Outline...Cg T1 T2 Vdis O3 Generator P OG 2C d V DIS f > V PEAK V TH @ Dielectric Capacitance Gap...

36
10/12/2018 1 Using Power Electronics for Electrodischarge Applications State of the Art and Research Opportunities José Marcos Alonso Álvarez 2008 Universidad de Oviedo, España Grupo de Electrónica Industrial e Iluminación Electrónica Outline Introduction Load Modeling Ballast Modeling High Power Factor Ballasts Minimization of Acoustic Resonances Piezoelectric Transformer Ballasts Use of Magnetic Regulators Digital control Transferring Results to Industry

Transcript of Outline...Cg T1 T2 Vdis O3 Generator P OG 2C d V DIS f > V PEAK V TH @ Dielectric Capacitance Gap...

  • 10/12/2018

    1

    Using Power Electronics for

    Electrodischarge Applications

    State of the Art and Research Opportunities

    José Marcos Alonso Álvarez

    2008

    Universidad de Oviedo, España

    Grupo de Electrónica Industrial e

    Iluminación Electrónica

    Outline

    Introduction

    Load Modeling

    Ballast Modeling

    High Power Factor Ballasts

    Minimization of Acoustic Resonances

    Piezoelectric Transformer Ballasts

    Use of Magnetic Regulators

    Digital control

    Transferring Results to Industry

  • 10/12/2018

    2

    Universidad de Oviedo

    Grupo de Electrónica Industrial

    Campus de Viesques, Edificio 3

    33204 – Gijón, Asturias

    España

    Facilities

    Introduction

    Power Electronics and Lighting laboratory

  • 10/12/2018

    3

    Electronic

    Converter

    (Ballast)

    Basic Idea

    Primary

    Source

    Load

    Applications:

    – Discharge lamps, ozone generation,

    electrostatic separators, plasma displays, arc

    welding, plasma cutting machines, etc.

    Introduction

    Main Goals

    – Discharge load modeling

    – Ballast developing:

    • Power factor correction

    • Efficiency improvement

    • New features: lower volume and weight, power

    regulation and control, soft start, increase lamp

    life, etc.

