Ornl 2548

211

description

http://www.energyfromthorium.com/pdf/ORNL-2548.pdf

Transcript of Ornl 2548

Page 1: Ornl 2548
Page 2: Ornl 2548

Makes any warranty.& re

comptetenesa, or usefulne

any information, apparatu privately owned rlphts; or

Assumea any liabilit iea w

or contractor of the Commiar

des access to, any information putrua

Page 3: Ornl 2548

j

I

I L

I

11

0 RNL-2548 Chemistry - General TID-4500 (15th ed.)

Contract N 0. W-7405-en g-26

REACTOR CHEMISTRY DIVISION

PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS

R. E. Thoma, Editor

DATE ISSUED

h rc F

ONALLABORATORY Oak Ridgo, Tennessee

opiroted by UNION CARBIDE CORPORATION

for the U. S. ATOMIC ENERGY COMMISSION

Page 4: Ornl 2548

! ' i L

f '

h I !

t

t ' L

c f

c

Page 5: Ornl 2548

L CONTENTS

L 1 INTRODUCTION ..................................................................................................................................

1. METAL SYSTEMS ..........................................................................................................................

1.1. The System Silver-Zirconium .......................................................................................... 1.2. The System Indium-Zirconium ........................................................................................ 1.3. The System Antimony-Zirconium .................................................................................... 1.4. The System Lead-Zirconium.. ..........................................................................................

2. METAL-FUSED-SALT SYSTEMS ................................................................................................

2.1. The Sodium Metal-Sodium Halide Systems .................................................................... 2.2. The Potassium Metal-Potassium Halide Systems ........................................................ 2.3. The Rubidium Metal-Rubidium Halide Systems ............................................................ 2.4. The Cesium Metal-Cesium Halide Systems .................................................................. 2.5. The Alkali Metal-Alkali Metal Fluoride Systems ........................................................

3. FUSED-SALT SYSTEMS ................................................................................................................

3.1. The System LiF-NaF ........................................................................................................ 3.2. The System LiF-KF .......................................................................................................... 3.3. The System LiF-RbF ........................................................................................................ 3.4. The System LiF-CsF ........................................................................................................ 3.5. The System NaF-KF ........................................................................................................ 3.6. The System NaF-RbF ...................................................................................................... 3.7. The System KF-RbF ........................................... ..- ......................................................... 3.8. The System LiF-NaF-KF ................................................................................................ 3.9. The System LiF-NaF-RbF .............................................................................................. 3.10. The System LiF-KF-RbF ................................................................................................ 3.11. The System NaF-KF-RbF .............................................................................................. 3.12. The System NaBF,-KBF a ................................................................................................ 3.13. The System NaF-FeF, .................................................................................................... 3.14. The System NaF-NiF, ...................................................................................................... 3.15. The System RbF-CaF, ..................................................................................................... 3.16. The System LiF-NaF-CaF * ............................................................................................ 3.17. The System NaF-MgF2-CaF, ........................................................................................ 3.18. The System NaF-KF-AIF 3 ............................................................................................. . 3.19. The System-LiF-BeFz ........ .............................................................................................. 3.28. -.The~System NaF-BeF, .............. . .........

..

. .......................................................................... 3:21. The System KF-BeF- . 8 .. ..‘.............., ..................................................................................

..3;22. The System RbF-Be ...... -:

.................................................................................................... ..................................................................................................... 3.23. The System’CsF-BeF*

’ 3.24. The SyJtem LiF-NaF?BeF, .................. ..~. ....................................................................... 3.25. The Syitem’LiF-RbFGBeFm ~~.~.~.~...~.~.~...~...~.............~ .......................................................

i 3.26. The System .NaF-KF-BeF - .. ............................................... ......................................... ,$ / 327. The System NaF-RbF-Be 2 ............................................ ..+ .......................................... 3.28. The Systems NaF-ZnF, . . ............... ..n ................................................................................. 3.29. The System KF-ZnF, ...................................................................................................... 3.38: .The-System RbF-ZnF, ................................ ..i............ .......................................................

3.31. The System LiF-YF, ........................................................................................................ 3.32. The System LiF-ZrF ” .................................................... . .................................................

3.33. The System NaF-ZrF: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2

2 4 6 8

9

9 10 11 12 13

14

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 36 38 40 42 44 46 47 48 49 50 51 52 54

Page 6: Ornl 2548

3.34. The System KF-ZrF , ........................................................................................................ 3.35. The System RbF-ZrF, ......................................................................................................

3.37. The System Li F-NaF-ZrF, ............................................................................................ 3.38. The System NaF-KF-ZrF , .............................................................................................. 3.39. The System NaF-RbF-ZrF , ............................................................................................ 3.40. The System NaF-CrF2-ZrF, . The Section NaF.CrF, - ZrF, ................................ 3.41. The System NaF-CeF,- ZrF , .......................................................................................... 3.42. The System LiF-CeF , ...................................................................................................... 3.43. The System NaF-HfF, ......................................................................................................

3.45. The System NaF-Th F4 ....................................................................................................

3.47. The System RbF-ThF, .................................................................................................... 3.48. The System BeF,-ThF, .................................................................................................. 3.49. The System BeF,-UF, .................................................................................................... 3.50. The System MgF,-ThF, ..................................................................................................

3.52. The System NaF-ZrF,- Th F, .......................................................................................... 3.53. The System LiF-UF , ........................................................................................................ 3.54. The System LiF-UF , ........................................................................................................ 3.55. The System NaF -UF, ...................................................................................................... 3.56. The System NaF-UF, ...................................................................................................... 3.57. The System KF-UF, ........................................................................................................ 3.58. The System RbF-UF, ......................................................................................................

3.36. The System CsF-ZrF , ......................................................................................................

3.44. The System LiF-ThF , ...................................................................................................... 3.46. The System KF-ThF, ......................................................................................................

3.51. The System LiF-BeF,- ThF , ..........................................................................................

3.59. The System CsF-UF, ...................................................................................................... 3.60. The System ZrF,.UF, ...................................................................................................... 3.61. The System SnF,- U F, ...................................................................................................... 3.62. The System PbF, -UF, ...................................................................................................... 3.63. The System ThF4-UF, ...................................................................................................... 3.64. The System Li F-No F-UF, .............................................................................................. 3.65. The System LiF-KF-UF, ................................................................................................ 3.66. The System Li F-RbF-UF, .............................................................................................. 3.67. The System NaF-KF-UF, ................................................................................................

3.69. The System LiF-BeF,-UF, ............................................................................................ 3.70. The System NaF-BeF,-UF, ............................................................................................ 3.71. The System NaF-PbF,-UF, ............................................................................................ 3.72. The System KF-PbF,-UF, .............................................................................................. 3.73. The System NaF-ZrF,-UF, ............................................................................................ 3.74. The System LiF-ThF,-UF, ............................................................................................ 3.75. The System NaF-ThF,-UF, . The Section 2NaF.ThF4-2NaF*UF4 ........................

3.77. The System LiCI -FeCI , .................................................................................................... 3.78. The System KCI-FeCI, ....................................................................................................

3.68. The System NaF-RbF-UF, ..............................................................................................

3.76. The System Li F-PuF, ......................................................................................................

3.79. The System NaCl-ZrCI , .................................................................................................... 3.80. The System KCI-ZKI, ...................................................................................................... 3.81. The System LiCI-UCI , ...................................................................................................... 3.82. The System LiCI-UCI , ...................................................................................................... 3.83. The System NaCI-UCI, .................................................................................................... 3.84. The System NaCl-UCI, ....................................................................................................

56 57 58 60 62 64 66 67 68 70 72 73 74 76 77 78 79 80 82 84 85 86 88 90 91 92 93 94 95 96 98

101 102 103 104 108 110 113 114 116 119 124 125 126 127 128 130 131 132 133 134

u

iv

Page 7: Ornl 2548

3.85. The System KCI-UCI 3.86. The System RbCI-UC1

...................................................................................................... 3 ....................................................................................................

3.87. The System CsCl+~l, .................................................................................................... 3.88. The System K,CrF,-Na,CrF6-Li,CrF 6 ........................................................................

4. OXIDE AND HYDROXIDE SYSTEMS ..........................................................................................

4.1. The System SiO,-ThO, .................................................................................................... 4.2. The System LiOH-NaOH .................................................................................................. 4.3. The System LiOH-KOH .................................................................................................... 4.4. The System NaOH-KOH .................................................................................................... 4.5. The System NaOH-RbOH .................................................................................................. 4.6. The System Ba(OH)2-Sr(OH)2 ..........................................................................................

5. AQUEOUS SYSTEMS ......................................................................................................................

5.1. The System UO,- P,O,-H,O, 25°C Isotherm ................................................................ 5.2. The System UO -H,PO,-H20, 25°C Isotherm.. ............................................................ 5.3. The System U$POd),-Cl,O,-H-0, 25oC Isotherm ...................................................... 5.4. The System U0,-N~~O-C$‘-H2~,~260C Isotherm ...................................................... 5.5. Portions of the System

The ThOz-Na,O-CO,-H20, 25oC Isotherm.. ................................

5.6. System Na,O-CO I

-H,O, 25% Isotherm ................................................................ 5.7. Solubility of Uranyl Su fate in Water ................................................................................ 5.8. Two-Liquid-Phase Region of UO,SO, in Ordinary and Heavy Water .......................... 5.9. The System UO,-SO,-H 0 .............................................................................................. 5.10. Coexistence Curves for 72 wo Liquid Phases in the System

UO SO -H SO -H 0 .................................................................................................... 5.11. Two-i!.iq:id-Aa& Rigion of the System UO SO -H SO -H 0 ................................ 5.12. Two-Liquid-Phase Coexistence Curves for UO,- I 2 4R*c2h Silutiks in

the System UO,-SO,-H,O With and Without HNO,. ................................................... 5.13. Solubility of UO, in H,SO,-Hz0 Mixtures .................................................................... 5.14. Effect of Excess H,SO, on the Phase Equilibria in Very Dilute

UO,SO, Solutions .” ......................................................................................................... 5.15. Second-Liquid-Phase Temperatures of UO,SO,-Li,SO, Solutions ............................ 5.16. Second-Liquid-Phase Temperatures for UO,SO, Solutions Containing

Li,SO, or BeSO ............................................................................................................ 5.17. Second-Liquid-Phase Temperatures for BeSO, 5.18. The-System NiSOi-UQ.$O,~H,O at 25°C

Solutions Containing UO, ................ .............. ..t .....................................................

-5.19 . . Phase-Transition Temperatures in Solu!ions Containing CuS04, UCJ,SO,, and H SO.

5 4....................~~...............~............................~ ......................................

5.20. The Effect of Cu O4 and tjiS04-on Phase-Transition Temperatures:

I .. 0.04 m uo S04;~0.01~m H2S04. ........................................................................................ -5.21. -The System b O,-GO--NiO-SOj-D,O at 300°C; 0.06 m SO, .................................... 5.22. S&$iIi~~of Nd,(SO,), iti 0.02 m U02s04 Solution Containing 0.005 m

-HiSO, (180-300%) L...... ................................................................................................... 1 -5.23; Sblubility Of Laz(S04)3,in UO,jSv, Sblutions ..................................................................

5.24, .‘SoIubility’of CdSO, in UO,SOa Solutions~ .... .................................................................. 5.25. Solubility of Cs SO ‘in oO$O Solutions ............................... : ..................................... 5.26 i Solubility of-Y &Ol in UO 56. Solutiqns i.. .....................................................

-5.27. Sofubility of-Ai2S(Jt $ U02&, !jolutiotis ..........

..................................................................... 5.28. Solubility at 25ooC of B&O, in UO,SO,-H,O Solutions ...........................................

w

5.29. Solubility of H,WO, in 0.126 and 1.26 M UO,SO, ........................................................ 5.30. Phase Stability of H,WO, in 1.26 M UO,F, ..................................................................

Ill J

135 136 137 138

139

139 140 141 142 143 144

145

145 146 147 148 150 153 156 158 160

164 166

167 168

169 170

171 172 173

174

175 176

177 178 179 180 181 182 183 184 186

V

Page 8: Ornl 2548

5.31. 5.32. Phase Equilibria of bd, and HF in Stoichiometric Concentrations

5.33. Solubility of Uranium Trioxide in Orthophosphoric Acid Solutions ............................ 5.34. Solubility of Uranium Trioxide in Phosphoric Acid at 25OOC ...................................... 5.35. Solubility of UO, in H,PO, Solution .............................................................................. 5.36. The System U02Cr0,-H20 .............................................................................................. 5.37. Variation of Li2C0, Solubility with U02C0, Concentration at Constant

CO Pressure (250%) ...................................................................................................... 5.38. The System Li 0-U0,-C02-H20 at 25OOC and 1500 psi ............................................ 5.39. The System ThfNO,),-H,O .............................................................................................. 5.40. Hydrolytic Stability of Thorium Nitrate-Nitric Acid and Uranyl

Nitrate Solutions ._ ........................................................................................................... 5.41. The System Tho2-CrO,-H,O at 25°C ............................................................................ 5.42. Phase Stability of Tho2-H,PO,-H,O Solutions at High Concentrations

of Tho ...............................................................................................................................

The System UO (NO ) -H 0 ............................................................................................ (Aqueous System) ..............................................................................................................

2 2

v i

188

190 19 1 192 193 194

195 1 96 197

198 199

200

Page 9: Ornl 2548

PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS

INTRODUCTION

This compilation presents the phase diagrams for possible materials for nuclear reactors

developed a t the Oak Ridge National Laboratory over the period 1950-59. It represents the

efforts of certain personnel in what are now the Chemical Technology, Metallurgy, Chemistry, and

Reactor Chemistry Divisions of ORNL. This document also contains diagrams originated by

other installations under contract to ORNL during that interval. In addition, a few diagrams from

the unclassified literature have been included when they form part of completed systems

sequences.

No general discussion of the principles of heterogeneous phase equilibrium has been

included since excellent discussions are available in many well-known publications. Equil ibria

in several of the fused-salt systems presented below have been described in some detail in a

recent publication by Ricci.' Nor has any attempt been made to assemble the phase equilibrium

data on reactor materials available from many other sources. For such information the reader i s

referred to other recently published compilations of phase diagrams2'6 and to the several new

works dealing specifically with nuclear reactor material^.^'^ While some of the diagrams presented below are the result of fundamental researches, most

were obtained in support of the ORNL programs in development of fluid-fueled reactors. Others

have been developed as a consequence of ORNL interests in reprocessing of nuclear fuels,

reactor metallurgy, production of uranium and thorium from raw materials, and studies of

mechanisms of corrosion.

Much of the research effort was devoted to searches for systems of direct use as f luid fuels

or blanket materials; unpromising systems were often given only casual attention. The diagrams

in this collection, accordingly, vary widely in the degree of completeness of examination. A

brief description of the status of the work is presented in each case; in a few cases, where no

hed, the available data have been included

I

i U LI c

I U

*H. H. Hausner and S. B. Roboff, Materials /or Nuclear Power Reactors, Reinhold Publishing Corp.,

9B. Kopelman (ad.), Materials /or Nuclear Reactors, McGrow-Hill Book Co., New York, 1959. New York, 1955.

I

~

1

Page 10: Ornl 2548

1

I 1. METAL SYSTEMS i i 1.1. The System Silver-Zirconium

( 4 J. 0. Betterton, Jr., and D. S. Easton, The Silver-Zirconium System," Trans. Met. SOC. ,

AIME 212, 470-75 (1958).

I A detailed investigation was made of the phase diagram of silver-zirconium, particularly i n

1 i I 1

the region 0 to 36 at. % Ag. The system was found to be characterized by two intermediate

phases, Zr,Ag and ZrAg, and a eutectoid reaction in which the p-zirconium solid solution de-

composes into a-zirconium and Zr,Ag. It was found that impurities in the range 0.05% from the

iodide-type zirconium were sufficient to introduce deviations from binary behavior; with partial

removal of these impurities an increase in the a-phase solid solubil ity l i m i t from 0.1 to 1.1 at. %

Ag was observed.

1

2

Page 11: Ornl 2548

870

860

850

840 Y Y

Q ,. 800

O A V TWO PHASE - . V 0 THREEPHASE - FILLED SYMBOLS INDICATE METALLOGRAPHIC SAMPLES WHICH WERE CHEMICALLY ANALYZED FOR SILVER CONTENT Q+Y -

790

780

i I h'

UNCLASSIFIED ORNL-LR-DWG 48989

Fig. 1.1~. The System Silwr-Zirconium in the Eutectoid Region (0-6

ot. 56 Ag).

