L  

ND3  

COIII  ATP6  

ATP8   COII  

12S    rRNA  

16S    rRNA  

ND1  

ND2  

COI  

OH  

9-­‐bp  dele1on  

OL  

F  

V  

L1  

I  Q  M  

W  

A  N  

C  Y  

S1  

D  K  

G  

R  

H  S2  

L2  

E  

P  

T  

HV1   HV2  

16024   16365   73   340  

16024   576  

“16,569”  bp  

1  

22  tRNAs  

2  rRNAs  

13  genes  

Figure  10.1,  J.M.  Butler  (2005)  Forensic  DNA  Typing,  2nd  EdiCon  ©  2005  Elsevier  Academic  Press  

Forensic  Focus   Control  Region  (16024-­‐576)  Original  Reference  Sequence  

•  Human  mtDNA  was  first  sequenced  in  1981  in  Frederick  Sanger’s  lab  located  in  Cambridge,  England.  

•  Authors  for  this  paper  (Nature  1981,  290:457-­‐465)  were  listed  in  alphabeCcal  order  so  Stan  Anderson  was  the  first  author.  

•  This  sequence  has  come  to  be  referred  to  as  the  “Anderson”  sequence  (GenBank  accession:  M63933).  

•  This  first  sequence  is  someCmes  called  the  Cambridge  Reference  Sequence  (CRS).  

•  This  revised  Cambridge  Reference  Sequence  (rCRS)  is  now  the  accepted  standard  for  comparison.  

Maternal  Inheritance  of  mtDNA  

•  FerClizing  sperm  contributes  only  nuclear  DNA.  

•  Cellular  components  including  the  mitochondria  in  the  cytoplasm  come  from  the  mother’s  ovum.  

•  Any  sperm  mitochondria  that  may  enter  a  ferClized  egg  are  selecCvely  destroyed  due  to  a  ubiquiCn  tag  added  during  spermatogenesis.  

•  Barring  mutaCon,  a  mother  passes  her  mtDNA  type  on  to  her  children.  

Summary  –  mtDNA  CharacterisCcs  

•  High  copy  number  of  mtDNA.  

•  Circular  molecule  

•  Maternal  inheritance  of  mtDNA.  

•  Lack  of  recombinaCon.  

•  High  mutaCon  rate  compared  to  single  copy  nucDNA.  

Page 5: Outline% - FOROST

4/5/11  

5  

Methods  for  Measuring  mtDNA  VariaCon  

•  Low-­‐resoluCon  RFLP  (1980s)  

•  High-­‐resoluCon  RFLP  (1990s)  

•  Sequence  analysis  of  HV1  and  HV2  within  control  region  (1991-­‐present)  

•  Sequence  analysis  of  complete  mtDNA  genome  (2000-­‐present)  

Role  of  mtDNA    Compared  to  Autosomal  STRs  

•  Autosomal  STRs  provide  a  higher  power  of  discriminaQon  and  are  the  preferred  method  whenever  possible  

•  Due  to  high  copy  number,  mitochondrial  DNA  (mtDNA)  may  be  the  only  source  of  surviving  DNA  in  highly  degraded  specimens  or  low  quanCty  samples  such  as  hair  shass  

•  A  mtDNA  result  is  be\er  than  no  result  at  all…  

Candidates  for  mtDNA  TesCng  

•  Shed  hairs  lacking  root  bulb  or  a\ached  Cssue  

•  Fragments  of  hair  shass.  

•  Aged  bones  or  teeth  that  have  been  subjected  to  long  periods  of  exposure.  

•  Crime  scene  stains  or  swabs  that  were  unsuccessful  for  nuclear  DNA  tesCng.    

•  Tissues  (muscle,  organ,  skin)  that  were  unsuccessful  for  nuclear  DNA  tesCng.  