    Introduction

    http://images.google.es/imgres?imgurl=http://es.elstat.com/es/balast2.jpg&imgrefurl=http://es.elstat.com/es/cebadores.htm&h=377&w=559&sz=28&tbnid=QxuAwMqVu8IJ:&tbnh=88&tbnw=130&start=2&prev=/images%3Fq%3Dbalasto%2Belectr%25C3%25B3nico%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://es.elstat.com/es/balast2.jpg&imgrefurl=http://es.elstat.com/es/cebadores.htm&h=377&w=559&sz=28&tbnid=QxuAwMqVu8IJ:&tbnh=88&tbnw=130&start=2&prev=/images%3Fq%3Dbalasto%2Belectr%25C3%25B3nico%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://www.gabaru.com/img/sylv-2.jpg&imgrefurl=http://www.gabaru.com/sylv-5.htm&h=162&w=199&sz=8&tbnid=koFJq8dyLrIJ:&tbnh=80&tbnw=98&start=15&prev=/images%3Fq%3Dhalogenuros%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://www.gabaru.com/img/sylv-2.jpg&imgrefurl=http://www.gabaru.com/sylv-5.htm&h=162&w=199&sz=8&tbnid=koFJq8dyLrIJ:&tbnh=80&tbnw=98&start=15&prev=/images%3Fq%3Dhalogenuros%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://www.agrienergia.com/electri/fotos/torre_electrica.jpg&imgrefurl=http://www.agrienergia.com/electri/cat/index_contingut.html&h=171&w=256&sz=28&tbnid=G3B6k9ZrVD0J:&tbnh=71&tbnw=106&start=49&prev=/images%3Fq%3Dred%2Bel%25C3%25A9ctrica%26start%3D40%26hl%3Des%26lr%3D%26ie%3DUTF-8%26sa%3DNhttp://images.google.es/imgres?imgurl=http://www.agrienergia.com/electri/fotos/torre_electrica.jpg&imgrefurl=http://www.agrienergia.com/electri/cat/index_contingut.html&h=171&w=256&sz=28&tbnid=G3B6k9ZrVD0J:&tbnh=71&tbnw=106&start=49&prev=/images%3Fq%3Dred%2Bel%25C3%25A9ctrica%26start%3D40%26hl%3Des%26lr%3D%26ie%3DUTF-8%26sa%3DNhttp://images.google.es/imgres?imgurl=http://www.chirkindustry.com/images/Default/ozone_generator.JPG&imgrefurl=http://www.chirkindustry.com/&h=398&w=433&sz=21&tbnid=ZS5ySdeGiucJ:&tbnh=113&tbnw=122&start=13&prev=/images%3Fq%3Dozone%2Bgenerator%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://www.chirkindustry.com/images/Default/ozone_generator.JPG&imgrefurl=http://www.chirkindustry.com/&h=398&w=433&sz=21&tbnid=ZS5ySdeGiucJ:&tbnh=113&tbnw=122&start=13&prev=/images%3Fq%3Dozone%2Bgenerator%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://www.electritienda.com/media/mercurio.jpg&imgrefurl=http://www.electritienda.com/es/dept_143.html&h=125&w=119&sz=3&tbnid=WRclz4t7YWgJ:&tbnh=82&tbnw=79&start=19&prev=/images%3Fq%3Dl%25C3%25A1mpara%2Bde%2Bmercurio%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://www.electritienda.com/media/mercurio.jpg&imgrefurl=http://www.electritienda.com/es/dept_143.html&h=125&w=119&sz=3&tbnid=WRclz4t7YWgJ:&tbnh=82&tbnw=79&start=19&prev=/images%3Fq%3Dl%25C3%25A1mpara%2Bde%2Bmercurio%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://img.musiciansfriend.com/dbase/pics/products/80/800750.jpg&imgrefurl=http://www.ishopwiz.com/3/3-0416.html&h=350&w=411&sz=13&tbnid=rd5mjL9HIU0J:&tbnh=102&tbnw=120&start=8&prev=/images%3Fq%3Ddischarge%2Blamp%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://img.musiciansfriend.com/dbase/pics/products/80/800750.jpg&imgrefurl=http://www.ishopwiz.com/3/3-0416.html&h=350&w=411&sz=13&tbnid=rd5mjL9HIU0J:&tbnh=102&tbnw=120&start=8&prev=/images%3Fq%3Ddischarge%2Blamp%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://www.chirkindustry.com/images/Default/ozone_generator.JPG&imgrefurl=http://www.chirkindustry.com/&h=398&w=433&sz=21&tbnid=ZS5ySdeGiucJ:&tbnh=113&tbnw=122&start=13&prev=/images%3Fq%3Dozone%2Bgenerator%26hl%3Des%26lr%3D%26ie%3DUTF-8http://images.google.es/imgres?imgurl=http://www.chirkindustry.com/images/Default/ozone_generator.JPG&imgrefurl=http://www.chirkindustry.com/&h=398&w=433&sz=21&tbnid=ZS5ySdeGiucJ:&tbnh=113&tbnw=122&start=13&prev=/images%3Fq%3Dozone%2Bgenerator%26hl%3Des%26lr%3D%26ie%3DUTF-8

  • 10/12/2018

    4

    Outline

    Introduction

    Load Modeling

    Ballast Modeling

    High Power Factor Ballasts

    Minimization of Acoustic Resonances

    Piezoelectric Transformer Ballasts

    Use of Magnetic Regulators

    Digital control

    Transferring Results to Industry

    Goals

    Improve the knowledge on load behaviour

    Allows the converter optimum design with a minimum of

    laboratory tests

    Predict the changes in the load operation point due to

    possible perturbations

    Make possible the study of the interaction between

    converter and load

    Load Modeling

  • 10/12/2018

    5

    Discharge Lamps

    0 0.01 0.02 0.03 0.04 0.05-200

    -100

    0

    100

    200

    (V) (A)

    t (s)

    -4

    4

    -2

    2

    Vla Ila

    200 100 0 100 200-4

    -2

    0

    2

    4

    Ila (A)

    Vla (V)

    0

    (a)

    0 10200

    100

    0

    100

    200

    t ( s )

    Vla

    Ila(A)

    -4

    4

    -2

    2

    0

    20 30 40 50

    m

    (V)

    200 100 0 100 2003

    1.5

    0

    1.5

    3

    Ila (A)

    Vla (V)

    (b)

    50 Hz

    50 kHz

    Load Modeling

    Models

    Static:

    – Provide the steady state behaviour

    Dynamic:

    – Provide the behaviour during a transient:

    • Great signal

    • Small signal

    Load Modeling

  • 10/12/2018

    6

    Static Models

    As a function of lamp power:

    – Hyperbolic Approx.:

    – Woo’s model:

    BP

    AR B

    P

    AR

    C

    0 200 400 600 800 10001

    2

    3

    4

    5

    RL

    F4T5

    PTUBE

    138 W

    0 200 400 600 800 10001

    2

    3

    4

    5

    RL

    F4T5

    PTUBE

    138 W

    2

    III PCPBA)P(I

    PBA)P(V VV

    Load Modeling

    Great Signal ModelsMader – Horn’s model

    sPs1

    1sP LL

    LLL P,IFV

    0L

    2

    0L

    PP

    VPR

    0 5 10 15 200

    2500

    5000

    7500

    10000

    RLA

    P (W)LA

    V =100V0P =1W0W

    10

    20

    15

    EL

    EK RK

    30 40

    GP RP CP

    (a) (b)

    EK 30 20 Value={Vo*Vo/(V(40,20)+Po)}

    .subckt lamp 10 20

    + params: Vo=100 Po=1 Tau=0.3m

    EL 10 15 Value={V(30,20)*I(VS)}

    VS 15 20 0

    RK 30 20 1

    GP 20 40 Value={V(10,20)*I(VS)}

    RP 40 20 1

    CP 40 20 {Tau}

    .ends

    VS

    20ms 25ms 30ms 35ms 40ms 45ms 50ms 55ms 60ms

    Timev(2) i(lb)*50 v(1)

    200

    0

    -200

    -150V -100V -50V -0V 50V 100V 150V

    v(2)i(lb)

    3.0A

    2.0A

    1.0A

    0A

    -1.0A

    -2.0A

    (b) (c)

    1 22a

    LAMP

    V =100 V0P =1 W00.3ms

    Vg

    0

    Vg 1 0 SIN(0 325 50)

    Rb 1 2a 100

    Lb 2a 2 500mH

    XLA 2 0 LAMP

    .tran 0.1m 60m 0 0.1m

    (a)

    Rb Lb

    Load Modeling

  • 10/12/2018

    7

    Small Signal Dynamic Models

    Deng – Cuk’s model

    – Define the lamp incremental impedance:

    I

    V

    v̂Zl

    Allows the study of

    lamp-ballast

    interaction.

    Load Modeling

    Modeling of O3 Generators

    ~kVO2 O3

    Electrode

    Electrode

    Dielectric

    + High voltages: ~5kV - 20kV

    + High O3 yielding: up to 200 grO3/kWh with O2

    – Risk of electric failure, especially in humid environments

    High Voltage Dielectric Barrier Discharge:

    Load Modeling

  • 10/12/2018

    8

    O3 Generators under Test

    300 mm

    280 mm

    Borosilicato

    Malla de acero

    inoxidable

    Lámina acero

    (espesor 0.2

    mm)

    Ozonizador tipo A

    Ozonizador tipo B250 mm

    200 mm

    230 mm

    4mm

    180 mm

    Borosilicato Láminas de acero

    inoxidable

    (espesor 0.2 mm)

    5 mm

    1 mm

    1 mm

    23 mm

    0.3 mm

    Load Modeling

    Low Frequency Model

    Cd

    Cg

    T1

    T2

    Vdis

    O3 Generator

    THPEAKDISdOG VVfVCP 2

    Dielectric Capacitance

    Gap Capacitance

    Discharge Voltage

    Load Modeling

  • 10/12/2018

    9

    Low Frequency Waveforms

    VoltageCurrent

    Power

    Voltage

    Charge

    Load Modeling

    Test Bench

    Amplificador

    RF

    Tensión

    Corriente

    GND

    Osciloscopio

    1 :

    120

    Cámara de ensayo

    Concentrador

    de O2

    Entrada

    O2

    Salida

    O3

    0.5 l.p.m

    OG

    Analizador de O3

    Válvula de

    regulación

    Carga

    C

    Load Modeling

  • 10/12/2018

    10

    High Frequency Waveforms

    Voltage

    CH1=5000V CH2=100mV

    Current

    Power

    Load Modeling

    Outline

    Introduction

    Load Modeling

    Ballast Modeling

    High Power Factor Ballasts

    Minimization of Acoustic Resonances

    Piezoelectric Transformer Ballasts

    Use of Magnetic Regulators

    Digital control

    Transferring Results to Industry

  • 10/12/2018

    11

    GoalsTo know the behavior of the converter (ballast):