I 35

Fig, 1.b. The System Silver-Zirconium in the Region 0-36 at. % Ag.

3

i

Page 12: Ornl 2548

1.2. The System Indium-Zirconium

J. 0. Betterton, Jr., and W. K. Noyce, "The Equilibrium Diagram of Indium-Zirconium in the

Region 0-26 at. pct In," Trans. Met. SOC. AIME 212, 340-42 (1958). The zirconium-rich portion of the indium-zirconium phase diagram was determined as a

study of the effect of alloying a trivalent B-subgroup element, indium, wi th zirconium in group

IVA. The temperature of the allotropic transition was found to r ise wi th indium, terminating in a

peritectoid reaction, /3(9.3% In) + d22.4% In) e a ( 1 0 . 1 % In) at 1003OC. In this respect the

effect of indium i s analogous to that of aluminum in zirconium and titanium alloys.

4

UNCLASSIRED ORNL-LR-DWG (8987

4300

(200

4fOO

4000 - V

W LL 3

[II W

900

a 5 I-

800

700

600

500 0 2 4 6 8 40 f2 14

INDIUM (at. X)

Fig. 1.L. The System Indium-Zirconium in the Peritectoid Region (0-13 at. 96 In).

c B

JI

Page 13: Ornl 2548

1400

1300

1200

!400 e,

900

800

UNCLASSIFIED ORNL-LR-MNG (8983

7 1 9

Region (0-6 at. % Sb).

Page 14: Ornl 2548

1.4. The System Lead-Zirconium

G. D. Kneip, Jr., and J. 0. Betterton, Jr., cited by E. T. Hayes and W. L. (3 Brien,

"Zirconium Equilibrium Diagrams," p 443-83 in Tbe Metallurgy of Zirconium, ed. by B. Lustman

and F. Kerze, Jr., McGraw-Hill Book Co., New York, 1955.

W Lz 3

[L W a r W I-

Q 900

800

"0 L 600

UNCLASSIFIED ORNL-LR-DWG 1375

P + Y m

m

I

- 0 SINGLE PHASE 8 TWO PHASE A THREE PHASE

0 2 4 6 8 10 '2 LEAD (at. 'lo)

Fig. 1.4. The System Lead-Zirconium in the Paritcctoid Region (0-12 at. 96 Pb).

c D

B

B D L n tl u

8

Page 15: Ornl 2548

L ! hi i u

u L

I

2. ME TAL - F USE D-SAL T SYSTEMS

2.1. The Sodium Metal-Sodium Halide Systems

M. A. Bredig and J. E. Sutherland, "High-Temperature Region of the Sodium-Sodium Halide

Systems," Chem. A m Prog. Rep. June 20, 19j7, ORNL-2386, Q 119. Subsequent report on these

systems to be published.

UNCLASS I FlED ORNL-LR-WG. 21894A

1200

+ I O 0

1000

"c

900

, . 800

: L 70C

60C

t MOLE FRACTION MX

@ ONE LIQUID

t MOLE FRACTION MX .9 .8 .7 .6 .5 A .3 .2 .4 ' ' 0 COOLING'CURVES THIS WOI

x EQUILIBRATION, M'~B,JWJ,W A EQUILIBRATION, HRB, MB

?\ TWO LIQUIDS

I 795"

I - - " - "

SOLID SALT+ LIQUID METAL

4 200

(100

4000

O C

900

800

700

600

ONE LIQUID 44400

Fig. 2.1. The Sodium Metal-Sodium Halide Systems.

Page 16: Ornl 2548

2.2. The Potassium Metal-Potassium Halide Systems

J. W. Johnson and M. A. Bredig, "Miscibility of Metals with Salts in the Molten State. 111. The

Potassium-Potassium Halide Systems," J . Phys. Chem 62, 604 (1958). Complete miscibi l i ty of metal and salt exists i n the KX-K systems, X = F, CI, Br, and I, at

and above 904, 790, 727, and 717OC, that is, as close as +47, +18, -7, and +22q respectively,

to the melting points of the salts. The asymmetry of the liquid-liquid coexistence areas,

especially of the fluoride and chloride systems, as indicated by the consolute compositions

(20, 39, 44, and 50 mole % metal, respectively), i s largely explained by the difference in molar

volumes of salt and metal. At the monotectic temperature, the solubil ity of the solid salts i n the

l iquid metal, as well as of the metal in the l iquid salt phase, is much larger than in the case of the sodium systems.

UNCLASSIFIED ORNL-LR-DWG. 214

AND SAMPLINC 900

850

800 OC I

mole % K

Fig. 22 The Potassium Metal-Potassium Halide Systems.

9 u k

c

L

10

Page 17: Ornl 2548

4 u IJ

2.3. The Rubidium Metal-Rubidium Halide Systems

M. A. Bredig and J. W. Johnson, “Rubidium-Rubidium Halide Systems,” Cbem. Ann. Prog.

Rep. lune 20, 1957, ORNL-2386, p 122; M. A. Bredig, J. E. Sutherland, and A. S. Dworkin, “Molten Salt-Metal Solutions. Phase Equilibria,’’ Cbem. Ann. Prog. Rep. June 20, 1958,

ORNL-2584, p 73. Subsequent report on these systems to be published.

800

750 ‘u

li

700 “C

650

600

UNCLASSIFIED OR NL- LR - DWG. 32909 A

I - I I 790 O

\ 706O

25 50 75

Systems.

Page 18: Ornl 2548

2.4. The Cesium Metal-Cesium Halide Systems

M. A. Bredig, H. R. Bronstein, and W. T. Smith, Jr., "Miscibil i ty of L iquid Metals with

The Potassium-Potassium Fluoride and Cesium-Cesium Halide Systems," 1. Am. Salts.

Chem. SOC. 77, 1454 (1955). II.

Miscibi l i ty in a l l proportions of cesium metal with cesium halides at and above the melting

points of the pure salts, and of potassium metal with potassium fluoride 50'above the melting

point of the salt, occurs, The temperature-concentration range of coexistence of two liquid

phases decreases in going from sodium to potassium systems and disappears altogether for the

cesium systems. The solubil ity of the solid halides in the corresponding l iquid alkal i metals,

a t a given temperature, increases greatly with increase of atomic number of the metal.

4500

UNCLASSIFIED ORNL-LR-DWG. 37044

700

650

600

"G

550

500

25 50 MOLE '2, METAL

75

Fig. 24. The Cesium Metal-Cesium Halide Systems.

12

100

Page 19: Ornl 2548

i

I I 2.5. The Alkali Metal-Alkali Metal Fluoride Systems

M. A. Bredig, J. E. Sutherland, and A. S. Dworkin, "Molten Salt-Metal Solutions. Phase

I Equilibria," Chem Ann. Prog. Rep. June 20, 19S8, ORNL-2584, p 73.

k

900 i b i I i

U NCLASSI FI ED 0 RN L- LR - DWG. 31 067A

1300

1200

1100

1000

"C

MOLE % METAL

Fig. 2.5. The Alkali Metal-Alkali Metal Fluoride Systems.

3

13

Page 20: Ornl 2548

3. FUSED-SALT SYSTEMS

3.1. The System LiF-NaF

A. G. Bergman and E. P. Dergunov, "Fusion Diagram of LiF-KF-NaF," Compt. tend. acad.

sci. U.R.S.S. 31, 753-54 (1941).

The system LiF-NaF contains a single eutectic at 60 LiF-40 NaF (mole %), m.p. 652T.

UNCLASSIFIED ORNL-LR-DWG 20457

NoF (mole%)

Fig. 3.1. The System LiF-NaF.

14

Page 21: Ornl 2548

3.2. The System LiF-KF A. G. Bergman and E. P. Dergunov, “Fusion Diagram of LiF-KF-NaF,” Cornpt. rend. acad.

sci. U.R.S.S. 31, 753-54 (1941). The system LiF-KF contains a single eutectic at 50 LiF-50 KF (mole %), m.p. 492%.

Page 22: Ornl 2548

3.3. The System LiF-RbF

C. J. Barton, T. N. McVay, L. M. Bratcher, and W. R. Grimes, unpublished work performed at

the Oak Ridge National Laboratory, 1951-54. Preliminary diagram.

Invariant Equilibria

Invariant Phase Reaction

at Invariant Temperature Mole % LiF Temperature Type of Equilibrium

(Oc) in Liquid

44 470 Eutectic L e R b F + LiF-RbF

47 475 Per i tact i E L + LiF *LiF*RbF

General characteristics of the system have been reported by E. P. Dergunov, “Fusion Dia-

grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,”

Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).

UNCLASSIFIED ORNL-LR-DWG 1614

900

800

700 c 0

W (L

0 - $ 600 a E W

5 I-

500

400

300

LiF (mole %)

Fig. 3.3. The System LiF-RbF.

s L E c E L

16

Page 23: Ornl 2548

3.4. The System LiF-CsF C. J. Barton, L. M. Bratcher, T. N. McVoy, and W. R, Grimes, unpublished work performed

at the Oak Ridge National Laboratory, 1952-54. Preliminary diagram.

Invariant Equilibria

I nvor i ant Phase Reaction

at Invariant Tomperature Mole % CsF Temperoture Type of Equilibrium

PC, in Liquid

55 495 f 5 Peritectic LiF + L e L i F - C s F

Eutectic L e L i F * C s F + CsF 63 475 f 5

900

800

700

600

500 -

400

UNCLASSIFIED ORNL-LR-DWG 14632

I

I

80

7

90 CsF

17

Page 24: Ornl 2548

w 3.5. The System NaF-KF

A. G. Bergman and E. P. Dergunov, “Fusion Diagram of LiF-KF-NaF,” Compt. tend. acad.

sci. U.R.S.S . 31, 753-54 (1941). The system NaF-KF contains a single eutectic at 40 NaF-60 K F (mole %), m.p. 71093.

(000

.so0

800

- u L

W m 2 700 (L

%! 3 t

600

500

400 L

UNCLASSIFED ORNL-LR-DWG 354l

40 20 30 40 50 60 70 80 . 90 K F KF(mole%)

Fig. 3.5. The System NoF-KF.

U

Page 25: Ornl 2548

3.6. The System NaF-RbF

C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed

at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system NaF-RbF contains a single eutectic at 27 NaF-73 RbF

(mole %), m.p. 675 f 10T. General characteristics of the system have been reported by E. P. Dergunov, “Fusion Dia-

grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,”

Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).

UNCLASSIFIED ORNL-LR-DWG 357tI

4000

950

900

- V e 850 k!

4 800

3

i2

750

19

Page 26: Ornl 2548

3.7. The System KF-RbF C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed

at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system KF-RbF contains a solid solution minimum at 28 KF-

72 RbF (mole %), m.p. 770 f 1OT.

UlCLASSlFlEO ORNL-LR-OW& 35406 ‘Oo0L 900

L I)

II: W

W I-

TOO

a

so0 6oo c ann L .--

KF 40 20 30 40 50 60 70 80 90 RbF (mole %I

Fig. 3.7. The System KF-RbF.

20

F

Page 27: Ornl 2548

6’

3.8. The System LiF-NaF-KF A. G. Bergman and E. P. Dergunov, “Fusion Diagram of LiF-KF-NaF,” Compt. rend. acad.

The system LiF-NaF-KF contains a $ingle eutectic at 46.5 LiF-11.5 NaF-42.0 K F S C ~ . U.R.S.S. 31, 753-54 (1941).

(mole %), m.p. 454%.

TEMPERATURE IN O C

COMPOSITION IN mole %

UNCLASSIFIED ORNL-LR-DWG 1199A

NoF 990

U

Li F 845

21

Page 28: Ornl 2548

3.9. The System LiF-NaF-RbF

C. J. Barton, L. M. Bratcher, J. P. Blakely, and W. R. Grimes, uipublished work performed

at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system LiF-NaF-RbF contains a single eutectic at 42 LiF-6

NaF-52 RbF (mole %), m.p. 430 f 10°C. The composition and temperature of the ternary peri-

tectic point have not yet been determined.

General characteristics of the system have been reported by E. P. Dergunov, “Fusion Dia-

grams of the Ternary systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,”

Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947). Dergunov l is ts the composition and tempera-

ture of the ternary eutectic as 46.5 LiF-6.5 NaF-47 RbF (mole %), m.p. 426°C.

UNCLASSIFIED ORNL-LR-DWG 1200A

RbF

TEMPERATURE IN O C

COMPOSITION IN mole V0

22

Page 29: Ornl 2548

! :L i

4 !

3.10. The System LiF-KF-RbF C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed

! at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system LiF-KF-RbF contains a single eutectic at 40 LiF-32.5

KF-27.5 RbF (mole %), m.p. 440 f 10%. General characteristics of the system have been reported by E. P. Dergunov, “Fusion Dia-

grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,” I I Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).

RbF 795 UNCLASSIFIED

ORNL-LR-DWG 35479

LiF 845

23

Page 30: Ornl 2548

3.11. The System NaF-KF-RbF

C. J. Barton, L. M. Bratcher, J . P. Blakely, and W. R. Grimes, unpublished work performed

at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system NaF-KF-RbF contains a single eutectic at 21 NaF-5

KF-74 RbF (mole %), m.p. 621 f 1 K .

TEMPERATURE ("C)

COMPOSITION (mole 7'0)

RbF 795 UNCLASSIFIED

ORNL-LR-DWG 35482

Fig. 3.11. The System NaF-KF-RbF.

24

Page 31: Ornl 2548

3.12. The System NaBF,-KBF,

National Laboratory, 1957. R. E. Moore, J. G. Surak, and W. R. Grimes, unpublished work performed at the Oak Ridge

Preliminary diagram. The system NaBF,-KBF, contains a single eutectic at 88 NaBF,-

12 KBF, (mole %), m.p. 355%. The dotted line was obtained from thermal effects representing

incompletely understood sol id-phase transformations of KBF, and NaBF,.

Page 32: Ornl 2548

i

3.13. The System NaF-FeF, R. E. Thoma, H. A. Friedman, B. S. Landau, and W. R. Grimes, unpublished work performed

at the Oak Ridge National Laboratory, 1957. Preliminary diagram.

Invariant Equilibria . Invariant

Phase Reaction

at Invariant Temperature Mole % FeF2 Temperature Type of Equilibrium

(OC) in Liquid

,!, e NaF + NaF-FeF2 30 680 Eutectic

50 783 Congruent melting point L e NaF*FeF2

63 745 Eutectic ,!, - 2 NaF*FeF2 + F e F 2

1 1 I

UNCLASSIFIED ORNL-LR-DWG 22345

NoF 40 20 30 40 50 60 70 80 90 Fe F2

FeF2 (mole %)

e:

c

r! c c

il Fig. 3.13. The System NaF-FeFT

26

Page 33: Ornl 2548

U

u u

IJ ti

L

c I;

3.14. The System Naf-NiF,

at the Oak Ridge National Laboratory, 1957. 1

R. E. Thoma, H. A. Friedman, 8. S. Landau, and W. R. Grimes, unpublished work performed

Preliminary diagram.

Invariant Equilibria

Invariant Phase Reaction Temperature Type of Equilibrium Mole % NiF2

in Liquid i at Invariant Temperature (W 23 795 Eutectic L e NaF + NaF*NiF2

50 1045 Congruent melting point L e NaF*NiF2

57 1040 Eutectic L 4 NaF*NiF2 + NiFZ

4300

4 200

1100

UNCLASSIFIED ORNL-LR-OWG 22344

27

Page 34: Ornl 2548

3.15. The System RbFXaF, C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at

the Oak Ridge National Laboratory, 1956. Preliminary diagram.