Terry  Melton  –  InternaConal  Symposium  on  the    ApplicaCon  of  DNA  Technologies  in  AnalyCcal  Sciences  

Mitochondrial  DNA  as  a  Means  of  IdenCficaCon  

Why  go  to  mtDNA?  

•  Disadvantages  – mtDNA  is  not  a  posiCve  form  of  idenCficaCon  

(You  have  many  maternal  relaCves!!)  

– Easily  contaminated  with  modern  DNA  

ContaminaCon  

•  Modern  DNA  can  easily  be  introduced  and  overwhelm  target  DNA  from  the  sample.  – Due  to  the  sensiCvity  of  the  reacCon  

•  Appropriate  controls  must  be  implemented  to  assure  that  the  mtDNA  sequence  being  reported  is  authenCc.  

•  Laboratories  need  to  be  designed  to  lessen  the  chances  of  contaminaCon.  

Page 6: Outline% - FOROST

4/5/11  

6  

Why  go  to  mtDNA?  

•  Disadvantages  – mtDNA  is  not  a  posiCve  form  of  idenCficaCon  

(You  have  many  maternal  relaCves!!)  

– Easily  contaminated  with  modern  DNA  

– Time-­‐consuming  and  costly  

Nuclear  DNA  Analysis  

•  24-­‐36  hours  •  ~$100  per  sample  •  Use  commercially  available  kits  for  processing  

Sample  CollecCon   Laboratory  

Profile  generaCon  

MtDNA  Analysis  

•  1-­‐6  weeks  post-­‐submission  to  the  laboratory  

•  ~$1,000  per  sample  •  Custom  designed  primers  

Sample  CollecCon   Laboratory  

Profile  generaCon  

Why  go  to  mtDNA?  

•  Advantages  – Maternally  inherited  

•  The  pool  of  potenCal  references  is  greatly  increased.  

Limited  references  available  for  nDNA   Maternal  inheritance  

Page 7: Outline% - FOROST

4/5/11  

7  

Why  go  to  mtDNA?  

•  Advantages  – Maternally  inherited  

•  The  pool  of  potenCal  references  is  greatly  increased.  – Numerous  copies  of  the  mitochondrial  DNA  genome  in  each  cell.  

Why  go  to  mtDNA?  

•  Advantages  – Maternally  inherited  

•  The  pool  of  potenCal  references  is  greatly  increased.  – Numerous  copies  of  the  mitochondrial  DNA  genome  in  each  cell.  

– Small  genome  size  and  mulCple  copies  increase  chances  of  recovering  DNA  from  degraded  samples.  

Extract  mtDNA  from  evidence  (Q)  sample  

PCR  Amplify    HV1  and  HV2  Regions  

Sequence  HV1  and  HV2  Amplicons    

(both  strands)  

Confirm  sequence  with  forward  and  reverse  strands  

Note  differences  from  Anderson  (reference)  sequence  

Compare  with  database  to  determine  haplotype  frequency  

Compare  Q  and  K  sequences  

QuesQon  Sample  

Reference  Sample  

Extract  mtDNA  from  reference  (K)  sample  

PCR  Amplify    HV1  and  HV2  Regions  

Sequence  HV1  and  HV2  Amplicons    

(both  strands)  

Confirm  sequence  with  forward  and  reverse  strands  

Note  differences  from  Anderson  (reference)  sequence  

Performed  separately  and  preferably    

aCer  evidence  is  completed  

Process  for  EvaluaCon    of  mtDNA    Samples  

Figure  10.4,  J.M.  Butler  (2005)  Forensic  DNA  Typing,  2nd  EdiCon  ©  2005  Elsevier  Academic  Press  

Pre-­‐  and  post-­‐PCR  SeparaCon  

Pre-­‐PCR  

ExtracCons  &  AmplificaCon  set-­‐ups  

Post-­‐PCR  

Thermalcyclers  &  Sequencing  

AmplificaCon  ReacCons  

Amplified  Product  

Pre-­‐  and  post-­‐PCR  SeparaCon  

Pre-­‐PCR  

ExtracCons  &  AmplificaCon  set-­‐ups  

Post-­‐PCR  

Thermalcyclers  &  Sequencing  

AmplificaCon  ReacCons  

Amplified  Product  

Degraded  Skeletal  Remains  

What  to  choose  and  how  to  generate  a  full  mtDNA  profile.  