    – Static

    – Dynamic

    Study the behavior of the arrangement lamp +

    ballast:

    – Abnormal or unstable behavior can be detected

    Allows the ballast to be designed for closed loop

    operation:

    – Lamp power regulation

    – Implies regulator design

    Computer simulation

    – Open loop

    – Closed loop

    Ballast modeling

    Static and Dynamic Modeling

    Generalized Averaged Method

    Useful for modeling any power converter, including

    electronic ballasts

    Can be used to model converters that exhibit high ripple

    waveforms

    Based on the use of the exponential Fourier series

    The Fourier series coefficients are used as state

    variables

    The model order, complexity and accuracy are

    proportional to the number of harmonics considered in

    the analysis.

    Ballast modeling

  • 10/12/2018

    12

    k

    )Tt(jk

    ke)t(x)Tt(x

    The waveform x(t) in the interval (t-T, t] is approximated by the

    exponential Fourier series:

    Where:

    T

    2 T,0

    de)Tt(xT1

    )t(x)Tt(jkT

    0k

    Coefficients are the model state variables

    Time waves can be obtained from these coeffcients

    The model order is equal to twice the number of coefficients taken

    into account

    kx

    Real

    Aprox.

    Continuous Wave AC Wave

    Methodology

    Ballast modeling

    Dynamic Response

    w

    1 103

    1 104

    1 105

    1 106200

    100

    0

    100

    200

    w

    20

    1 103

    1 104

    1 105

    1 10660

    40

    20

    0

    ue R=1000

    R=500

    R=212

    G

    ueG

    180

    R=1000

    R=500

    R=212

    )s(E

    )s(u)s(G

    Cpico

    ue

    Ballast modeling

  • 10/12/2018

    13

    Outline

    Introduction

    Load Modeling

    Ballast Modeling

    High Power Factor Ballasts

    Minimization of Acoustic Resonances

    Piezoelectric Transformer Ballasts

    Use of Magnetic Regulators

    Digital control

    Transferring Results to Industry

    GoalsSupply the lamps from the main AC voltage

    Reduction of low frequency harmonic content to be

    injected to the mains:

    – Better use of distribution equipment

    – Reduction of interference to other loads

    Compete with old electromagnetic technology

    – Robustness and fiability

    – High power factor

    – Poor features: power regulation, soft start, etc.

    Important: A reduction in the number of components

    and in the control circuitry is mandatory to reduce cost.

    High Power Factor Ballasts

  • 10/12/2018

    14

    Standard UNE EN 61000-3-2Class A: 3 Equipment, Tools, etc.

    Class B: Portable tools, soldering equipment.

    Class C: Lighting

    Class D: Computers, TV

    Orden del Armónico

    n

    Corriente armónica máxima admisible expresada en porcentaje de

    la corriente de entrada a la frecuencia fundamental

    %

    2

    3

    5

    7

    9

    11 n 39

    (sólo armónicos impares)

    2

    30*

    10

    7

    5

    3

    * es el factor de potencia

    Clase C (P > 25W)

    High Power Factor Ballasts

    Introduction

    AC

    vgv

    LA

    LAMP

    RESONANT

    INVERTER

    AC

    vg

    FPC

    STAGE C 0RESONANT

    INVERTER

    vLA

    LAMP

    PROBLEM:

    Lamp power

    fluctuates at line

    frequency

    Lamp power

    is stable

    No Filter

    Capacitance

    Solution

    High Power Factor Ballasts

  • 10/12/2018

    15

    Active Power Factor Correctors

    Lower size and

    weight

    Lower cost for

    high power

    Additional

    features

    Buck - Boost

    (a)

    -

    +

    AC C 0

    D

    L

    Q

    L

    AC C 0

    D

    Q

    +

    -

    AC C 0

    +

    -

    Q

    D

    (b) (c)

    (a)

    -

    +

    AC C 0

    D

    L

    Q

    L

    AC C 0

    D

    Q

    +

    -

    AC C 0

    +

    -

    Q

    D

    (b) (c)

    Flyback

    Boost

    High Power Factor Ballasts

    Integrated Topologies

    ETAPA

    CFPINVERSOR

    AC B.F.

    RED

    +

    BUS CC

    LAMPARA

    AC A.F

    BALASTO

    DE UNASOLA ETAPA

    +

    (a)

    (b)

    AC B.F.