Invariant Equilibria

Invariant Phase Reaction

at Invariant Temperature Mole % CoF2 Temperature Type of Equilibrium

(OC) in Liquid

9 760 Eutectic L e RbF + RbF*CaF2

50 1110 Congruent melting point L RbF*CaF2

57 1090 Eutectic L e R b F * C a F 2 + CaF2

Fig. 315. The System RbF-CaFr

28

Page 35: Ornl 2548

bi 3.16. The System LiF-NaF-CaF,

Ridge National Laboratory, 1955-56. C. J. Barton, L. M. Bratcher, and W. R . Grimes, unpublished work performed at the Oak

Preliminary diagram. The system LiF-NaF-CaF, contains a single eutectic at 53 LiF- 36 NaF-11 CaF, (mole %), m.p. 616%

I

LiF 845

UNCLASSIFIED ORNL-LR-DWG 4277BR

NoF '990

i, u

29

Page 36: Ornl 2548

3.17. The System NaF-MgF2-CaF,

at the Oak Ridge National Laboratory, 1955-56. C. J. Barton, L. M. Bratcher, J. P. Blakely, and W. R. Grimes, unpublished work performed

Preliminary diagram.

invariant Equilibria

Composition of Liquid (mole %) Temperature Type of Solids Present

(OC) Equilibrium at invariant Temperature NaF CaF2 MgF2

65 23 12 745 Eutectic NaF, NaF*MgF2, and CaF2

35 28 37 905 Eutectic CaF2, MgF2, and NaF*MgF2

NaF 990

830

CaF2 4448

A

UNCLASSIFIED ORNL-LR-DWG 475751

COMPOSITION IN mole % TEMPERATURE IN OC

NaF.MgF2 990 4030

Fig. 317a. The System NaF-MgF2-CaFr

30

Page 37: Ornl 2548

The minimum temperature along the quasi-binary section NaF-MgF,-CaF, occurs at the composition 36 NaF-36 MgF,-28 CaF, (mole %), at 910°C.

The existence of the compound Nai-MgF, was previously reported by A. G. Bergman and E. P. Dergunov, Compt. tend. acad. sci. U.R.S.S. 31, 755 (1941).

Ternary systems of alkali fluorides with MgF, have been reported by Bergman et al. as

follows: the system LiF-NaF-MgF, by A, G. Bergman and E. P. Dergunov, Compt. rend. acad.

sci. U.R.S.S. 31, 755 (1941); the system LiF-KF-MgF, by A. G. Bergman and S. P. Parlenko, Compt. tend. acad. sci. U.R.S.S. 31,818-19 (1941); the system NaF-KF-MgF, by A. G. Bergman and E. P. Dergunov, Compt. rend. acad. sci. U.R.S.S. 48, 330 (1945).

NoMgF3 10 20 30 40 50 60 70 80 90 CaF2 CoF2 (mole XI

u 31

Page 38: Ornl 2548

3.18. The System NaF-KF-AIF, C. J. Barton, L..M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak

Ridge National Laboratory, 1951-52. Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the

phase relationships occurring within the system NaF-KF-AIF,. Phase diagrams have been reported for the AIF, binary systems, NaF-AIF, [P. P. Fediotieff and W. P. Iliinsky, Z. nnorg.

Chem. 80, 121 (1913); also N. A. Pushin and A. V. Baskow, ibid. 81, 350 (1913)l ahd KF-AIF, [P. P. Fediotieff and K. Timofeef, Z. anorg. u. allgem. Cbern. 206, 265 (1932)l.

UNCLASSIFIED OWG. I7406

SNaF

Fig. 3.18. The System NaF-KF-AI F,.

32

Page 39: Ornl 2548

3.19. The System L iF-BeF2

This phase diagram is a composite from several published sources’-’ and from unpublished

data derived at the Oak Ridge National Laboratory (R. E. Moore, C. J. Barton, R. E. Thoma,

and T. N. McVay) and at the Mound Laboratory (J. F. Eichelberger, C. R. Hudgens, L. V. Jones,

and T. B. Rhinehammer). Thermal gradient quenching data (ORNL) and differential thermal

analysis data (Mound Laboratory) have served to corroborate this composite diagram.

Invariant Equilibria

Invariant Phase Reaction

at Invariant Temperature % BeF2 Temperature Type of Equilibrium

ec) i n Liquid

i

IJ li

1

j

I j i

i I I

I

!

I i 1 j i I

33.5* 454 Per itecti c

52 355 Eutectic

L + LiF e 2LiF*BeF2

L 2LiF*BeF2 + BeF,

280 Upper temperature of 2LiF*BeF2 + BeF2 LiF*BeF2 stability for LiFoBeF,

*Ref 3.

Roy, Roy, and Osborn have reported the presence of the compound L iF*2BeF2 i n the system

LiF-BeF, although neither the Mound Laboratory nor the ORNL data have indicated the exist-

ence of this compound.

‘D. M. Roy, R. Roy, and E. F. Osborn, J . Am. Ceram SOC. 37, 300 (1954).

,A. V. Novosclovb, Yu. P. Simanav, and E. 1. Yarembash, J . Phys. Chem (U.S.S.R.) 26, 1244 (1952).

’John L. Speirs, The Binary and Ternary Systems Formed by Calcium Fluoride, Lithium Fluoride, and Beryllium Fluoride: Phase Diagrams and Electrolytic Studies, Ph.D. thesis, University of Michigan, May 29, 1952.

UNCLASSIFIED ORNL-IR-DIG 464261

Fig, 319. The System LiF-BeFr

33

Page 40: Ornl 2548

3.20. The System NaF-BeF,

BeF, and the Polymorphism of Na,BeF, and BeF,," J. Am. Ceram. SOC. 36, 185 (1953). D. M. Roy, R. Roy, and E. F. Osborn, "Fluoride Model Systems: Ill. The System NaF-

Invariant Equilibria*

Invariant

?6 BeF2 Temperature Type of Equilibrium

PC, in Liquid Phose Reaction

at Invariant Temperature

31 570 Eutectic L e NoF + a-2NaF*BeF2

33.3 600 Congruent melting point L u-2NaF*BeF2

- 320 Inversion

- 225 Inversion

43 340 Eutectic L + a-2NaF*BeF2 +PNoF*BeF2

50 376 & 5 Congruent melting point L @ P'-NaF*BeF,

55 365 Eutectic L e P'-NaF.BeF2 + BeF,

*Roy, Roy, and Osborn did not l i s t invoriant equilibria; those shown ore estimates made from the reportec work and from experiments performed at the Oak Ridge National Laboratory.

34

Page 41: Ornl 2548

i u i I

E,: BeF2 (mole 'A)

Fig. 3.20. The System NoF-BeFy

35

Page 42: Ornl 2548

3.21. The System KF-BeF2 R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, G. D. White, R. J. Sheil, W. R.

Grimes, R. E. Meadows, and L. A. Harris, unpublished work performed at the Oak Ridge National

Laboratory, 1955-56. Preliminary diagram.

Invariant Equilibria

Invariant Phase Reaction Mole % BeF, Temperature Type of Equilibrium

at Invariant Temperature (OC) In Liquid

19

25

27

33.3

- 52

59

66.7

- 72.5

720

740

730

787

685

390

330

358

334

323

Eutectic

Congruent melting point

Eutectic

Congruent melting point

Inversion

Peritectic

Eutectic

Congruent melting point

Inversion

Eutectic

L KF + 3KF-BeF2

L 3KF*BeF2

L 3KF*BeF2 + a-2KF-BeF2

L a-2KF-BeF2

a-2KF.BeF2 $ ,&2KF-BeF2

P-2KF*BeF2 + L KF-BeF,

L KF*BeF2 +P-KF*2BeF2

L + a-KF*2%eF2

a-KF*2BeF2 +P-KF.2BeF2

L P-KF*2BeF2 + BeF2

This system has been reported by M. P. Borzenkova, A. V. Novoselova, Yu. P. Simanov,

V. 1. Chernikh, and E. I . Yarembash, “Thermal and X-Ray Analysis of the KF-BeF, System,”

Zhur. Neorg. Khirn. 1, 2071-82 (1956).

36

Page 43: Ornl 2548

u U

800

700

e 600 W

I-

K W

W I-

5 a

a 500

400

300

200 KF 40 20

UNCLASSIFIED ORNL-LR-DWG 47574R

30 40 50 60 70 80 90 BeF, 8eF2 (mole %I

Fig. 3.21. The System KF-BcFp.

37

Page 44: Ornl 2548

!

i i

I 1 ,

3.22. The System RbF-BeF,

R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, G. D. White, R. J. Sheil, W. R. Grimes, and R. E. Meadows, unpublished work performed at the Oak Ridge National Laboratory,

i

1955-56. i

i Preliminary diagram. i

Invariant Equilibria

Invariant Phose Reaction

at Invariant Temperature Mole % BeF2 Temperature Type of Equilibrium

(-1 in Liquid i

16 675 Eutectic L RbF + 3RbF-BeF2

25 725 Congruent melting point L e 3RbF*BeF2

27 720 Eutectic L e 3 R b F * B e F 2 + 2RbF*BeF2

33.3 800 Congruent melting point L +2RbF*BeF2

50.5 442 Peritectic L + 2RbF*BeF2 +RbF-BeF2

61 383 Eutectic L e RbF*BeF2 + RbF*2BeF2

66.7 464 Congruent melting point L RbF*2BeF2

81 397 Eutectic L e RbF*2BeF2 + BeF2

This system has also been reported by R. G. Grebenshchikov, "Investigation of the Phase

Diagram of the RbF-BeF, System and of I ts Relationship to the BaO-SiO, System," Doklady Akad. Nauk S.S.S.R. 114,316 (1957).

38 c

Page 45: Ornl 2548

Fig. X 2 2 The System RbF-BcFy

39

Page 46: Ornl 2548

!I u 3.23. The System CsF-BeF,

0. N. Breusov, A. V. Novoselova, and Yu. P. Simanov, "Thermal and X-Ray Phase Analysis

of the System CsF-BeF, and Its Interrelationships with MeF and BeF, Systems," Doklady Akad. Nauk S.S.S.R. 118, 935-37 (1958).

Invariant Equilibria

Invariant Phase Reaction

at Invariant Temperature Mole % BeF2 Temperature Type of Equilibrium

(Oc) in Liquid

14

23.5

- 33.3

- 48

50

- -

58.4

66.7

- 77.5

598

659

617

793

404

449

475

360

140

393

480

450

367

Eutectic

Peritectic

Inversion

Congruent melting point

Inversion

Eutectic

Congruent melting point

Inversion

Inversion

Eutectic

Congruent melting paint

Inversion

Eutectic

L e CsF +P-3CsF*BeF2

a-2Csf*BeF2 + L ---)r a-3CsF*BeF2

a-3CsF-BeF2 P-3CsF*BeF2

L & a-2CsF*BeF2

a-2CsF.BeF2 p-2CsF.BsF2

L $ a-2CsF*BeF2 + a-CsF*BeF2

L a-CsF.BeF2

a-CsF-BeF, ---\ ,&CsF-BeF2

P-CsF*B=F2 y-CsF-BeF2

L & a-CsF*BeF2 + P-CsF-2BeF2

L + a-CsF*2BeF2

a-CsF.2BeF2 P-CsF*2B;F2

L & P-CsF*2BeF2 + BeF2

40

G 6

li

Page 47: Ornl 2548

900

800

700

400

300

200

UNCLASSIFIED ORNL-LR-DWG 35484

400 CsF 40 20

u 30 40 50 60 10

BeF2 (mole 70)

Fig. 323. t h e System CsF-BeF,

80 90 BeFz

41

Page 48: Ornl 2548

I

3.24. The System LiF-NaF-BeF,

R. E. Moore, C. J. Barton, W. R. Grimes, R. E. Meadows, L. M. Bratcher, G. D. White, T. N. McVay, and L. A. Harris, unpublished work performed at the Oak Ridge National Laboratory,

195 1-58. Preliminary diagram.

lnvarian t Equi I i bria*

Composition of Liquid Invariant

(mole %) Temperature Type of Equilibrium Solids Present

at Invariant Point L iF NaF BeF2 !*I

15 58 27 480 Eutectic NaF, LiF, and 2NaF*BeF2 ~

i

23 41 36 328 Eutectic LiF,'2NaF*BeF2, and 2NaF*LiF*2BeF2

20 40 40 355 Congruent melting point 2NoF-LiF*2BeF2

5 53 42 318 Eutectic NaF.BeF2, 2NaF-BeF2, and 2NaF*LiF*2BeF2

31.5 31 37.5 315 Eutectic 2LiF*BeF2, LiF, and 2NaFoLi F*2BeF2

*Invariant equilibria shown in the phase diagram by the intersections of dotted-line boundary curves hove not been determined with sufficient precision to be listed in the table.

Minimum Temperature on Alkcmade Lines ~

I , I ~ Temperature Alkemade Line

Composition of Liquid (mole %)

I L IF NaF BeF2 (*I I 1

1 2NaF*LiF*2BeF2-Li F

16 56 28 485 2NaF.BeF2-LiF

26 37 37 340 I

11 44 45 332

16 45 39 343

30.5 31 38.5 316

Na F*Be F2-2Na F-L i F-2Be F2

2NaF*BeF2-2NaF*LiF*2BeF2

2LiF*BeF2-2NaF*LiF*2BeF2

Phase relationships of two of the ternary compounds i n this system have been reported by

W. John P'Sil icate Models. V. NaLi(BeF,), a Model Substance for Monticellite, CaMg(Si0,):"

Z. anorg. u. allgem. Chem. 276, 113-27 (1954); ''Silicate Models. No,Li(BeF,),, a New

Compound i n the Ternary System NaF-LiF-BeF,, and I ts Relation to Merwinite; C O ~ M ~ ( S ~ O ~ ) ~ , ' ' Z. anorg. u. allgem. Chem. 277, 274-86 (195411.

VI.

Page 49: Ornl 2548

DOTTED LINES REPRESENT INCOMPLETELY DEFINED PHASE BOUNDARIES AND ALKEMADE LINES

f

I;;

u

BeF2 542

UNCLASSIFIEO ORNL-LR-OWG 164241

TEMPERATURE ('C)

COMPOSITION (mole 70)

Fig. 3.24. The System LIF-NaF-BeFr

43

Page 50: Ornl 2548

c 3.25. The System LiF-RbF-BeF,

T. B. Rhinehammer, D. E. Etter, C. R. Hudgens, N. E. Rogers, and P. A. Tucker, unpublished

work performed at the Mound Laboratory.

Preliminary diagram.

Invariant Equilibria and Singular Points

Composition of Liquid (mole 95) Temperature Type of

(Oc) Equi I ibr ium L i F RbF BeF2

Solid Phases Present

40.0 20.0 40.0

33.3 33.3 33.3

33.0 8.0 59.0

26.0 12.0 62.0

12.0 29.0 59.0

11.0 34.0 55.0

11.5 . 35.5 53.0

9.0 40.0 51.0

50.0 8.0 42.0

41.5 19.5 39.0

35.0 25.5 39.5

23.0 40.0 37.0

30.0 35.0 35.0

41.0 39.5 19.5

43.0 50.0 7.0

43.0 54.0 3.0

43.0 55.0 2.0

485 f 5

544 f 5

295 f 5

305-320

334 f 5

300 f 5

335 f 5

380 f 5

426 f 5

473 f 5

470 f 5

530 f 5

544 f 5

640 f 5

527 f 5

470 f 5

462 f 5

Congruent

Incongruent

melting point

melting point of Li F-RbF*BeF2

Eutectic

Peritectic

Quasi-binary

Eutectic

Per itectic

Peritectic

Peritectic

Quasi-binary

eutectic

eutectic

Per itectic

Peritectic

Maximum on the boundary

Quas i-binary eutect ic

Peritectic

Per itect ic

Eutect ic

2LiF*RbF*2BeF2

2Li F*Be F2, 2Li F-RbF.2Be F2, and Be F2

2L i F*RbF*2Be F2, RbF-2Be F2, and Be F2

2LiF*RbF*2BeF2 and RbF*2BeF2

2LiF.RbF*2BeF2, RbF*BeF2, and RbF*2BeF2

2LiF*RbF*2Be F2, LiF*RbF*BeF2, and RbF-BeF

LiF*RbF-BeF2, 2RbF*BeFZ. and RbF*BeF2

LiF, 2LiF.RbF.2BeF2, and 2LiF*BeF2

L i F and 2LiF*RbF*2BeF2

L i F, 2L i F-RbF.2Be F2, and L i F-RbF-Be F2

LiF, 2RbF*BeF2, and LiF*RbF.BeF2

L i F and LiF*RbF*BeF2

L i F and 2RbF*BeF2

LiF, 3RbF*BeF2, and 2RbF*BeF2

LiF, LiF-RbF, and 3RbF*BeF2

LiF-RbF, RbF, and 3RbF*BeF2

s

G E

L;

L u

44

Page 51: Ornl 2548

Li F

UNCLASSIFIED ORNL-LR-DWG 30413

TEMPERATURE O C

COMPOSITION mole %

u E

RbF LiRbF, p E

Fig. 325. The System LiF-RbF-BeFr

45

Page 52: Ornl 2548

3.26. The System NaF=KF-BeF,

performed at the Oak Ridge National Laboratory, 1952-55. Phase relationships within the system NaF-KF-BeF, hava not yet

become so well defined at the Oak Ridge National Laboratory that the compositions and tem- peratures of the invariant points may be listed.