Page 8: Outline% - FOROST

4/5/11  

8  

Degraded  Skeletal  Remains  

•  Sample  SelecCon  •  ExtracCon  Methods  

•  AmplificaCon  Strategies  

•  Sequencing  Strategies  

Degraded  Specimens  

•  In  general  terms  all  skeletal  remains  are  degraded.    

•  Some  are  more  degraded  then  others  due  to  environmental  stressors.  

•  Prudent  sample  selecCon  will  increase  the  rate  of  success.  

Environment  

•  Recovery  sites  vary  –  Extreme  condiCons  

•  Salt-­‐water  marshes  •  Glaciers  

–  High/Low  temperatures  

–  Repeated  freezing  and  thawing  

–  High/Low  pH  –  High  water  levels  –  Salt  or  brackish  water  

Environment  

•  Remains  may  be  –  On  the  surface  –  Buried  in  soil  or  other  substrates  –  Highly  fragmented    –  Subjected  to  burning  or  high  heat  –  Exposed  to  fuel  or  other  chemicals  

–  Disturbed  or  moved  by  humans  or  animals  

–  Animal  destrucCon  (feeding)  

Sample  SelecCon  

•  Unknown  skeletal  remains  – Remains  are  examined  and  samples  selected  by  anthropologists  or  medical  examiners  

SelecCng  samples  for  analysis  

•  What  are  the  best  skeletal  elements  to  use  for  analysis?  

Page 9: Outline% - FOROST

4/5/11  

9  

Bone  Structure  

•  Bones  with  dense  corCcal  structure  tend  to  have  a  greater  success  rate.  –  Compact  bone  may  inherently  afford  greater  protecCon  for  it’s  deeper  layers.  

–  Trabecular  bone  and  elements  composed  of  thin  corCcal  bone  have  a  greater  surface  area  

•  Cranial  fragments  vary  in  success  –  Formed  of  a  layer  of  trabecular  bone  sandwiched  between  two  layers  of  corCcal  bone  

–  Temporal  and  occipital  tend  to  have  denser  corCcal  bone  

Bones  SubmiUed  for  Analysis  

DenCCon  •  Dental  remains  provide  a  parCcular  challenge  –  The  enamel  gives  a  greater  protecCon  to  the  denCn  from  which  the  DNA  is  extracted.  

–  Anecdotally  shown  to  provide  copious  quanCCes  of  DNA  from  even  medieval  era  remains.  

–  Require  a  lot  of  handling.  

Cleaning  the  Sample  

•  The  exterior  of  the  bone  fragment  needs  to  be  cleaned  of  any  possible  contaminants:    – Dirt  – Plant  material  – Extraneous  DNA  – Dried  Tissue  

Cleaning  

•  An  easy  way  to  clean  the  surface  is  using  a  sanding  bit  in  a  Dremel  tool.  

How  far  to  clean?  

•  Everything  on  the  surface  needs  to  come  off,  along  with  the  spongy  bone.  

•  But,  you’ll  hit  a  point  where  there  is  no  solid  bone  les.  

Page 10: Outline% - FOROST

4/5/11  

10  

Other  Cleaning  Methods  

•  Bleaching  – Bones  can  be  subjected  to  a  bleach  sonicaCon  to  remove  external  contaminants.  

– A  fresh  water  sonicaCon  should  follow  to  get  rid  of  the  bleach  or  DNA  can  be  lost.  

•  “DNA  Off”  or  other  DNA  removal  products  

Too  much?  