    RED LAMPARA

    AC A.F

    Reduction in active

    components

    Simpler control

    circuit

    Lower cost

    High Power Factor Ballasts

  • 10/12/2018

    16

    Integrated Boost-Half Bridge

    AC

    AC

    Q3

    Q1

    Q2

    D1

    D2

    D3L

    Lr

    CrR

    LA

    RLA

    CF

    CF

    Q1

    Q2

    D1

    D2

    D3

    L

    Lr

    Cr

    (a)

    (b)

    High Power Factor Ballasts

    Integrated Buck-Half Bridge

    AC+

    D0 C0

    CR

    LR

    CFR LA

    +

    Q1D1

    Q2

    D2

    L0

    Q0

    AC

    +D0 C0

    CR

    LR

    CFR LA

    +

    Q1D1

    Q2

    D2

    L0

    (a)

    D3

    V sin tg

    V sin tg -V0

    -V0

    High Power Factor Ballasts

  • 10/12/2018

    17

    Current Shaper

    Vo

    Vs

    t

    q

    ig

    t

    t

    vg

    Vo Vs

    2

    vs

    Ig

    (t)

    (t)

    REDINVERSOR

    RESONANTE LAMPARA

    VS

    RS

    Conformador

    CO

    vg VO

    vsig

    High Power Factor Ballasts

    Example:

    +

    MAIN

    AC

    Q1 D1

    Q2 D2

    CF

    LR

    CR LAMP

    L D

    L1

    D3

    D4

    C1

    1 N1

    N2

    High Power Factor Ballasts

  • 10/12/2018

    18

    Outline

    Introduction

    Load Modeling

    Ballast Modeling

    High Power Factor Ballasts

    Minimization of Acoustic Resonances

    Piezoelectric Transformer Ballasts

    Use of Magnetic Regulators

    Digital control

    Transferring Results to Industry

    GoalsBeing able to supply high intensity discharge lamps

    using high frequency converters ( > 20kHz )

    Reduction of ballast volume and weight

    Incorporate new features not available in magnetic

    technology

    – Optimization of starting process

    – Optimization of warming-up phase

    – Lamp power control and regulation (dimming)

    Increase lamp life

    Target lamps: high press. sodium, metal halide

    Characterization of lamp acoustic resonances

    Minimization of Acoustic Resonances

  • 10/12/2018

    19

    The Problem of Acoustic Resonances

    t

    P)1k(pc

    t

    p

    t

    p V222

    2

    Wave Equation:

    ESTABLE

    RESONANCIA LONGITUDINAL

    RESONANCIA RADIAL

    p, pressure

    P, power

    t, time

    Minimization of Acoustic Resonances

    Typical AR Spectra

    100 200 500 1k 2 5 10k 20 50 100 250k50Hz

    100 200 500 1k 2 5 10k 20 50 100 250k50Hz

    100 200 500 1k 2 5 10k 20 50 100 250k50Hz

    Arco estable Arco serpentea

    Arco fluctúa Extinción de arco

    (a) Vapor de mercurio de alta presión

    (c) Vapor de sodio de alta presión

    (b) Halogenuros metálicos

    Minimization of Acoustic Resonances

  • 10/12/2018

    20

    AR Characterization

    Minimization of Acoustic Resonances

    Laboratory Testbench

    Minimization of Acoustic Resonances

    Equipment Thermic Chamber

  • 10/12/2018

    21

    Some Results

    Lamps: Philips CDM-T 35W/830

    Minimization of Acoustic Resonances

    Methods for AR Compensation

    Operation in AR-free windows

    DC operation

    Frequency modulation

    Supply the lamp with sinusoidal waveform and

    superposed third harmonic

    Square Waveform

    – Low frequency: < 500Hz

    – High frequency: > 20KHz

    Minimization of Acoustic Resonances

  • 10/12/2018

    22

    Example:

    0

    0.25

    0.5

    0.75

    1

    VLA

    VLA1

    VLA3

    t

    Lamp current

    Lamp power

    0 2 4 6 8 100

    0.2

    0.4

    0.6

    0.8

    1

    H j( )