R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, and Vi. R. Grimes, unpublished work

Prel iminary diagram.

Be F. UNCLASSIFIED

ORNL-LR-DWG 38414

TEMPERATURE IN O C

COMPOSITION IN mole 7”

NaF KF

990 E-710 856

Fig. 3.26. The System NaF-KF-BeFr

46

Page 53: Ornl 2548

I

I !

i

L u 3.27. The System NaF-RbF-BeF2

at the Oak Ridge National Laboratory, 1954-57. R. E. Moore, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed

Preliminary diagram.

Invariant Equilibria and Singular Points

Composition of Liquid (mole Sa)

NaF RbF BeF2

Temperature Type of Equilibrium Solids Present at Invariant Temperature ec,

20.5 68.5 11.0 610 Eutectic RbF, NaF, and 3RbF*BeF2

50 37.5 12.5 640 Quasi-binary eutectic 3RbF*BeF2 and NaF

46 38 16 635 Eutectic 3RbF*BeF2, 2RbF*6eF2, and NaF

45 37 18 650 Quasi-binary eutectic 2RbF*BeF2 and NaF

37 33 30 570 Peritectic 2RbF*BeF2, NaF, and 2NaF*4RbF*3BeF2

52 15 33 477 Eutectic 2NaF*4RbF*3BeF2, NaF, and 2NoF*BeF2

33 33.7 33.3 580 Peritectic 2RbF-BeF2 and 2NaF-4RbF*3BeF2

51.7 15 33.3 480 Quos I-b i nary eutect i c 2Na F 4 R b F*3Be F and 2Na F. Be F

UNCLASSIF IEO ORNL-LR-DWG 22343A2

BE BINARY EUTECTIC BP BINARY PERlTECTlC CM CONGRUENT MELTING POINT IM INCONGRUENT MELTING POINT TE TERNARY EUTECTIC TP TERNARY PERITECTIC

TEMPERATURES BeF2 ARE IN OC CM 543

COMPOSITION IN mole '7.. A

BE

CM 786 CM 992

Fig. 327. The System NaF-RbF-BcF1

47

Page 54: Ornl 2548

3.28. The System NaF-ZnF,

Ridge National Laboratory, 1952. C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak

Preliminary diagram.

lnvar i ant Equ i I i br i a

I I

Invariant Phase Reaction

at Invariant Temperature Mole % ZnF2 Temperature Type of Equilibrium

(OC) in Liquid

33 635 Eutectic L e N a F + NaF*ZnFp

50 748 f 10 Congruent melting point L $ NaF-ZnF2

69 685 Eutectic L NaF*ZnF2 + ZnF2

UNCLASStF DWG 14627

I I I I I I I

6oF 5 00

LN

r; N

z

r ci”

L1

Fig. 3.28, The System NaF-ZnFy

48

Page 55: Ornl 2548

3.29. The System KF-ZnF,

C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak

Ridge National Laboratory, 1952.

breliminary diagram.

Invariant Equilibria

Mole % ZnF2

in Liquid

Invariant

Temperature

PC)

Type of Equilibrium Phase Reaction

ot Invariant Temperature

21 670 Eutectic L ~KF + 2KF.ZnF2

30 720 f 10 Peritactic L + K F*ZnF e2KF*ZnF2 2

50 850 f 10 Congruent melting point L eKF*ZnF2

80 740 f 5 Eutectic L ---\K F*ZnF2 + ZnF2

UNCLASSIFIED DWG (46261

I I I I I I I I I

I I- ‘300 - KF 10 20 30

I I 40 50 80 70 80 90 ZtlF5!

Fig. 3.29. The System KF-ZnF,

49

-_--_. ____

Page 56: Ornl 2548

3.30. The System RbF-ZnF,

Ridge National Laboratory, 1952. C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed a t the Oak

Preliminary diagram.

LLN

N

LL

IY N

n

Invariant Equilibria

c N

LL

LL n

Invariant Mole % ZnF2 Temperature Type of Equilibrium Phase Reoction

in Liquid at Invariant Temperature

21 595 f 10 Eutectic L e RbF + 2RbF*ZnF2

32 620 f 10 Peritectic L + RbF*ZnF2 e 2RbF*ZnF2

50 730 f 10 Congruent melting point L RbF-ZnF2

70 650 Eutectic L $ RbF*LnF2 + ZnF2

UNCLASSIFIED DWG (5349 R

I 1

900

800 V - W

3 a 5 700 a n W

5 I-

600

500

400 RbF 40 20 30 40 50 60 70 80 90 ZnF2

ZnF2 (mole %)

Fig. 3.30. The System RbF-ZnFT

50

Page 57: Ornl 2548

I,

a, C. F. Weaver, and H. A. Friedman, unpublished work performed at the Oak

Invariant Equilibria ---

Type of Equilibrium Phase Reaction Temperature

at lnvoriant Temperature

Eutectic L e LiF + LiF*YF3

Peritectic L + Y F 3 e L i F * Y F 3

i400

(300

(100

4000

UNCLASSIFIEO ORNL-LR-DWG 38116

BREWER.

0 RESULTS FROM THERMAL-GRADIENT QUENCHING EXPERIMENTS

i 8 7 O

7 /

LiF 20 30 40 50 60 70 80 90 yF3 YF3 (mole %)

Fig. 3.31. The System LiF-YFo.

51

Page 58: Ornl 2548

3.32. The System LiF-ZrF,

R. E. Moore, F. F. Blankenship, W. R. Grimes, H. A. Friedman, C. J. Barton, R. E. Thoma,

and H. Insley, unpublished 'work performed at the Oak Ridge National Laboratory, 1951-56. Preliminary diagram.

Invariant Equilibria

Invariant Temperature T w e of Eauilibrium Mole % ZrF, Phase Reaction ..

at Invariant Temperature (OC)

in Liquid

21 598 Eutectic L e L i F + a-3LiF*ZrF4

25

- 662 Congruent melting point L a-3LiF*ZrF4

475 Inversion a.3LiF*ZrF4 ---\ P3LiF*ZrF4

- 470 Decomposition /Ot3LiF*ZrF4 e L i F + 2LiF-ZrF,

29.5 570 Eutectic L a-3LiF*ZrF4 + 2LiF*ZrF4

33.3 596 Congruent melting point L 2LiF*ZrF4

49 507 Eutectic L & 2LiF*ZrF4 + 3LiF*4ZrF4

51.5 520 Peritectic L + ZrF, & 3LiF*4ZrF4

- 466 Decomposition 3LiF*4ZrF4 e 2LiF*ZrF4 + ZrF,

tl cl

52

Page 59: Ornl 2548

900

L1 t w I-

600

500

400

UNCLASSIFIED ORNL-LR-DWG l695t

300 LI F IO 20 30 4 0 50 60 70 80 90

ZrF, (mole%)

Fig. 3.32. The System LiF-ZrF,.

ZrF,

53

Page 60: Ornl 2548

3.33. The System NaF-ZrF, C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, “Phase Equilibria

in thesystems NaF-ZrF,, UF4-ZrF,, and NaF-ZrF,-UF,,” J. Phys . Chem. 62,665-76 (1958).

Invariant Equilibria

lnvar iant . _ _ Phase Reaction

at Invariant Temperature Mole % z1F4 Temperature Type of Equilibrium

(“c, in Liquid

20

25

- 30.5

34

39.5

- -

40.5

46.2

49.5

56.5

747

850

523

500

640

544

533

505

500

525

512

537

Eutectic

Congruent melting paint

lnvers ion

Eutectoid

Per itectic

Per itect ic

Inversion

lnvers ion

Eutectic

Congruent melting point

Eutectic

Per itect ic

L e NaF + 3NaF-ZrF4

L 3NaF*ZrF4*

a-5NaF-2ZrF4 $ P-5NaF*2ZrF4

a-5NaF*2ZrF4ss P-5NaF*2ZrF4 + + 3/-2Na F*Zr F,

L + 3NaF.ZrF4(ss, cu. 27.5 mole %

Zr F,) .& a3Na F.2Zr F4

L + a-5NaF*2ZrF4(ss, 30 mole % ZrF4) $ a-2NaF*ZrF4

a-2NaF*ZrF4 &P-2NaF*ZrF4

P-2NaF*ZrF4 Y2NaF*ZrF4

L *Y2NaF-ZrF4 + 7NaF-6ZrF4ss

L e 7NaF-6ZrF4

L e 7NaF*6ZrF4 + 3NaF*4z1F4

L + ZrF4 e 3NaF*4ZrF4

*A determination of the crystal structure of 3NaF*ZrF4 has been reported by L. A. Harris, “The Crystal Structures of Na3ZrF7 and Na3HfF7,” Acta Cryst. 12, 172 (1959).

54 E

Page 61: Ornl 2548

f000

900

800

- u W E 3

0 700

5i a w 2 600 W +

500

400

UNCLASSIFIED ORNL-LR-OWG-22i05

55

Page 62: Ornl 2548

3.34. The System KF-ZrF,

performed at the Oak Ridge National Laboratory, 1951-55. C. J. Barton, H. Insley, R. P. Metcalf, R. E. Thoma, and W. R. Grimes, unpublished work

Prel iminary diagram.

Invariant Equilibria

Invariant Phase Reaction

at Invariant Temperature Mole % ZrF4 Temperature Type of Equilibrium

(OC) in Liquid

14 765 Eutectic L e KF + 3KF*ZrF4

25 910 Congruent melting point L 3KF*ZrF4

36 590 Peritectic 3KF*ZrF4 + L & 2KF*ZrF4

40.5 412 Peritectic 2KF*ZrF4 + L 3KF*2ZrF4

42 390 Eutectic L e 3KF*2ZrF4 + KF*ZrF4

50 475 Congruent melting point L e KF.ZrF4

55 440 Eutectic L KF*ZrF4 + ZrF4

UNCLASSIFIED ORNL-LR-DWG 48965

I000

900

000

- 0 0

a 3 + W

w 700

a a a 5 600 I-

500

400

300 KF 10 20 30 40 50 60 70 00 90 ZrG

ZrFg (mole Yo)

Fig. 3.34 The System KF-ZrF+

L

Gd c f"

LI

56

Page 63: Ornl 2548

L- L - t L

a, C. J. Barton, W. R, Grimes, H. Insley, B. S. Landau, and H. A.

erformed at the Oak Ridge National Laboratory, 1955-56.

Invariant Equilibria

Phose Reaction at Invariant Temperuture

Type of Equilibrium

897 . Congruent melting point L 3RbF*ZrF4

Per itectic

lnver s ion u-2RbF*ZrF4 P-2RbF*ZIF4

Lowered inversion

L + 3RbF*ZrF4ss $ a-2RbF*ZrF4

~-2RbFaZr F4ss + P-2RbF*ZrF4ss

L u-2RbF*ZrF4ss + 5RbF*4ZrF4

L ---\ 5RbF*4ZrF4

and decomposition

Congruent melting point

390 Eutectic L & SRbF*4ZrF4 + P-RbF*ZrF4

423 Congruent melting point L $ &-RbF*ZrF4

391 Inversion a-RbF*frF4 P-RbF*ZrF4

400 E utac t ic L + a-RbF*ZrF4 + RbF*2ZrF4

57

Page 64: Ornl 2548

I

3.36. The System CsF-ZrF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak

Ridge National Laboratory, 1952-53. Pre I i minary d i agram.

1

lnvariant Equilibria

Invariant Mole % ZrF4 Temperature Typc of Equilibrium

e) in Liquid Phase Reaction

at lnvariant Temperature

9 640 Eutectic L CsF + 3CsF*ZrF,

25 775 Congruent melting point L 3CsF*ZrF4

35 520 Per itectic L + 3CsF-ZrF4 f=! 2CsF*ZrF4

40 420 Eutectic L & 2CsF-ZrF, + a-CsF*ZrF4

515 Congruent melting point L a-CsF-ZrF, 50

- 3 20 h e r s ion a-Cs F- Zr F, p-Cs F-Zr F,

59 470 Eutectic L a-CsF*ZrF4 + ZrF,

58

Page 65: Ornl 2548

Io00

900

800

Y 700

a a a

2

- W

3 + W

600

500

400

T

I

z

UNCLASSIFIED ORNL-LR-DWG 18963

50 60 70 80 90 ZrF4 30C CsF 10 20 30 40

ZrF, (mole %)

Fig. L36. The System CsF-ZrF4.

U 59

Page 66: Ornl 2548

3.37. The System LiF-NaF-ZrF,

work performed at the Oak Ridge National Laboratory, 1953-59. F. F. Blankenship, H. A. Friedman, H. Insley, R. E. Thoma, and W. R. Grimes, unpublished

Pre I im i nary diagram.

lnvar i ant Equ i I i bria

Composition of Liquid (mole X) Temperature Type of Solids Present ec, lnvar iant at Invariant Temperature

L i F NaF ZrF4

37 52 11

55 22 23

32 36 32

31 35 34

31 34.5 34.5

26 37 37

29 25.5 45.5

29 24.5 46.5

28 24 48

604

590

450

448

445

425

449

453

4 75

Eutectic

Eutectic

Peritectic

Per itectic

Per itectic

Eutectic

Eutectic

Per itect ic

Peritectic

NaF, LiF, and 3NaF*ZrF4

a9LiF*ZrF4, 3NaF*ZrF4ss, and L i F

p-3L i F*Zr Fa, 3Na F*ZrF4ss, and 2Li F*Zr F4

3NaF*ZrF4, ~-5NaF-2Zr F4ss, and 2LiF-Zr F4

2Na F-Zr F,, a4Na F*2ZrF4ss, and 2Li F-Zr F,

2NaF*ZrF4, 7NaF*6ZrF4, and 2LiF.ZrF4

7NaF*6ZrF4, 3NaF*4ZrF4ss, and 2LiF*ZrF4

3NaF*4ZrF4ss, 3LiF*4ZrF4ss, and 2LiF-ZrF4

3Na F-4Zr F4ss, 3L iF-4Zr F4ssl and Zr F4

60

0 c

Page 67: Ornl 2548

UNCLASSIFIED ORNL-LR- DWG 38445

ZrF, 942

TEMPERATURE IN "C COMPOSITION IN mole %

&800+ - " H H l N D l C A T E S SOLID SOLUTION

61

Page 68: Ornl 2548

3.38. The System NaF-KF-ZrF,

performed at the Oak Ridge National Laboratory, 1951-55.

R. E. Thoma, C. J. Barton, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work

Preliminary diagram.

Invariant Equilibria*

Invariant Composition of

Liquid (mole %I** Temperature Type of Equilibrium Solids Present at Invariant Point

NaF KF ZrF4 ec I

34

45

61

52

48

33

12

40

39

11

10

15

22

25

21

20

58

38

19

17

18

32

51

21

21

49

48

40

33

25

29

30

8

17

20

31

34

35

37

39

40

40

42

45

45

50

51

50

695 Eutectic

720 Eutectic

710 E utectic

Peritectic

Peritectic

Per i tect ic

Peritectic

Per i tect i c

Peritectic

Peritectic

385 Eutectic

Eutectic

Peritectic

Eutectic

Eutectic

432 Congruent melting point

NaF, KF, and 3KF*ZrF4

NaF, 3KF*ZrF4, and 3NaF*3YF*2ZrF4

NaF, 3NaF-ZrF4, and 3NoF-3KF*2ZrF4

3NaF*ZrF4, 3NaF*3KF.2ZrF4, and

3NaF.ZrF4, Na F* K F*Zr F4, and

3NaF*3KF.2ZrF4, 3KF*ZrF4, and

3KF*ZrF4, 2KF-ZrF4, and

NaF*KF*ZrF4

5NaF*2ZrF4

Na F* K F-Zr F4

NaF.KF.ZrF4

5NaF.ZZrF4, 2NaF*ZrF4, and NaF.KF.ZrF4

2NaF*ZrF4, 7NaF.6ZrF4, and Na F*K F-Zr F4

2KF*ZrF4, 3KF*2ZrF4, and

3KF*2ZrF4, KF*ZrF4, and

KF*ZrF4, NaF*KF.ZrF4, and

NaF.KF*ZrF4, 7NaF*6ZrF4, and

Na F*K F*Zr F4

NaF*KF*ZrF4

2NaF-3KF.5ZrF4

2Na F.3 K Fa 5Zr F4

7NaF*6ZrF4, 3NaF*4ZrF4, and 2NaF*3KF.5ZrF4

3NaF*4ZrF4, ZrF4, and 2Na F.3KF-5Zr F4

2Na F*3K F4Zr F4

*Three solid phases hove been observed routinely in the composition region 30-50 mole % ZrF4 which have not been identified as to composition. Whether these exhibit primary phases at the liquidus surface has not yet been determined.