•  Aggressive  cleaning  can  remove  or  otherwise  damage  available  DNA.      

ExtracCon  Methods  

•  Numerous  extracCon  methods  available.  •  Involve  different  methods  of  –  

– pulverizing  the  samples  

–  removing  the  DNA  from  the  samples  

•  Different  starCng  quanCCes  of  bone  can  also  be  used.  

PulverizaCon  Methods  •  Freezer  Mill  

– Uses  liquid  nitrogen  and  a  magnet  to  pulverize  the  bone  into  a  very  fine  powder.  

– Disadvantage:    •  Requires  storage  and  handling  of  liquid  nitrogen.  •  Grinders  and  sample  vials  are  reused  –  potenCal  contaminaCon.  

PulverizaCon  Method  

•  Waring  Blender  Cup  – Also  grinds  bone  to  a  relaCvely  fine  powder  – Disadvantage:  Cups  are  reused,  so  there  is  a  possibility  of  contaminaCon.    

“Freeing”  the  DNA  

•  AFDIL  now  uses  a  complete  demineralizaCon  protocol  – Demineralizes  the  bone  matrix.  

•  Other  chemical/physical  treatments  are  commercially  available  to  more  easily  acquire  the  DNA.  –  Silica  gel  –  Charge  Switch™  –  DNA  IQ™  

Page 11: Outline% - FOROST

4/5/11  

11  

ExtracCon  of  Skeletal  Remains  

•  The  powdered  bone  is  extracted  with    –  Proteinase  K  and  extracCon  buffer  (Demin)  

–  Overnight  at  56°C  •  DNA  is  removed  from  the  extracCon  buffer  with  –  a  series  of  washes  with  Phenol/  Chloroform/  Isoamyl  alcohol  

–  PurificaCon  of  product  with  filters.  

PCR  -­‐  Primer  Design  Origin  16024   576  

HV1  F15971/R16410  

HV2  F15/R389  

Primer  Design  Origin  16024   576  

HV1  F15971/R16410  

HV2  F15/R389  

PS1  F15989/R16251  

PS2  F16190/R16410  

PS3  F15/R285  

PS4  F155/R389  

PS5  F16381/R16569  

Primer  Design  Origin  16024   576  

HV1  F15971/R16410  

HV2  F15/R389  

PS1  F15989/R16251  

PS2  F16190/R16410  

PS3  F15/R285  

PS4  F155/R389  

mps1a   mps2a  

mps1b   mps2b  

mps3a   mps4a  

mps3b   mps4b  

mps5a  

mVR1   mVR2  

PS5  F16381/R16569  

Science  of  DNA  Sequencing  

dideoxyNTP  (ddNTP)  

•  Fred  Sanger  –  developed  the  dideoxy  method  of  sequencing  in  the  1970s…  sCll  used  today.  

AGCTGCATGCAATT-­‐-­‐-­‐-­‐-­‐  TCGAC  

-­‐OH  

dNTP  G  

-­‐OH  PPP  

ddNTP  G  

-­‐H  PPP  

*  ddNTP  

T  

-­‐H  PPP  

*  

Template  

Primer  

A  blend  of  dNTPs  and  ddNTPs  

Page 12: Outline% - FOROST

4/5/11  

12  

AGCTGCATGCAATT-­‐-­‐-­‐-­‐-­‐  TCGAC  

-­‐OH  

dNTP  G  

-­‐OH  PPP  

ddNTP  G  

-­‐H  PPP  

*  ddNTP  

T  

-­‐H  PPP  

*  

IncorporaCon  

AGCTGCATGCAATT-­‐-­‐-­‐-­‐-­‐  TCGACG  

-­‐H  

dNTP  G  

-­‐OH  PPP  

ddNTP  T  

-­‐H  PPP  

*  

TerminaCon  of  the  reacCon!  