    H 0( )

    j

    0.15

    0.30

    0.05

    1.00

    Lamp power: harmonic content

    2nd3rd

    4th

    Power is distributed in

    harmonics 2º, 3º y 4º

    0

    AR threshold

    Minimization of Acoustic Resonances

    Converter

    T

    T/3

    V1

    V3

    t

    t

    t

    LEG 1: operates at fundamental frequency

    LEG 3: operates at three times the fundamental

    frequency

    RAMA 1 RAMA 3

    GateDriver3f,

    L1 L3

    C

    MHLamp

    V1 V3GateDriver

    f

    VBUS

    Igniter

    (3kV)

    Minimization of Acoustic Resonances

  • 10/12/2018

    23

    PrototypeControl Stage Power Stage

    Starter

    Lamp

    Minimization of Acoustic Resonances

    Outline

    Introduction

    Load Modeling

    Ballast Modeling

    High Power Factor Ballasts

    Minimization of Acoustic Resonances

    Piezoelectric Transformer Ballasts

    Use of Magnetic Regulators

    Digital control

    Transferring Results to Industry

  • 10/12/2018

    24

    Goals

    Use of piezoelectric materials in energy conversion

    applications

    Supply the loads at high frequency, maintaining low volume

    and weight

    Used in substitution of reactive components in traditional

    electronic ballasts

    A reduction in cost is expected in the future for high mass

    production of piezolectric components

    New converter topologies are to be studied in order to take

    advantage of the piezoelectric transformers possibilities

    Piezoelectric Transformer Ballasts

    Piezoelectric Transformer

    Combination: sensor + actuator

    ROSEN

    ppT T

    Primary

    Secundary

    P: polarization T: mechanical stress

    Piezoelectric Transformer Ballasts

  • 10/12/2018

    25

    Transformadores Piezoeléctricos

    Extensional

    Vibration

    Radial

    Vibration

    p TPrimary

    Secundary p T

    Primario

    Secundario

    P: polarización T: tensión mecánica

    p

    T

    p T

    Piezoelectric Transformer Ballasts

    Equivalent Circuit

    Small size

    No leakage inductance

    No electromagnetic noise

    Equivalent circuit incorporate a resonant filter

    similar to those used in powe converters

    CE

    L R C 1:n

    C2 SecundarioPrimario

    Piezoelectric Transformer Ballasts

  • 10/12/2018

    26

    Topologies

    Half bridge converter:

    – Moderate switching frequency: < 100 kHz

    – Zero Voltage Switching can be achieved

    Class E converter

    – Higher Frequencies: > 300 kHz

    – Zero Voltage Switching can be achieved

    Piezoelectric Transformer Ballasts

    Half Bridge Topology

    VDC

    M1

    M2

    D1

    D2

    CE

    L R C 1:n

    C2 R

    L

    LÁMPARA

    TRANSFORMADOR PIEZOELÉCTRICO

    Well known and tested converter

    No external components are required

    Good efficiency

    Control ICs commercially available

    Lamp soft switching can be achieved

    Piezoelectric Transformer Ballasts

  • 10/12/2018

    27

    Clase E Converter

    Useful for high frequency operation: > 300 kHz

    One controlled switch

    High voltage stress

    Higher harmonic content in the transformer input voltage

    Vg

    L C

    C2

    Lámpara

    LB

    ig

    iD

    ires

    uC1

    C1

    Piezoelectric Transformer Ballasts

    Outline

    Introduction

    Load Modeling

    Ballast Modeling

    High Power Factor Ballasts

    Minimization of Acoustic Resonances

    Piezoelectric Transformer Ballasts

    Use of Magnetic Regulators

    Digital control

    Transferring Results to Industry

  • 10/12/2018

    28

    GoalsStudy of new control methods for electronic

    ballasts

    Based on the use of variable magnetic

    components:– Variable transformer

    – Variable inductance

    Application to:– Lamp power control (“dimming”)

    – Lamp soft start

    Advantages:– Operation at fixed frequency

    – Optimized control

    – Galvanic isolation

    – High efficiency

    Magnetic Regulators

    Proposed Control

    Magnetic Regulators

    VDC

    M1

    M2

    D1

    D2

    L

    C

    1:x

    CB

    A

    B

    LAMP

    Fuente de

    Corriente CC

    IC

    Variable

    Transformer

    Entrehierro

    Control

    Entrada

    Carga

  • 10/12/2018

    29

    VDC

    M1

    M2

    D1

    D2

    L

    C

    CB

    A

    B

    LAMP

    Fuente de Corriente

    CC

    IC

    Variable

    InductanceEntrehierro

    Control

    LV

    Proposed Control

    Magnetic Regulators

    Control Curves

    Lamp Power:

    4 104

    5 104

    6 104

    7 104

    8 104

    9 104

    0.001 0.0011

    0

    5

    10

    15

    20

    25

    30

    35

    40P

    LA(W)

    L

    40k

    45k

    50k

    55k

    Magnetic Regulators

  • 10/12/2018

    30

    LAQ=R / Z B

    L LA

    LC

    Q

    Soft Start Process

    0.- Start

    1.- Heating

    2.- Ignition

    3.- Steady state

    Magnetic Regulators

    Outline

    Introduction

    Load Modeling

    Ballast Modeling

    High Power Factor Ballasts

    Minimization of Acoustic Resonances

    Piezoelectric Transformer Ballasts

    Use of Magnetic Regulators

    Digital control

    Transferring Results to Industry

  • 10/12/2018

    31

    Regulator

    Primary

    Source BallastLamp

    SensorMicrocontroller

    Discretization

    Digital Control Applied to Ballasts

    Digital Control

    GateDriverIR211mC

    ST6253

    Freq

    OC

    EMI Filter&

    Power

    Supply

    AC Line

    Vbus= 320V

    Vcc=15V

    Rs

    UV LAMP

    GPH436T5

    TemperatureSensor

    DissolvedOzoneSensor

    A1

    A2

    B1

    B2

    VDD

    A/D

    A/D

    NMI

    A/D

    ARTimer

    GND

    VbusSensor M1

    M2

    CF L

    C

    Vdd=5V

    AD633

    Vlamp

    Ilamp

    Plamp

    R1

    R2A/D

    Analog Multiplier

    & Filter

    Low-Cost

    mC

    Half-Bridge

    Inverter

    Digital Control

    Ballast for UV Lamp

  • 10/12/2018

    32

    Laboratory prototypeDigital Control

    Microcontroller:

    PIC16F684 from Microchip, 14 pins, low cost.

    8 bits, internal oscillator (8MHz), PWM module, A/D converter, and timers.

    Electronic Ballast for HID Lamp with Digital Control

    Digital Control

  • 10/12/2018

    33

    PSoC Technology

    Digital Control

    Electronic Ballasts based on PSoC Technology

    Digital Control

    REGULATED DC

    CURRENT

    SOURCE

    (FORWARD

    CONVERTER)

    IR2111

    GATE

    DRIVER

    DIGITAL CONTROL CIRCUIT

    Programmable System-on-Chip (Psoc)

    CY8C29466

    PWM2 Current

    SenseLamp

    Voltage

    Lamp

    CurrentPWM1

    VDC

    Variable Inductor

    LCF

    CRLAMPM1

    M2

    R1

    R2

  • 10/12/2018

    34

    Outline

    Introduction

    Load Modeling

    Ballast Modeling

    High Power Factor Ballasts

    Minimization of Acoustic Resonances

    Piezoelectric Transformer Ballasts

    Use of Magnetic Regulators

    Digital control

    Transferring Results to Industry

    Balasto electrónico para aplicaciones en automoción: BALCON

    – Actualmente comercializado por la empresa A.S.D., S.A.

    – Versiones 24V, 72V, 150V

    – Lámparas: 4W hasta 58W

    – Homologado en LGAI

    – Normativa UIC 555, EMI 55015

    COMPACT BALCON EN50311

  • 10/12/2018

    35

    Generadores de ozono para purificación de aire: GEO

    – Actualmente comercializado por la empresa ETRONECOLOGY

    Cargadores Electrónicos para Baterías de Pb:

    – Empresa: Oldham France

    Balasto para lámparas de generación de O3 por UV:

    – Empresa: ETRONECOLOGY, SL

    Alumbrado de emergencia controlado por μC:

    – Empresa: GSSA

    Balasto controlado por la red eléctrica:

    – Empresa: Hispano Montajes, SL

    http://www.rilize.com/main.htmhttp://www.rilize.com/main.htm

  • 10/12/2018

    36

    Lámparas de bajo consumo:

    – Empresa: GSSA

    Alumbrados de emergencia:

    – Empresa: GSSA

    Transformador electrónico para lámparas Halógenas:

    – Empresa: DESAELEC

    Balasto para lámparas fluorescentes 2x36W:

    – Empresas: GSSA, DESAELEC

    Thanks for your attention. Questions?

    [email protected]