**Compositions of invariant points shown by the intersection of dotted boundary curves are approximate.

62

Page 69: Ornl 2548

TEMPERATURE IN OC COMPOSITION IN mole%

UNCLASSIFIED ORNL-LR-DWG 35480

A. ZNaF.3KF-5ZrG E. NaF.KF.Zr5 C. 3NOF.3KF.ZZrF,

ZrG 912

KF 856

for the temperatures 600, 650, and 7OO0C itted in order not to obscure the phase

63

Page 70: Ornl 2548

3.39. The System NaF-RbF-ZrF,

R. E. Thoma, H. Insley, H. A. Friedman, and W. R . Grimes, unpublished work performed at

the Oak Ridge National Laboratory, 1951-56. Preliminary diagram.

Invariant Equi Ii brio

Invariant Composition of

Liquid bole %) Temperature Type of Equilibrium Solids Present at Invariant Point

NaF RbF ZrF4 eC)

23 72

50 27

37 32

39 26

36.3 24.2

34.5 24

34 23.5

33 23.5

28.5 21.5

28 21.5

23.5 39.5

21 40

8 50

8.5 47

6.2 45.8

5 42

6.5 39

33.3 33.3

25 25

5

23

31

35

39.5

41.5

42.5

43.5

50

50.5

37

39

42

44.5

48

53

54.5

33.3

50

643

72 0

605

545

427

424

422

420

443

446

470

438

400

3 95

380

398

423

642

462

Eutectic

E utect i c

Eutectic

Per i tect ic

Peritectic

Peritectic

Peritectic

Eutectic

Eutectic

Peritectic

Peritectic

Peritectic

Eutectic

Eutectic

Eutectic

Eutectic

Per i tact i c

Congruent meltin point

Congruent melting point

NaF, RbF, and 3RbF*ZrF4

NaF, 3RbF*ZrF4, and 3NaF-ZrF4

3NaF*ZrF4, 3RbF*ZrF4, and

3NaF*ZrF4, 5NaF-2ZrF4, and

5NaF*2ZrF4, PNaF-ZrF,, and

NaF-RbF*ZrF4

NaF*RbF*ZrF4

NaF*RbF*ZrF,

2NaF-ZrF4, NaF-RbF-ZrF,, and 3NaF.3RbF.4ZrF4

2NaF*ZrF4, 7NaF*6ZrF4, and

7NaF*6ZrF4, 3NaF*3RbF*4ZrF4, and

3NaF.4ZrF4, 7NaF.6ZrF4, and

3NaF*4ZrF4, ZrF4, and

NaF-RbF-ZrF,, 2RbF*ZrF4, and

NaF-RbF-ZrF,, 2RbF.ZrF4, and

3NaF-3RbF-4ZrF4, 2RbF-ZrF4, and

3NaF.3RbF*4ZrF4

NaF*RbF*2ZrF4

NaF*RbF*2ZrF4

NaF*RbF*2ZrF4

3RbF.ZrF4

3Na F*3RbF*4ZrF4

5RbF*4ZrF4

3NaF*3RbF*4ZrF4, 5RbF*ZrF,, and NaF-RbF-2ZrF4

NaF.RbF*2ZrF4, 5RbF*4ZrF4, and RbF*ZrF4

NaF-RbF*2ZrF4, RbF*ZrF4, and Rb Fg2Zr F4

ZrF4, NaF*RbF*2ZrF4, and RbF*2ZrF4

NaF-RbF-ZrF4

NaF*RbF*2ZrF4

, 64

Page 71: Ornl 2548

Minimum Temperatwes on Alkemade l i n e s

Composition of Liquid (mole %) Temperature Na F RbF Zr F4 e, Alkemade Line

24.75 24.75 51.5 455 NaF*RbF*2Zr F4-Zr F4

6 44 50 402 NaF*RbF*2ZrF4-RbF*ZrF4

7.5 46.5 46 405 No F*Rb F.2Zr F4-5Rb F.4Zr F4

8.5 48.5 43

213 28 44

405 3Na F*RbF*4ZrF4-5RbF*4Zr F4

435 3NaF*RbF*4ZrF4-Na F-Rb F*2ZrF4

22 40 38 442 3NaF*3RbF*4Zr F4-2Rb F-Zr F4

29 41.5 49.5 450 No F-Rb F-2Zr F4-7Na F-6Zr F,

37 24.5 38.5 610 NaF*RbF*Zr F4-3NaF*ZrF4

47 28 25 732 3NaF*Zr F4-3RbF*ZrF4

36 48 16 777 NaF-3RbF*ZrF4

30 36.7 33.3 598 NaF*RbF*ZrF4-3RbF*ZrF4 ‘

UNCLLSSIFIED ORNL-LR-DWG 1696OA

ZrFq 940

LW Fig. 3.39. The System NaF-RbF-ZrFC

65

Page 72: Ornl 2548

3.40. The System NaF-CrF2-ZrF,: The Section NaF-CrF, - ZrF,

R. E. Thoma, H. A. Friedman, B. S. Landau, and W. R. Grimes, unpublished work performed

at the Oak Ridge National Laboratory, 1956-57. Preliminary diagram. No invariant equilibria occur for compositions lying on the section

NaF-CrF,-ZrF,.

NaF*CrF2+ ,9-NoF.CrF2. 2ZrF4

UNCLASSIFIED ORNL-LR-DWG (9367R

E

,9-NaF.CrF2. 2ZrF4 +ZrF4

4000

900

800 c 0

W

3

- a $ 700 E a 5 I-

600

500

400

66

NaF-CrF2 $0 20 30 40 50 60 70 80 90 ZrF4 ZrF4 (mole %)

Fig. 3.40. The Section NaF*CrF2-ZrF+

Page 73: Ornl 2548

3.41. The System NaF-CeF,-ZrF,

W. T. Ward, R. A. Strehlow, W. R. Grimes, and G. M. Watson, “Solubility Relationships of

Rare Earth Fluorides and Yttrium Fluoride in Various Molten NaF-ZrF, and NaF-ZrF4-UF,

Solvents,” J . Chem. Eng. Data (in press).

UNCLASSIFIED ORNL-LR-DWG 29164R

\

NoF ‘ 6 0 0 ° C 50 70 (99OOC)

Fig. 3.41~. The Sys tem NaF-CeF3-ZrFC

UNCLASSIFIED ORNL-LR-DWG 29465R

PROBABLE NoF- ZrFq PRIMARY PHASE FIELDS

A 2NaF. ZrFq B 3NaF.4ZrF4 E SNaF.2ZrFq C 7NaF.6ZrFq F 3NaF+ZrF4

20 I\

Fig. 341b. The System NaF-CeFj-ZrF4 in the Region 30-70 Mole X NaF, 0-20 Mole 96 CeF3, 30-70 Mole X ZrFC

67

Page 74: Ornl 2548

3.42. The System LiF-CeF,

the Oak Ridge National Laboratory, 1956-57. C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at

Preliminary diagram. The system LiF-CeF, contains a single eutectic at 81 LiF-19 CeF,

(mole %), m.p. 755 *5OC.

68

Page 75: Ornl 2548

L

Fig. 3.42 The System LiF-GFT

69

Page 76: Ornl 2548

3.43. The System NaF-HfF,

work performed at the Oak Ridge National Laboratory, 1956-58. R. E. Thoma, C. F. Weaver, T. N. McVay, H. A. Friedman, and W. R. Grimes, unpublished

Preliminary diagram.

Invariant Equilibria

Invariant Phase Reaction

at Invariant Temperature Mole ' HfF4 Temperatwe Type of Equilibrium

(-1 in Liquid

18.5

25

34

- 35

- 43

45

50

53

695

863

606

535

586

Be low 350

Below 350

510

53 1

557

535

Eutectic

Congruent melting point

Per itect ic

I nver s ion

Peritectic

lnvers ion

Inversion

Eutectic

Per itect ic

Congruent melting point

Eutect ic

L e NaF + 3NaF*HfF4

L 3NaF*HfF4*

L + 3NaF*HfF4 + U - S N ~ F - P H ~ F ~

U J N ~ F - P H ~ F ~ ,8-5NaF.2HfF4

L + aJNaF*2HfFq __I P-2NaF-HfF4

P-2NaF*HfF4 e Y-2NaF*HfF4

')'-2NaF*HfF4 4 8-2NaF*HfF4

L 4 ,8-2NaF*HfF4 + 7NaF*6HfF4

L + NaF-HfF, +7NaF*6HfF4

L $ NaF-HfF,

L .$ NaF-HfF, + HfF4 .

*A determination of the crystal structure of 3NaF*HfF4 has been reported by L. A. Harris, "The Crystal Structures of Na3ZrF7 and Na3HfF7," Acta Cryst. 12, 172 (1959).

70

B

U

Page 77: Ornl 2548

UNCLASSIFIED ORNL-LR-DWG 35488

71

Page 78: Ornl 2548

3.44. The System LiF-ThF,

in the Fused Salt Systems LiF-ThF, and NaF-ThF,," J . Phys . Chem. 63, 1266-74 (1959). R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria

Invariant Equilibria

Invariant

Mole % ThF, Temperature Type of Equilibrium in Liquid

Phase Reaction

at Invariant Temperatue

- 23

-~

568 Eutectic L + L i F + 3LiF*ThF4

25 573 Congruent melting point L e 3LiF*ThF4

29

30.5

565 Eutectic

597 Per itectic

L + 3LiF*ThF4 + 7LiF*6ThF4

LiF*2ThF4 + L 7LiF*6ThF4

42 762 Peritectic LiF*4ThF4 + L LiF-2ThF4

62 897 Per itectic ThF4 + L LiF*4ThF4

UNCLASSIFIED ORNL-LR-DWG 2 6 5 3 5 A

72

4450

1050

9 950

2 850 - W [ZI

W a 750 2 W I- 650

550

450 LiF 40 20 30 40 50 60 70 80 90 ThG

ThG (mole X)

Fig. 34d. The System LiF-ThF+

Page 79: Ornl 2548

3.45. The System MaF-ThF,

in the Fused Salt Systems LiF-ThF, and NaF-ThF,," J . Phys . Chem. 63, 1266-74 (1959). R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria

Invariant Equilibria

Invariant

"le % ThF4 Temperature Type of Equilibrium (-1 in Liquid

Phase Reaction

at Invariant Temperature

21.5

22.5

- -

33.3

37

40

41

- 45.5

58

645

618

604

558

705

690

71 2

705

683

730

83 1

Per i tect ic

Eutectic

Inversion

Decomposit ion

Congruent melting point

Eutectic

Congruent melfing point

Eutectic

Decomposition

Peritectic

Per i tect ic

NaF + L e a-4NaF*ThF4

L e aJNaF*ThF, + 2NaF*ThF4

a-4Na F*Th F,

@-4NaF*ThF4 NaF + 2NaF*ThF4

L - 2NaF*ThF4

L e 2NaF*ThF4 + 3NaF*2ThF4

L e 3NaF-2ThF4

L e 3NaF-2ThF4 + a-NaF*ThF4

3NaF*2ThF4 e 2NaF*ThF4 + U-NaF-ThF,

NaF*2ThF4 + L& U-NaF-ThF,

ThF, + L $ NaF*2ThF4

&Na F*Th F,

L

UNCLASSIFIED ORNL-LR-DWG 28528AR

li u

I 20 30 40 ThG (mole 70)

Fig. 3.45. The System NaF-ThF,.

1 60 70 80 90 Thb

i I Y 73

Page 80: Ornl 2548

3.46. The System KF-ThF, W. J. Asker, E. R. Segnit, and A. W. Wylie, "The Potassium Thorium Fluorides," J . Chem.

SOC. 1952,4470-79. This system has also been reported by A. G. Bergman and E. P. Dergunov, Doklady Akad.

Nauk S.S.S.R. 53, 753 (1941) and by V. S. Emelyanov and A. J. Evstyukhin, "An Investigation

of Fused-Salt Systems Based on Thorium Fluoride - II. NaF-KF-ThF,, NaF-ThFi, and KF- ThF,," J . Nuclear Energy 5, 108-14 (1957).

Invariant Equilibria

Invariant

% ThF4 Temperatue Type of Equilibrium e, in Liquid

Phase Reaction at Invariant Temperatue

14

- - 25

- 31

- - 50*

56

66

75

78

694

635

712

865

570

691

747

645

905

875

930

990

980

Eutectic

Inversion

Peritectic

Congruent melting point

Decompos it ion

Eutectic

Peritectic

Inversion

Congruent melting point

Eutectic

Per itect ic

Congruent melting point

Eutectic

L KF + P-5KF*ThF4

U-5KF*ThF4 P-5KF*ThF4

L + JKF-ThF, a-5KF*ThF4

L e 3KF-ThF4

3KF*ThF4 & ,&5KF*ThF4 +P-2KF*ThF4

L *3KF*ThF4 + U-2KF*ThF4

L + KF*ThF4 e u-2KF*ThF4

u -~KF-T~F , & P-2KF*ThF4

L e KF-ThF,

L e KF-ThF, + KF-PThF,

L + KF.3ThF4 e K F * 2 T h F 4

L & KF-3ThF4

L KF*3ThF4 + ThF4ss

*It has been shown that the compound labeled by Asker et al. has the actual formula 7KF*6ThF4; cf. R. E. Thoma, Crystal Stnutwes of Some Compounds of UF4 and ThF4 with Alkali Fluorides, ORNL CF-58-12- 40 (December 11, 1958).

74

Page 81: Ornl 2548

1200

1100

IO00

9 - 900

K 3

t 6 a p 800

700

600

UNCLASSIFIED ORNL-LR-DWG (8966

/ /

i 7-

'\

\

7 \

500 KF 10 20 30 40 50 60 70 80 90 ThF4

ThF, (mole %)

75

Page 82: Ornl 2548

3.47. The System RbF-ThF, E. P. Dergunov and A. G. Bergman, “Complex Formation Between Alkali Metal Fluorides

and Fluorides of Metals of the Fourth Group,” Doklady Akad. Nauk S.S.S.R. 60, 391-94 (1948).

Invariant Equilibria

Invariant Type of Equilibrium Phase Reaction Mole % ThF, Temperature

at Invariant Temperature (OC)

in Liquid

_ _ _ _ _ ~ -~

15 664 Eutectic L RbF + 3RbF*ThF4

25 974 Congruent melting point L *3RbF*ThF4

37 76 2 Eutectic L ---\ 3RbF*ThF4 + RbF-ThF,

50 852 Congruent melting point L e RbF-ThF,

54 848 Eutectic L RbF*ThF4 + RbF*3ThF4

75 1004 Congruent melting point L e RbF*3ThF4

80 1000 Eutectic L e RbF*5ThF4 + ThF,

ThF4 (mole yo)

Fig. 3.47. The System RbF-ThF4.

76

E

UNCLASSIFIED ORNL-LR-DWG 20464

Page 83: Ornl 2548

I1

3.48. The System BeF,-ThF, R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, "Phase Equilibria in the Sys-

tems BeF,-ThF, and LiF-BeF2-ThF,," paper to be presented at the 136th National Meeting of the American Chemical Society, Atlantic City, N. J., Sept. 13-18, 1959.

The system BeF,-ThF, contains a single eutectic at 98.5 BeF2-l.5 ThF, (mole %), m.p.

526 k3'C.

UNCLASSIFIED ORNL-LR-DWG 24554

I200

t too

W

700

600

500 BeF2 40 20 30 40 50 60 70 80 90 ThG

ThF, (mole Yo)

Fig. 3.48, The System BcFZ-ThF4.

77

Page 84: Ornl 2548

I

I I I I I I I I

3.49. The System BeF,-UF,

MLM-1082 (to be published).

Preliminary diagram.

UF, (mole %), m.p. 535 f2T.