Fragment  =     TCGACG  

AGCTGCATGCAATT-­‐-­‐-­‐-­‐-­‐  TCGAC  

-­‐OH  

dNTP  G  

-­‐OH  PPP  

ddNTP  G  

-­‐H  PPP  

*  ddNTP  

T  

-­‐H  PPP  

*  

IncorporaCon  

AGCTGCATGCAATT-­‐-­‐-­‐-­‐-­‐  TCGACG  

-­‐OH  

ddNTP  G  

-­‐H  PPP  

*  ddNTP  

T  

-­‐H  PPP  

*  

IncorporaCon  

AGCTGCATGCAATT-­‐-­‐-­‐-­‐-­‐  TCGACGT  

-­‐H  

ddNTP  G  

-­‐H  PPP  

*  

TerminaCon  of  the  reacCon!  

Fragments  =     TCGACG   TCGACGT  

1  bp  difference!  

Sanger  Sequencing  3’-TAAATGATTCC-5’

ATT

ATTTACTAA

ATTTACT ATTTAC

ATTT ATTTA

AT

ATTTACTA

ATTTACTAAG ATTTACTAAGG

A DNA  template  5’   3’  

Primer  anneals  

Extension  produces  a  series  of  ddNTP  terminated  products  each  one  base  different  in  length  

Each  ddNTP  is  labeled  with  a  different  color  fluorescent  dye  

Sequence  is  read  by  no1ng  peak  color  in  electropherogram  (possessing  single  base  resolu1on)  

Figure  10.5,  J.M.  Butler  (2005)  Forensic  DNA  Typing,  2nd  EdiCon  ©  2005  Elsevier  Academic  Press  

Page 13: Outline% - FOROST

4/5/11  

13  

InterpreQng  and  ReporQng  mtDNA  Results  

Data  Review  and  EdiCng  

Trimming  of  data  (primer  sequences  too)  

Data  Review  and  EdiCng  

rCRS  

Differences  from  rCRS  are  noted  by  the  sosware  

ReporCng  Differences  from  rCRS  

rCRS  

489  T-­‐C  493  A-­‐G  

Point  MutaCons  are    listed  as  differences    

from  the  rCRS  

DeleCons  

•  DeleCons  –  report  the  posiCon  and  bases  deleted…  

rCRS  

523  A-­‐del  524  C-­‐del  

InterpretaConal  Issues  -­‐  Heteroplasmy  

•  Heteroplasmy  –  the  presence  of  more  than  one  mtDNA  type  in  an  individual  (Melton  2004).  

•  Once  thought  to  be  rare,  heteroplasmy  exists  (at  some  level)  in  all  Cssues  (Melton  2004).    

•  Especially  important  in  hair  analysis  (semi-­‐clonal).  

Page 14: Outline% - FOROST

4/5/11  

14  

InterpretaConal  Issues  -­‐  Heteroplasmy  

•  Two  types:  Length  (most  common)  and  Point  Heteroplasmy.  

AAACCCCCCCCCTCCCCCCGCTTC  

AAACCCCCCC  :  :  :TCCCCCGCTTC  

Sequence  1  

rCRS  

303   310   315  

Sequence  2   AAACCCCCCCCCCTCCCCCCGCTTC  

Sequence  1  has  9  Cs  before  310T  Sequence  2  has  10  Cs  before  310T  

“Out  of  phase!”  

HV2  Length  Heteroplasmy  

AAACCCCCCCCCTCCCCCCGCTTC  Sequence  1  Sequence  2   AAACCCCCCCCCCTCCCCCCGCTTC  

“Out  of  phase!”  

Dr.  CinCa  Friedman,  São  Paulo,  Brasil  

Double  coverage  is  important  to  determine  sequences    surrounding  HV1,  HV2,  HV3  C-­‐stretches.  

Point  Heteroplasmy  

16093  (C/T)  

16086   16101  

Figure  10.9,  J.M.  Butler  (2005)  Forensic  DNA  Typing,  2nd  EdiCon  ©  2005  Elsevier  Academic  Press  

“Hotspot”  for  heteroplasmy  “Y”  Pyrimidine  

OriginaCon  of  Heteroplasmy  

Chinnery  et  al.  (2000)  Trends  in  GeneCcs  

Ovum  –  100K  mitochondria  

Very  li\le  mito  growth  unCl  implantaCon  

Females  –  produce  ~7  million  ova  during  fetal  development  only  a  few  hundred    become  mature  oocytes  

Heteroplasmic  VariaCon  

Sekiguchi  et  al.  (2003)   16291  

Buccal  Swabs  

Heteroplasmy  DetecCon  

•  DetecCon  of  heteroplasmy  –  sequencing  can  detect  only  to  ~10%  level.  

•  Other  methods  (e.g.  Denaturing  Gradient  Gel  Electrophoresis)  are  much  more  sensiCve.  

Page 15: Outline% - FOROST

4/5/11  

15  

Famous  Case  Involving  Heteroplasmy  

IdenQficaQon  of  the  Romanov  Remains    (the  Last  Russian  Czar)  

Tsarina  Alexandra  

Tsar    Nicholas  II  

Xenia Cheremeteff-Sfiri

Prince Philip Duke of Edinburgh

Georgij Romanov

Mitotype  16111T  16357C  263G  315.1C  

Mitotype  16126C  16169T  16294T  16296T  73G  263G  315.1C  

16169T/C  

16169T/C  Louise of

Hesse-Cassel

SOURCES:  Gill  et  al.  (1994)  Nature  Gene1cs,  6,  130‑135.;  Ivanov  et  al.    (1996)  Nature  Gene1cs,  12,  417‑420;  Stone,  R.  (2004)  Science,  303,  753.  

D.N.A.  Box  10.2,  J.M.  Butler  (2005)  Forensic  DNA  Typing,  2nd  EdiCon  ©  2005  Elsevier  Academic  Press  

AFDIL  –  ConfirmaCon  of  FSS  

TSAR

GEORGIJ

Dr.  Thomas  Parsons  

Extract  mtDNA  from  evidence  (Q)  sample  

PCR  Amplify    HV1  and  HV2  Regions  

Sequence  HV1  and  HV2  Amplicons    

(both  strands)  

Confirm  sequence  with  forward  and  reverse  strands  

Note  differences  from  Anderson  (reference)  sequence  

Compare  with  database  to  determine  haplotype  frequency  

Compare  Q  and  K  sequences  

QuesQon  Sample  

Reference  Sample  

Extract  mtDNA  from  reference  (K)  sample  

PCR  Amplify    HV1  and  HV2  Regions  

Sequence  HV1  and  HV2  Amplicons    

(both  strands)  

Confirm  sequence  with  forward  and  reverse  strands  

Note  differences  from  Anderson  (reference)  sequence  

Performed  separately  and  preferably    

aCer  evidence  is  completed  

Process  for  EvaluaCon    of  mtDNA    Samples  

Figure  10.4,  J.M.  Butler  (2005)  Forensic  DNA  Typing,  2nd  EdiCon  ©  2005  Elsevier  Academic  Press  

InterpretaCon  of  mtDNA  Results  

•  Once  the  sequence  has  been  generated  (Q  and  K),  and  the  differences  from  the  rCRS  are  noted,  what  next?  

SWGDAM  Guidelines  for  Mitochondrial  DNA  (mtDNA)    NucleoCde  Sequence  InterpretaCon  

(1)  Exclusion  

(2)  Inconclusive  

(3)  Cannot  Exclude  (Failure  to  Exclude)  

InterpretaCon  of  mtDNA  Results  

•  Exclusion  –  if  there  are  two  or  more  nucleoCde  differences  between  the  quesConed  and  known  samples,  the  samples  can  be  excluded  as  originaCng  from  the  same  person  or  maternal  lineage.  