T. B. Rhinehammer, P. A. Tucker, and E. F. Joy, Phase Equilibria in the System BeF2-UF4,

The system BeF2-UF, contains a single eutectic at 99.5 BeF,-0.5

QHIGH BeF2 +UF4

I I I I I I I I I I I I I I I I I I

LIQUID

UF4 +LIOUID

Fig. 3.49. The System BeF2-UFC

IO -4

Page 85: Ornl 2548

3.50. The System MgF,=ThF,

actors, ORNL-1030 (June 19, 1951) (dec las s i f i ed with delet ions) .

J. 0. Blomeke, An Investigation of the TbF4-Fused Salt Solutions for Homogeneous Re-

Invariant Equilibria

Invariant Phase Reaction

at Invariant Temperature Mole % ThF4 Temperature Type of Equilibrium

ec) in Liquid

25 915 Eutectic L e ThF4 + MgF2*2ThF4

33.3 937 Congruent melting point L e MgF2*2ThF4

40 925 E ute cti c L MgF2*2ThF4 + MgF2

UNCLASSIFIED ORNL-LR- DWG 204 6 5

79

Page 86: Ornl 2548

3.51. The System LiF-BeF,-ThF,

R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, "Phase Equilibria in the Sys-

tems BeF,-ThF, and LiF-BeF,-ThF,," paper to be presented at the 136th National Meeting

of the American Chemical Society, Atlantic City, N. J., Sept. 13-18, 1959.

lnvarian t Equil i bria

Type of Solids Present Invariant at Invariant Point

Invariant

Te mperat we

Composition of Liquid (mole %)

L i F BeF, ThF4 ~~ ~~

15 83 2 497 f 4 Peritectic ThF4, LiF*4ThF4, and BeF,

33.5 64 2.5 455 f 4 Peritectic LiF*4ThF4, LiF*2ThF4, and BeF,

47 51.5 1.5 356 f 6 Eutectic 2LiF*8eF2, LiF*2ThF4, and BeF,

60.5 36.5 3 433 f 5 Peritectic LiF*2ThF4, 3LiF-ThF4ss, and 2Li F*Be F,

65.5 30*5 4 444 k 4 Peritectic LiF, 2LiF*BeFz, and 3L i F*Th F4ss

63 30.5 6.5 448 f 5 Peritectic 3LiF*ThF4ss, 7LiF*6ThF4, and L i F-2T hF4

ThF, 4 4 4 4

UNCLASSIFIED ORNL-LR-DWG 37420P.

TEMPERATURE IN 'C COMPOSITION IN mole 70

LiF,4ThF, 4

P 465 E 370

Fig, 3.51~. The System LiF-BeF,-ThF+

80

Page 87: Ornl 2548

L Limits of Single-Phase 3 L I F * t h F 4 Solid Solution

Composition (mole %)

LiF BeF2 ThF,

75 0 25

58 16 26

59 20 21

A three-dimensional model of the system LiF-BeF2-ThF, i s shown in Fig. 3.51b.

Fig. 3.51b. Model of the System LiF-BeF2-ThFt

81

Page 88: Ornl 2548

3.52. The System NaF-ZrF,-ThF,

performed at the Oak Ridge National Laboratory, 1956-57. R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, unpublished work

Preliminary diagram.

Invariant Equilibria

Composition of Liquid lnvar iant (mole X) Temperatwe Type of Equilibrium

NaF ZrF, ThF, ec, Solids Present

at Invariant Point

77

75.5

63

65.5

65.5

64.5

58

58

53

49.5

3

2.5

6

21.5

24.5

25.5

38

40

42

48

20

22

31*

13

10

10

4

2

4

2.5

645

618

683

622

615

593

538

495

510

505

Per itect i c

Eutectic’

Decompos it ion point

of 3NaF*2ThF4 in ternary system

Per itect ic

Per itect ic

Peritectic

Per itect ic

E utact ic

Per itect ic

E utect ic

NaF, a-4NaF*ThF4, and 3NaF*ZrF4

U-4Na F*Th F,, 2Na F-Th F,, and 3Na F*Zr F4

3NaF*2ThF4, 2NaF*ThF4, and Na F- Th F,

2NaF*ThF4, 3NaF*ZrF4, and NaF-ThF,

3NaF*ZrF4, NaF*ThF4, and U-5Na F*2ZrF4

u-SNaF*2ZrF4, NaF-ThF,, and NaF-2ThF4

U-5Na F*2Zr F,, a-2NaF-Zr F,, and Na F-2Th F,

,f%2NaF-ZrF4, NaF*2ThF4, and 7NaF*6ZrF4-3NaF*2ZrF4ss

NaF*2ThF4, Th(Zr)F4ss I and 7Na F*6Zr F4-3NaF*2ThF4ss

7NaF.6ZrF4, 3NaF*4ZrF4, and Zr (Th) F, ss

*Approximate compos it ion.

Note: The boundary curve maximum on the Alkemade line 7NaF.6ZrF,-ThF4 i s unlikely to

fall ’exactly on this line, because pure ThF, does not occur along this line. Since ThF, forms

solid solutions with both ZrF, and NaF.2ThF4, it i s not readily determined on which side of

the Alkemade line this maximum occurs.

1

82

Page 89: Ornl 2548

UNCLASSIFIED ORNL-LR- DWG 20466A

83

Page 90: Ornl 2548

3.53. The System LiF-UF,

C. J. Barton, V. S. Coleman, L. M. Bratcher, and W. R. Grimes, unpublished work performed

at the Oak Ridge National Laboratory, 1953-54. Preliminary diagram. The system LiF-UF, contains a single eutectic at 73 LiF-27 UF,

(mole %), m.p. 770°C.

650

600

550

500

84

4000

950

900

850

c

800 % W a: 3

750 W a I w I- 700

B 0

b

UNCLASSIFIED ORNL-IR-DWG 2923

0

UF, (mole %)

Fig. 3.53. The System LIF-UF3.

Page 91: Ornl 2548

. A. Friedman, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma,“Phase

lkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: 1. The Systems

aF-UF,,” 1. Am. Ceram. SOC. 41, 63-69 (1958).

Invariant Equilibria

Invariant Phase Reaction

at invariant Temperatwe Tcmpcrat we Type of Equilibrium e, 470 Decompor it ion 4LiF*UF4 e LiF + 7LiF*6UF4

500 Per itcctic LiF + L $ 4LiF.UF4

490 Eutectic L e 4LiF*UF, + 7LiF*6UF4

610 Per itectic L + LiF*4UF4 e 7LiF*6UF4

775 Pcritcctic L + UF4+ LiF*4UF4

UNCLASSIFIED ORNL-LR-DWG I7457

60 70 80 90

Fig. 3.54 The System LIF-UF,.

85

Page 92: Ornl 2548

3.55. The System NaF-UF,

at the Oak Ridge National Laboratory, 1953-54.

C. J. Barton, V. S. Coleman, T. N. McVay, and W. R. Grimes, unpublished work performed

Preliminary diagram.

Invariant Equ.i libria

Invariant Phase Reaction

at Invariant Temperatwe Mole % UF3 To mperat we Type of Equilibrium

e, in Liquid

~~

27 715 Eutectic L NaF +a-NaF*UF3

35 775 Per itectic L + UF3+ a-NaF.UF3

- 595 inversion a-NaF*UF3 P-NaF-UF3

86

Page 93: Ornl 2548

; u UNCLASSIFIED

U

NaF UF3 (mole %)

Fig. 855. The System NaF-UF3.

87

Page 94: Ornl 2548

E

3.56. The System NaF-UF,

Equilibria in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems:

LiF-UF, and NaF-UF,," J. Am. Ceram. SOC. 41, 63-69 (1958).

C. J. Barton, H. A. Friedman, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase

1. The Systems

Invariant Equilibria

Invariant % uF4 Temperature Type of Equilibrium

e, in Liquid Phase Reaction

at Invariant Temperatwe

21.5 618 Eutectic L + a-3NaF*UF4 + NaF

25 629 Congruent melting point L e a-3NaF-UF4

- 528 Inversion a-3NaF*UF4 P-3NaF*UF4

- 497 Decomposition P-3NaF*UF4 NaF + 2NaF*UF4

28 623 Eutectic

32.5 648 Per itect i c

L @ a9NaF*UF4 + 2NaF*UF4

L + 5NaF.3UF4 & 2NaF-UF4

37 673 Peritectic L + 7NaF*6UF4 e 5NaF*3UF4

- 630 Decomposition 5NaF*3UF4 2NaF*UF4 + 7NaF-6UF4

46.2 718 Congruent melting point L 7NaF-6UF4

56 680 Eutectic L e 7NaF*6UF4 + UF,

- 660 Upper stability l imi t 7NaF*6UF4 + UF, e NaF.2UF4 of NaF*2UF4

J

*

88

Page 95: Ornl 2548

UNCLASSIFIED ORNL-LR-DWG (9364

i

4100

to00

900

600

500

400

NaF 10 20 30 40 50 60 70 80 90 "F4 UF4 (mole %)

Fig. 3.56. The System NaF-UF,.

89

Page 96: Ornl 2548

3.57. The System KF-UF,

in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: and RbF-UF,," J . Am. Ceram. SOC. 41, 538-44 (1958).

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria II. The Systems KF-UF,

Invariant Equilibria

Invariant Phase Reaction

at invariant Temperatue "le % uF4 Temperature Type of Equilibrium

ec, in Liquid

15 735 Eutectic L KF + 3KF*UF4

25 957 Congruent melting point L 3KF.UF4

- 608 Decompos it ion 2KF.UF4 3KF*UF4 + 7KF*6UF4

35 755 Paritectic 3KF*UF4 + L 2KF*UF4

38.5 740 Eutectic L 2KF*UF4 + 7KF*6UF4

46.2 789 Congruent melting point L e 7KF*6UF4

54.5 735 Eutectic L 7KF*6UF4 + KF-ZUF,

65 765 Paritect ic UF, + L KF*2UF4

I100

1000

o 900

5 800

5;: 700

600

' 500

Y

W

!z

5 [r:

!-

400

90

30 40 50 60 70 80 90 UF4 UG (mole XI

Fig. 3.57. The System KF-UFc

Page 97: Ornl 2548

!

3.58. The System RbF-UF, R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, “Phase Equi-

libria in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: It. The Systems KF- UF, and RbF-UF,,” J . Am. Ceram. SOC. 41, 538-44 (1958).

Invariant Equilibrla

Invariant Mole % UF, Temperature Type of Equilibrium Phase Reaction at

Invariant Temperature ec, in Liquid

UNCLASSIFIED ORNL-LR-DWG 28525

10

25

38

43 5

44

50

55

56.5

57

70.5

710

995

818

675

693

735

714

722

730

832

Eutectic

Congruent melting point

Peritectic

Eutectic

Peritectic

Congruent melting point

Eutectic

Peritectic

Peritectic

Peritectic

L e R b F + 3RbF*UF4

L e 3 R b F * U F 4

L + 3RbF*UF4 e 2RbF*UF4

L e 2 R b F * U F 4 + 7RbF*6UF4

RbF*UF4 + L 4 7RbF*6UF4

L +RbF*UF,

L +RbF=UF, + 2RbF*3UF4

RbF*3UF4 + L 2RbF*3UF4

RbF*6UF4 + L & RbF-3UF4

UF, + L e RbF*6UF4

Fig. 3.58 The System RbF-UFt

91

Page 98: Ornl 2548

E ! 3.59. The System CsF-UF,

work performed at the Oak Ridge National Laboratory, 1951-53. C. J. Barton, L. M. Bratcher, J. P. Blakely, G. J. Nessle, and W. R. Grimes, unpublished

Preliminary diagram.

Invariant Equilibria

Invariant Mole % UF, Ternperatwe Type of Equilibrium

ec) in Liquid

Phase Reaction

a t Invariant Temperature

Eutect ic L CsF + 3CsF*UF4 7.5 650

25 970 Congruent malting point L e 3CsF*UF4

34 800 Per itect ic L + 3CsF*UF4 2CsF*UF4

41 695 Eutectic L 2CsF*UF4 + U-CsF*UF,

50 735 Congruent melting point L e u-CSF-UF,

- 550 lnver s ion u-CsF*UF, P-CSF-UF,

725 Eutectic L ~ u - C S F - U F ~ + UF, 53

I I O 0

1000

9 00

c

." 8oa

a 3 : w n 5 70C t

6 OC

5 O(

4 O(

UNCLASSIFIED ORNL-LR-DWG. 18915

I I I I I I I I 1

a ? 8 n

A 5F IO 20

I I I I I I U F ~ (mole O/o)

c

.u L

Fig, S.59. The System CsF-UF,.

92

Page 99: Ornl 2548

3.60. The System ZrF,-UF, C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria

in the Systems NaF-ZrF,, UF,-ZrF,, and NaF-ZrF,-UF,," J . Phys. Chem. 62,665-76 (1958). The system ZrF,-UF, forms a continuous series of solid solutions having a minimum melting

temperature of 765OC at 77 ZrF,-23 UF, (mole %).

UNCLASSIFIED ORNL-LR-DWG 49887

I050

4000

9 50

- u

W lr 3 I- a a w

- 900

a 850 5 I-

800

750

700 20 30 40 50 60 70 80 90 ZrF4

93

Page 100: Ornl 2548

3.61. The System SnF2-UF4

(July 1959).

B. J. Thamer and G. E. Meadows, The Systems UF4-SnF2 and PuF3-SnF2, LA-2286

lnvar iant Equi I ibria

Invariant Phase Reaction

at Invariant Temperature Mole % UF4 Temperature Type of Equilibrium

e) in Liquid

0.5 212 Eutectic L e SnF2 + 2SnF2*UF4

4.5 340 Peritectic L + SnF2.UF4 e 2SnF2*UF4

7.8 371 Peritectic L + UF4 e SnF2*UF4

4400

4000

900

800

700

.o W lY 3

600 W a J I-

500

400

300

200

400

UNCLDSSIFIED ORNL-LR-DWG 36864

SnF2 40 20 30 40 50 60 70 80 90 uF4 UG (mole%)

Fig. 3.61. The System SnF2-UF+

94

Page 101: Ornl 2548

~

L L .

I; L,

3.62. The System PbF,-UF,

work performed at the Oak Ridge National Laboratory, 1950-51. C. J. Barton, L. M. hatcher, J. P. Blakely, G. J. Nessle, and W. R. Grimes, unpublished

Preliminary diagram.

invariant Equilibria

Invariant Phase Reaction

at Invariant Temperature Mole % UF4 Temperature Type of Equilibrium

ec, in Liquid

-~ 14.3 92 0 Congruent melting point L & 6PbF2*UF4

35 835 Eutectic L e 6PbF2*UF4 + 3PbF2*2UF4

40 840 Congruent melting point L 3PbF2*2UF4

62 762 f 10 Eutectic L e 3PbF2*2UF4 .I- UF4

The eutectic at quite high PbF, concentrations is not shown on this diagram. The authors

examined thermal data but found no evidence of a eutectic thermal effect.

UNCLASSIFIED D W G 1 4 6 3 3 R

U F ~ (mole%)

Fig. 3.62. The System PbF2-UFC

Y I

95

Page 102: Ornl 2548

1 3.63. The System ThF4-UF, C. F. Weaver, R. E. Thoma, H. A. Friedman, and H. Insley, "Phase Equilibria in the Systems

UF,-ThF, and LiF-ThF,-UF,," paper presented at the 61st National Meeting of the American

Ceramic Society, Chicago, Ill., May 17-21, 1959.

The system ThF,-UF, forms a continuous series of solid solutions without a minimum.

I I I

i

96

Page 103: Ornl 2548

! Iy

UNCLASSIFIED ORNL-LR-DWG 279! 3

f 200

1100 c V

W u: 3

a: W

5 too0

5 900 a

t-

800 ThG i0 20 30 40 50 60 70 80 90 UG

UF, (mole %I

Fig. 3 6 3 The System ThF4-UFC

97

Page 104: Ornl 2548

3.64. The System LiF-NaF-UF,

in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems:

UF,," J . Am. Ceram. SOC. 42, 21-26 (1959).