Q        TATTGCACAG    K        TATTGTACGG  

Exclusion  

Sample  Q   Sample  K  

6  T-­‐C  9  G-­‐A  263  A-­‐G  315.1  C  

263  A-­‐G  315.1  C  

Page 16: Outline% - FOROST

4/5/11  

16  

InterpretaCon  of  mtDNA  Results  

•  Inconclusive  –  if  there  is  one  nucleoCde  difference  between  the  quesConed  and  the  known  samples,  the  result  will  be  inconclusive.  

Q        TATTGCACGG  K        TATTGTACGG  

Sample  Q   Sample  K  

6  T-­‐C  263  A-­‐G  315.1  C  

263  A-­‐G  315.1  C  

Inconclusive  

InterpretaCon  of  mtDNA  Results  

•  Cannot  Exclude  –  if  the  sequences  from  quesConed  and  known  samples  under  comparison  have  a  common  base  at  each  posiCon  or  a  common  length  variant  in  the  HV2  C-­‐stretch,  the  samples  cannot  be  excluded  as  originaCng  from  the  same  person  or  the  same  maternal  lineage.  

Q        TATTGTACGG  K        TATTGTACGG  

Sample  Q   Sample  K  

152  T-­‐C  263  A-­‐G  315.1  C  

152  T-­‐C  263  A-­‐G  315.1  C  

Cannot  Exclude  

ReporCng  StaCsCcs  

•  When  “cannot  exclude”  is  the  interpretaCon,  then  a  staCsCcal  esCmate  is  needed  in  order  to  weigh  the  significance  of  the  observed  match  

•  CounCng  method  is  most  common  approach  used  and  involves  counCng  the  number  of  Cmes  that  a  parCcular  mtDNA  haplotype  (sequence)  is  seen  in  a  database  

•  The  larger  the  number  of  unrelated  individuals  in  the  database,  the  be\er  the  staCsCcs  will  be  for  a  random  match  frequency  esCmate.  

Control  region  (D-­‐loop)  

1/16,569  

cyt  b  

ND5  ND6  

ND4  

ND4L  

ND3  

COIII  ATP6  

ATP8   COII  

12S    rRNA  

16S    rRNA  

ND1  

ND2  

COI  

OH  

9-­‐bp  dele1on  

OL  

F  

V  

L1  

I  Q  M  

W  

A  N  

C  Y  

S1  

D  K  

G  

R  

H  S2  

L2  

E  

P  

T  

HV1   HV2  

16024   16365   73   340  

16024   576  

“16,569”  bp  

1  

22  tRNAs  

2  rRNAs  

13  genes  

Figure  10.1,  J.M.  Butler  (2005)  Forensic  DNA  Typing,  2nd  EdiCon  ©  2005  Elsevier  Academic  Press  

Forensic  Focus  

Uses of Haplogroup Typing

www.payvand.com    

   h\p://www.rcfp.org/  

Anthropological Studies

Forensic Identification

Mass Graves/ Commingled Remains

h\p://www.dccam.org  

KEY:

EU = European

AS = Asian

AF = African

NA = Native American L3

M

10398G, 10400T

13263G

5178A

7600A 4833G

C

D

E G

AS/NA

AS/NA

AS AS

N

8272-8280 del

A10398, C10400

C7028

1719A 663G

12406A

X

H

F

A B

EU

EU/AS/NA

AS

AS/NA AS/NA

10398G, 1719A

I

EU

G3594 10398G, 7028T

3594T, 10398G, 7028T

L1/L2

AF

AF/EU/AS

Page 17: Outline% - FOROST

4/5/11  

17  

Acknowledgments  

Many  thanks  to    •  Organizers    •  Mike  Coble  NIST  (Former  chief  research  secCon  AFDIL)    

QUESTIONS?  [email protected]