R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria

111. The System NaF-LiF-

lnvarian t Equil i br ia

Composition of Liquid '(mole %) Type of

Temperature Equilibrium NaF L i F UF4 PC)

Solid Phases Present at Invariant Point

60 21 19

65 13 22

7 65.5 27.5

35 37 28

57 13 30

24.3 43.5 32.2

24.5 29 46.5

24.3 28.7 47

23.5 28 48.5

37.5 10.5 52

480

497

470

480

630

445

602

605

640

660

E utect ic

Per itectic

Peritectic

Eutectic

Per itect ic

Eutectic

Eutectic

Per i tect ic

Peritectic

Peritectic

2NaF*UF4, NaF, and L i F

P-3NaF-UF4, 2NaF*UF4, and NaF

7LiF4UF4ss,* 4LiF*UF4, and L i F

2NaF*UF4, 7NaF*6UF4ss, and L i F

2NaF*UF4, 5NaF*3UF4, and 7NaF4UF4ss

7NaF*6UF4ss, LiF, and 7LiF-6UF4ss

NaF*2UF4, 7LiF*6UF4ss, and 7NaF*6UF4ss

NaF-2UF4, LiF*4UF4, and 7LiF.6UF4ss

UF,, NaF.2UF4, and LiF*4UF4

UF4, NaF*2UF4, and 7NaF-6UF4ss

*The compounds 7LiF.6UF4 and 7NaF4UF4 as they occur in the ternary system are members of the solid solution 7LiF.6UF4-7NaF.6UF4.

98 E

Page 105: Ornl 2548

i

UNCLASSIFIED ORNL-LR-DWG 282l4R

"F4 1035

COMPOSITION IN mole % TEMPERATURE IN OC

99

Page 106: Ornl 2548

UNCLASSIFIED ORNL- LR - DWG 297s _ _ _ -..- __

700

675

600

575

550 7NaF.6UF4 10 20 30 40 50 7LiF*6UFq

LiF (mole ‘?&I

Fig, 3.646. The Join 7NaF*6UF4-7LiF*6UF4.

tl

0

100 7 Iii

Page 107: Ornl 2548

3.65. The System LiF-KF-UF, C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed

at the Oak Ridge National Laboratory, 1950-51. Preliminary diagram. The system LiF-KF-UF, has not yet been defined at the Oak Ridge

National Laboratory with sufficient precision to permit the temperatures and compositions of the

invariant equilibria to be listed.

u

TEMPERATURE ("C) COMPOSITION (mole %I

KF 856

UF4 1035

UNCLASSIFIED O R N L - L R - O W 0 2 8 6 3 3 1

8 4 5 E - 4 9

Fig. 365. The Systes LiF-KF-UF,.

101

Page 108: Ornl 2548

3.66. The System LiF-RbF-UF,

at the Oak Ridge National Laboratory, 1950-51. Phase relationships within the system LiF-RbF-UF, have not yet

become so well defined at the Oak Ridge National Laboratory that the compositions and tem-

peratures of the-invariant points may be listed.

C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed

Preliminary diagram.

UNCLASSIF!EO ORNL-LR-DWG 286341

UF4 1035

TEMPERATURE IN OC COMPOSITION IN mole%

790

Fig. 3.64 The System LiF-RbF-UF,.

LiF 845

Page 109: Ornl 2548

I ! :b.

3.67. The System NaF-KF-UF,

Friedman, unpublished work performed at the Oak Ridge National Laboratory, 1950-58. R. E. Thoma, C. J. Barton, J. P. Blakely, R. E. Moore, G. J. Nessle, H. Insley, and H. A.

Preliminary diagram. Phase relationships within the system NaF-KF-UF4 have not yet

become so wel l defined at the Oak Ridge National Laboratory that the compositions and tem-

peratures of the invariant points may be listed.

UNCLASSIFIED ORNL-LR-DWG 38412

U61035 THIS DIAGRAM HAS BEEN DERIVED ENTIRELY FROM TA DATA.

NoF 990

COMPOSITION IN mole % TEMPERATURE IN "C

E 740 856

Fig. 867. The System NaF-KF-UFC

103

Page 110: Ornl 2548

3.68. The System Naf-RbF-UF,

the Oak Ridge National Laboratory, 1955-56. R. E. Thoma, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work performed at

Preliminary diagram.

Invariant Equilibria

Composition of Liquid (mole %)

NaF RbF UF4

Invariant.

Temperature e,

Type of Equilibrium

Solid Phases Present at Invariant Point

18 73 9 670 Eutectic RbF, NaF, and 3RbF*UF4

46 33 21 470 Eutectic NaF, NaF*RbF*UF4, and 3RbF-UF4

3 6

44 33 23 500 Per itect ic NaF*RbF*UF4, 2RbF*UF4, and 3RbFeUF4

45 30 25 4 85 Per itect ic NaF, 2NaF*UF4, and NaF*RbF*UF4

52 23 25 500 Decomposition 3NaF*UF4, NaF, and 2NaF*UF4

41 26 33 555 Per itect ic 2RbF*UF4, 2NaF.UF4, and NaF*RbF*UF4

57 8 35 630 Decomposition 2NaF*UF4, SNaF*3UF4, and 7NaF=6UF4

33 30 37 535 Eutectic 2RbF*UF4, 2NaF*UF4, and 7RbF*6UF4

32 29 39 540 Per itect ic 7RbF*6UF4, 2NaF*UF4, and 7NaF*6UF4

26 27 47 620 Eutectic 7RbF*6UF4, 7NaF.6UF4, and RbF*UF4

25 25 50 630 Eutectic 7NaF*6UF4, RbF*UF4, and 2RbF-3UF4

27 22 51 633 Per itectic 7NaF*6UF4, 2RbF*3UF4, and RbF*3UF4

33 14 53 655 Per itect ic 7NaF*6UF4, RbF.3UF4, and RbF*6UF4

42 3 55 678 Per itect ic 7NaF*6UF4, RbF*6UF4, and UF4

c

c

Page 111: Ornl 2548

TEMPERATURES ME m EOREES C E N T I O R ~ E

COMFUSITKMD IN MOLE PERCENT

Fig. 3.68~. The System NaF-RbF-UF4.

0 (0 20 30 40 50 60 66.7 RbF (mole %)

Fig. 3686. The Section 2NaF*UF4-2RbF*UF,.

105

Page 112: Ornl 2548

650

600

ZRbF.UF, + LlOUlD

I 500

50

NaF + NaF . RbF . UFq

45 40 NaF (male X)

Fig. 3.68~. The Section NoF-NoF*RbF*UF+

106

35

UNUbSSIFIEC ORNL-LR-DWG 17'

ZNaF. UFq + PRbF. UF4 + LIQUID

30

Page 113: Ornl 2548

UNCLASSIFIED ORNL-LR- DWG 47667R

i h: ci L;

L I I P

1000 -

900 -

800 - 0

W P 13 I-

0,

a 4 700 - 5 c 0

600 -

7 L

500 .? . 4: LL

LL 0

400 5

,2RbF.UF4 + 2NoF. UF4 + LIQUID

3RbF.UF4 + LIQUID

I I I . I

2RbF. UG + LIQUID

I I

2RbF-UF4 LIQUID

NaF. RbF. UF4 + 3RbF. UF4 + LIQUID P

0" I I *)

3

IL NaF.RbF.UF, t 3RbF-UF4

33.3 35 40 45 50 55 60 65 70 75 RbF (mole% 1

i

i;" 107

Page 114: Ornl 2548

3.69. The System LiF-BeF,-UF, L. V. Jones, D. E. Etter, C. R. Hudgens, A. A. Huffman, T. B. Rhinehammer, N. E. Rogers,

P. A. Tucker, and L. J. Wittenberg, Phase Equilibria in the LiF-BeFZ-UFq Ternary F u s e d S a l t

System, MLM-1080 (Aug. 24, 1959).

ALL TEMPERATURES ARE IN 'C

4035 UFA

A E = EUTECTIC / \

UNCLASSIFIED MOUND LAB. NO.

56-44-29 (REV)

LiF 845

108

Fig. 3.69~. The System LIF-BeF2-UF4.

3 €I 0 c 6;:

ci

cp' U c

Page 115: Ornl 2548

li u

u

li bl.

!

Preliminary diagrap.

Invariant Equilibria

Compos it ion of Liquid (mole %)

L i F BeF2 UF4

Temperature Solid Phases Present Type of Equilibrium at Invariant Temperature e,

72 6 22 480 Peritectic (decomposition 4LiF-UF4, LiF, and 7LiF*6UF4 of 4LiF-UF4 in the terhary system)

69 23 8 426 Eutectic LiF, 2LiF.BeF2, and 7LiF.6UF4

48 51.5 0.5 350 Eutectic 7LiF*6UF4, 2LiF*BeF2, and BeF,

45.5 54 0.5 381 Per itectic LiF-4UF4, 7LiF.6UF4, and BeF2

29.5 70 0.5 483 Peritectic UF4, I-iF-4UF4, and BeFZ

The minimum temperature in the quasi-binary system 2LiF-BeF2-7Li F.6UF4 occurs at 65

A three-dimensional model of the system LiF-BeF,-UF, i s shown in Fig. 3.696. LiF-29 BeF,-6 UF, (mole %) at 438%.

Fig. 3.693. Model of the System LiF-BeF2-UF4.

109

Page 116: Ornl 2548

3.70. The System NaF-BeF,-UF, J. F. Eichelberger, C. R. Hudgens, L, V. Jones, G. Pish, 7. B. Rhinehammer, P. A. Tucker,

and L. J. Wittenberg, unpublished work performed at the Mound Laboratory, 1956-57. Preliminary diagram.

Invariant Equl I lbrla

Composition of Liquid (mole X) Temperature Solid Phases Present at

Type of Equilibrium Invariant Temperature @3 NaF BeF2 UF,

74 12

72.5 17

64.5 9

57 42

56 43.5

43.5 55.5

41 58

26 63

44 18

40 47

I 27 72

14 500

19.5 486

26.5 630

1 378

0.5 339

1 35 7

1 375

1 409

38 665

13 548

1 498

Peritectic (decomporltlon of

3NaF*UF4 In ternary sys-

tem)

Eutectic

Peritectic (decomposition of 5NaF-3UF4 in the ternary system)

Per i tect ic

Eutectic

Eutectic

Peritectic

Peritectic

Per itectic

Peritectic

Peritectic

3NaF*UF4, NaF, and 2NaF*UF4

NaF, 2NaF.UF4, and 2NaF-BeF2

5NaF*3UF4, 2NaF*UF4, and 7NaF*6UF4

2NaF*BeF2, 2NaF*UF4, and 7NaF-6UF4

2NaF*BeFp, NaF*BeF2, and 7NaF*6UF4

7NaF*6UF4, BeF2, and NaF*BeF2

7NaF*6UF4, NaF*ZUF4, and BeF2

NaF*2UF4, NaF*4UF4, and B tF2

7NaF*6UF4, UF,, and NaF*2UF4

UF4, NaF*2UF4, and NaF*4UF4

UF,, BeF2, and NaF*4UF4

The minimum temperature in the quasi-binary system 2NaF.BeF2-2NaF*UF, occurs at 66.7 LiF-25 BeF,-8.3 UF4 (mble %) at 528OC. The minimum temperature in the quasi-binary system

NaF-BeF2-7NaF-6UF, occurs at 50.5 NaF-48.5 BeF2-1.0 UF, (mole %) at 367°C. A three-dimensional model of the system NaF-BeF,-UF, has been constructed by the

authors and i s shown in Fig. 3.706.

110

Page 117: Ornl 2548

I1

i Y

UNCLASSIFIED MOUND LAB. NO.

56-41-30 ( R E V )

ALL TEMPERATURES ARE IN OC

E = EUTECTIC I PERITECTIC UF4 - PRIMARY PHASE FIELD

E

F2

111

Page 118: Ornl 2548

Fig. 370b. Model of the System NaF-BeF2-UFC

112

c

c

0 b'

Page 119: Ornl 2548

I n 1

3.71. The System NaF-PbF,-UF,

C. J. Barton, J. P. Blakeil

work performed at the Oak Ridg

phase relationships within the system NaF-PbFp-UF,.

* J. Nessle, L. M* Bratchert and w. R. Grimes, unpublished

Laboratory Of the Preliminary diagram. No study has been made at the Ridge

UNCLASSIFIED ORNL-LR-OWG 20455R " F4

4035

TEMPERATURE IN OC COMPOSITION IN mole ?e

P bF2 815

113

Page 120: Ornl 2548

3

3.72. The system KF-PbF,-UF,

work performed at the Oak Ridge National Laboratory, 1950-51.

phase relationships within the system KF-PbF2-UF,.

li C. J. Barton, J. P. Blakely, G. J. Nessle, L. M. Bratcher, and W. R. Grimes, unpublished

Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the

0

.i

E n U

114

W

Page 121: Ornl 2548

U iJ UNCLASSIFIED

DWG 41514A

” F4 4035

115

Page 122: Ornl 2548

c

3.73. The System NaF-ZrF4-UF4 C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria

in the Systems NaF-ZrF,, UF,-ZrF,, and NaF-ZrF,-UF,," J . Phys. Chem. 62,665-76 (1958).

"F4 1035

UNCLASSIFIED ORNL-LR-DWG 19886R

116

Fig. 373a. The System NaF-ZrF4-UFC

Page 123: Ornl 2548

Invariant Equilibria and Singular Points

h i;

l L i

i e

!

I Ii L; I L i;"

Campos it ion of Liquid Tern per at we Solids Present

at Invariant Point (mole %) Type of Equilibrium (W NaF ZrF, UF4

69.5 4.0 26.5 646 Maximum temperature

of boundary curve

68.5 5.5 26.0 640 Peritectic

65.5 12.0 22.5 613 Peritectic or

decompos ition

64.0 27.0 9.0 592 Per itact ic

61.5 34.5 4.0 540 Peritectic

50.5 47 2.5 513 Per itect ic

3NaF*(U,Zr)F4 and 2NaF-UF4

3NaF*( U, Zr)F4, 2NaF*UF4, and 5NaF*3UF4ss

3Na F- (U, Zr) F,, 5Na F-3U F4ss, and 7NaF*6(U,Zr)F4

3NaF.(U,Zr)F4, 5NaFa2Zr F4ss, and 7NaF*6( U,Zr)F4

5NaF92Zr F4ss, 2NaF-Zr F,, and 7NaF*6(U,Zr)F4

7NaF*6( U, Zr)F4, (U,ZI)F4, and 3NaF*4ZrF4

UNCLASSIFIED ORNL-LR-DWG I9888

850

800

7 5 0

- 0

W rT

e 700

2 a a 4 650 W

W I-

600 LIQUIDUS POINTS QUENCHING EXPER SOLIDUS POINTS QUENCHING EXPERI LlQUlOUS POINTS

0 FILTRATION RESIDUE CO 550 0 FILTRATE COMPOSITIONS

500 3NoF.UG 4 40 45 20 3 NaF-ZrF4

ZrF4 (mole 70)

Fig. 873b. The Subsystem 3NaF*UF4-3NaF*ZrFc

117

Page 124: Ornl 2548

118

Fig. 3.73~. The Subsystem 7NoF*6ZrF4-7NaF*15UFC

Page 125: Ornl 2548

i

P

I

i i

Li

3.74. The System LiF-ThF,-UF, C. F. Weaver, R. E. Thoma, H. Insley, and H. A. Friedman, "Phase Equilibria in the Systems

UF,-ThF, and LiF-ThF,-UF,," paper presented at the 61st National Meeting of the American Ceramic Society, Chicago, I l l . , May 17-21, 1959.

lnvariont Equilibria

lnvar iant Compos it ion of Liquid (mole %) Temperature Of Solids Present at Invariant Point

L i F ThF, UF4 ( 0 ~ ) Equilibrium

72.5 7.0 20.5 500 Peritectic LiF, 3LiF*(Th,U)F4, and 7LiF*6(U,Th)F4

72.0 1.5 26.5 488 Eutectic LiF, 4LiF*UF4, and 7LiF*6(U,Th)F4

53 18 19 609 Per itectic 7L i F*6(U,Th)F4, L i F*2(Th,U)F4, and L i F*4(U,Th)F4

A three-dimensional model of the system LiF-ThF,-UF, i s shown in Fig. 3.74e.

UNCLASSIFIED ORNL- LR- DWG 2824JAR2

PRIMARY-PHASE AREAS TEMPERAWRE IN OC COMPOSITION IN mole 7'0

LiF 845

"F4 4035

Fig. 3.74~. The System LiF-ThF4-UF4.

119

Page 126: Ornl 2548

UNCLASS IFlED ORNL-LR-DWG 35503R

((I) LIQUID+ 3LiF-ThF4 ss

(6) L i F f LIQUID

( c ) LiF+ 3LiF*ThF4 ss +LIQUID

( d ) LiF+7LiF-GTh$ -7LiF.GUG ss + LIQUID

( e ) 4LiF*UF4+ LIQUID + LiF

( f ) 4LiF.UG + LIQUID

( g ) 4LiF.UG + 7 L i F - 6 T h b -7L iF-GUh ss + LIQUID

( h ) 3LiF*ThF4 ss

( i 3LiF * ThF4 ss + 7LiF - 6ThF4 - 7LiF * 6 UF4 ss + L i F

5 5 0 575Pi I

Y W a 53 I- a of W n E w 500 -525F I-

450 475 I,

(i) LiF + 7L iF * 6ThF4- 7L iF - 6 UF4 ss

( k ) LiF+ 4LiF.UF4+ 7LiF.6ThF,-7LiF.6UF4ss

( 1 ) 4LiF.UF4+ 7LiF.6ThF4-7LiF.6UF4ss

A THERMAL DATA

B 0

c3 c

0 5 I O 15 20 25 UF4 (mole O/O)

Fig. 3.74b. The System LiF-ThF4-UF4: The Section at 75 Mole % LiF.

120

Page 127: Ornl 2548

050

800

7 50

- 0 - w 700 (L 3

(L W

G a 5 650 t-

600

UNCLASSIFIED

550

500 0 5 IO (5 20 25 30 35 40 45

UF4 (mole%)

Fig. 3.74~. The System LiF-ThF4-UF4: The Section at 53.8 Mole % LiF.

121

Page 128: Ornl 2548

900 p E W U 3

[z W a 2 W I-

800

700

UNCLASSIFIED ORNL- LR - DWG 35506 R

(a) UF4-ThF4 ss + LIQUID

( b ) LiF-4UF4- LIF. 4ThF4+LlQUlD

(C) UG-ThF, ss + L I Q U ~ D + L ~ F - ~ U F ~ - L I F - ~ T ~ ~ ss

(e) LiF. 4UF4 -L iF - 4ThF4 ss +LIQUID + 7 L i F - 6UF4-7LiF*6ThF4ss

( f ) LiF. 2ThF4 ss ( 9 ) LiF. 4UF4-LiF. 4ThF4 S S + ~ L ~ F - ~ U F ~ - ~ L ~ F . ~ T ~ F ~ S S

( h ) LiF-4UF4-LiF-4ThF4 ss + 7L iF -6UF4-7L iF*6ThF4 ss+LiF-2ThF4 ss

( d ) LIF. 2ThF4 ss + LIQUID + LIF- 4UF4- LIF * 4ThF4 ss

6oo

5 00 L

A THERMAL BREAKS 0 QUENCH RESULTS 0 TIE LINE INTERSECTION

0 10 20 30 40 50 60 6S2/, UF4 (mole %)

Fig. 3.74d. The System LiF-ThF,-UF,: The Section at 3 8 3 Mole % LIF.

122

Page 129: Ornl 2548

Li

Fig. 3.74e. Model of the System LiF-ThF4-UFC

123

Page 130: Ornl 2548

3.75. The System NaF-=ThF,-UF,: The Section 2NaF-ThF4-2NaF-UF4

the Oak Ridge National Laboratory, 1958-59. R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, unpublished work performed at

Preliminary diagram.

UNCLASSIFIED ORNL-LR-DWG 34986

725

700

675

650

0

W u 3

625

5 600

I-

575

550

525

500 2N0F.ThF4 5 i0 45 20 25 30 2NoF.UF4

UF4 (mole %I

Fig. t75. The Section 2NaF*ThF4-2NaF*UF,.

B

1.24

Page 131: Ornl 2548

I u i

i ~

i

3.76. The System LiF-PuF,

C. J. Barton and R. A. Strehlow, “Phase Relationships in the System Lithium Fluoride-

Plutonium Fluoride,” paper presented at the 135th National Meeting of the American Chemical

Society, Boston, Mass., Apr. 5-10, 1959. The system LiF-PuF, contains a single eutectic at 80.5 LiF-19.5 PuF, (mole %), m.p.

743°C.

4500

4400

4 300 - 0

W E e- 4200

3 G 1100 a W a 5 1000 I-

900

800

700

UNCLASSIFIED ORNL-LR- DWG 348i7

LiF 40 20 30 40 50 60 70 8 G 90 PuF3 PuF3 (mole %I

Fig. 3.76. The System LIF-PuF3.

125

Page 132: Ornl 2548

3.77. The System LiC1-FeCI2

1957).

LiCI-40 FeCI, (mole !%), m.p. 540%.

C. Beusman, Activit ies in the KCI-FeC$ and LiCI-FeC$ Systems, ORNL-2323 (May 15,

The system LiCI-FeC12 forms a continuous series of solid solutions with a minimum at 60

8500 a I W 8-

400

- u .u

-

- -

t I I I I I I I I

c

Page 133: Ornl 2548

LI C

u

I L C 1

i Y

3.78. The System KCI-FeCI, C. Beusman, A c t i v i t i e s in the KC1-FeC12 and LiCL-FeCZ, Systems, ORNL-2323 (May 15,

1957). Anearly identical diagram to this one has been reported by H. L. Pinch and J. M. Hirshon, "Thermal Analysis of the Ferrous Chloride-Potassium Chloride System," J . Am. Cbem. SOC.

79, 6149-50 (1957).

Invariant Equilibria

lnvar iant

'Ole ?G FeC12 Temperature Type of Equilibrium in Liquid

Phase Reaction at Invariant Temperature

35 385 Per i tect ic L + KCI & a-2KCI*FeCI2

255 Inversion a-2KCI*FeC12 ,8-2KCI*FeC12

39 355 Eutectic L $ a-2KCI*FeC12 + a-KCI-FeCI,

50 400 Congruent melting point L a-KCI.FeC1,

- 300 lnvers ion a-KCbFeCI, e ,&KCI*FeCI,

53 390 Eutectic L $a-KCI-FeCI2 + FeCI2

8 O C

772

70 0

60 0 - 0 0,

30 0

c

UNCLASSIFIED ORNL-LR-DWG. 20940R

I I I I , I I I I I 1

20 0 0 IO 20 30 40 50 60 7 0 80 90 100

MOLE % F&IZ

Fig. Z78. The System KCI-FeClr

127

Page 134: Ornl 2548
Page 135: Ornl 2548

900

800

700

- Y - 600 c4

W K 3

K W a 5 500 I-

400

300

2 0 0 NaCl

E

l l

NbCl +/32NaCI:ZrC14

I I IO

UNCLASSIFIED ORNL-LR-DWG 17671

,--a2Nakl. ZrCI,+LhUID I I I

70 80 90 2 0 30 40 50 60 ZrC!, (mole %)

ZrC!,

Fig. 3.79. The System NaCI-ZrCI,.

Y

Ij"

Y 129

Page 136: Ornl 2548

3.80. The System KCI=ZrCI, C. J. Barton, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge

National Laboratory, 1955. Preliminary diagram.

Invariant Equilibria

600

0 0

w K 3

- 500

$ 5 4 400 W I-

300

200

4 00

Invariant

Ta mpera tu re

PO

Mole X ZrCll in Liquid

Type of Equilibrivm

1 - - ,

~

Phase Reaction a t

Invariant Temperature

23 600 f 5 Eutectic L e K C I + 2KCI*ZrCI4

33.3 790 f 5 Congruent melting point L -2KCI*ZrCI4

4s 565 f 5 Pe r itec t ic L + 2KCI*ZrC14eU-7KCI*6ZrC14

A

- 222 f4 lnvers ion

65 225 f 4 Eutectic

a*7KC b6Zr C l 4

L +u-7KC1*6ZrCl4 + ZrCI4

,a7 KCb6Zr CI

Some phase work on this system has been reported by H. H. Kellogg, L. J. Howell, and R. C. Sommer, Physical Chemical Properties of the Systems NaCI-ZrC14, KCL-ZrCL,, and NaCl-

KCI-ZrCZ4, Summary Report, NYO-3108 (April 7, 1955).

UNCLASSIFIED ORNL-LR-DWG 46952

KCI i o 20

i

Fig. 3.80. The System KCI-ZrCI,.

130

Page 137: Ornl 2548

i h i i i

i

1

I ~ i L:

3.81. The System LiCI-UCI,

C. J. Barton, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak

Ridge National Laboratory, 1953.

Preliminary diagram. The system LiCI-UCI, contains a single eutectic at 75 LiCI-25 UCI, (mole %), m.p. 495 &5oC.

900

800

700 - 0

W

3

- a

$ 600 W a

t- 5

500

400

300

UNCLASSIFIED DWG. 22252

.~ LiCl 10 20 30 40 50 60 70 80 90 UCI3

UC13 (mole %)

Fig. 3.81. The System LiCI-UCI3

131

Page 138: Ornl 2548

3.82. The System LiCl-UCI, C. J. Barton, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge

National Laboratory, 1953. Preliminary diagram.

Invariant Equilibria

Invariant

Mole % UCI, Temperature Type of Equi Ii brium (OC)

in tiquid Phase Reaction at

lnvar ion t Ta mperature

29 415 Eutectic L $ ~ L ~ C C U C I , + LiCI

33.3 430 10 Congruent melting point L +~L~CI*UCI,

48 405 Eutectic L + ~L~cI*ucI, + UCI,

Some data on this system were reported by C. A. Kraus in Phase Diagrams of Some Complex

Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943).

UNCLASSIFIED

LiCl I O 20 30 40 50 60 70 00 90 UCl,

UCi, (mole %)

Fig. 3 8 2 The System LiCI-UCI,.

132

Page 139: Ornl 2548

3.83. The System NaCI-UCI,

C. A. Kraus, unpublished work.

Preliminary diagram constructed with the author’s permission from data reported in Phase

Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth

Metals, M-251 (July 1, 1943). The system NaCI-UCI, contains a single eutectic at 67 NaCI-33 UCI, (mole %), m.p. 525OC.

UNCLASSIFIED

900

0 00

400

300 NaCl 40 20 30 40 5 0 60 70 00 90 UCI3

UCi3 (mole %)

Fig. 3.83. The System NaCI-UClr

133

Page 140: Ornl 2548

3.84. The System NaCI-UCI,

the Oak Ridge National Laboratory, 1953. C. J. Barton, R. J. Sheil, A. 8. Wilkerson, and W, R. Grimes, unpublished work performed at

Preliminary diagram.

Invariant Equilibria

Invariant

Phase Reaction at Invariant Temperature Mole % UCI,

in Liquid Temperature Type of Equilibrium

(OC)

30

~

430 f 5 Eutectic L&NaCl+ 2NaCI*UC14

33.3 440 f 5 Congruent melting point L&2NaCI*UCI4

47 370 f 5 Eutectic L+ 2NaCI*UCI4 + unidentified compound

57 415 f 5 Peritectic L + UCI4 *unidentified compound

! A phase diagram of this system has been reported by C. A. Kraus in Phase Diagrams of Some

Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1 I 1943). j

E

b: .o

40 50 60 70 80 90 uC$ (mole %)

Page 141: Ornl 2548

! , I ]

3.85. The System KCI-UCI,

performed at the Oak Ridge National Laboratory, 1954. C. J. Barton, A. B. Wilkerson, T. N. McVay, R. J. Sheil, and W. R. Grimes, unpublished work

Preliminary diagram.

Invariant Equilibria

lnvarian t

Te mpera tu re Mole % UCI,

in Liquid Type of Equilibrium

(OC)

Phase Reaction a t

Invariant Temperature

25 550 Eutectic L e KCI + 2KCI*UCI4

33.3 6 30 Congruent melting point L 2KCI*UCI4

44 3 30 Eutectic L ~ 2 K C I * U C I 4 + KCI*UCI,

49 345 Peritectic L + K C I * 3 U C I 4 ~ K C I * U C l 4

61 3 95 Pe r i te ct ic L + UCI4& KCI*3UCI4

A phase diagram of this system has been reported by C. A. Kraus in Phase Diagrams of

Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943).

000

700

- - Y W w a

500 a a

4 400 W

I-

300

UNCLASSIFIED ORNL-LR-DWG 1532R

KCI IO 20 30 40 50 M) 70 ao 90 uci4 UCI4 (mole %)

Fig. 185. The System KCI-UCI,.

Page 142: Ornl 2548

3.86. The System RbCI-UCI,

at the Oak Ridge National Laboratory, 1954. C. J. Barton, R. J. Sheil, A. B. Wilkerson, and W. R. Grimes, unpublished work performed

Preliminary diagram.

Invariant Equilibria

Invariant Mole % UC1, Temperature Type of Equilibrium

in Liquid Phase Reaction at

Invariant Temperaiuie

15 610 Eutectic L e R b C l + 3RbCI*UCI3

25 745 f 10 Congruent melting point L +3RbCI*UCI3

40 560 f 10 Peritectic L + 3 R b C I * U C I 3 ~ 2 R b C I * U C l 3

45.5 513 f 5 E u tec ti e L ~ 2 R b C I * U C I 3 + RbCI*UCI3

49 550 f 10 Peritectic L + UCl3+RbCI*UCl3

RbCl IO 20 x) 40 50 60 70 80 90 UC13

Ucl3 (mole %)

Fig. 386. The System RbCI-UCIr

136

Page 143: Ornl 2548

I

I

1 ii

3.87. The System CsCI-UCI,

Ridge National Laboratory, 1953. C. J. Barton, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak

Preliminary diagram.

Invariant Equilibria

Invariant Tam pera ture

I OC\

Mole % UCI4 in Liquid

Type of Equilibrium Phase Reaction a t

Invariant Temperature ~~

20 505 f 5 Eutectic L +CCsCI + 2CrCI*UC14

33.3 657 f 5 Congruent melting point L + ~ C S C I * U C I ~

58 370 f 5 Eutectic L+2CSCI.UC14 + CrCI*2UC14

63 382 & 5 Peritectic L + uc14+cscI.2uc14

800

700

600 - V e W LL

2 2 500 5 a

Y

400

300

UNCLASSIFIED

200 CSCl (0 20 30 40 50 60 70 80 90 uc'4

UCl, h o l e %)

Fig. 387. The System CrCI-UClc

137

Page 144: Ornl 2548

3.88. The System K,CrF6-Na,CrF6-Li,CrF6

Ridge National Laboratory, 1951-52. B. J. Sturm, L. G. Overholser, and W. R. Grimes, unpublished work performed at the Oak

Pre I iminary diagram.

UNCLASSIFIED DWG. 17407

o X-RAY PATTERN OBTAINED AT THESE COMPOSITIONS

OLlD SOLUTION

SOLID SOLUTI

k/ \/ \J V / V V - v y v V K3CrF6 KOLkrF6 Li2KCrF6 Li3CrF6

Fig. 3.88. The System K3CrF6-Nu3CrF6-Li3CrF6.

138

Page 145: Ornl 2548

4. O X I D E AND HYDROXIDE SYSTEMS

4.1. The System Si0,-Tho,

L. A. Harris, "A Preliminary Study of he Phase Equilibria Diagram of Tho,-SiO,," J . Am. Ceram. SOC. 42, 74-77 (1959).

2300

2200

2100-

e w 2ooo-

a

5

[L 3 l-

II

g 1900-

I-

I800

1700

1600

Tho2 t LlOUlD

UNCLASSIFIED PHOTO 31087

I I I I I I I 1 I

\ \ \ - - \ \ \

-

\ \ -

1975 2 50" \

----- ------ \ \ - \ \ Tho2+ Th02-Si02

Tho2. SiO, + LlOUlO \ - \ SlO, t -

I700*1@- - - - - -L

\ LlOUlD

'A- N 0 u) - . - - - - - - - - 0" r I- Tho2 * S i 4 t S i 4

I I 1 I I I I I I

0 IO 20 30 40 50 60 70 80 90 IM

LlOUlD

Tho2 S102 [ WT. O/o) Sld,

i li Fig. 41. t h e System SiOZ-Th02.

139

Page 146: Ornl 2548

4.2. The System LiOH-NaOH

C. J. Barton, J. P. Blakely, K. A. Allen, W. C. Davis, and B. S. Weaver, unpublished work

performed a t the Oak Ridge National Laboratory, 1951. Preliminary diagram. A phase diagram of the system LiOH-NaOH has been reported more

recently by N. A. Reshetnikov and G. M. Oonzhakov, Zhut. Neotg. Khim 3, 1433 (1958).

Invariant Equilibria

Phase Reaction at Mole % LiOH Invariant Temperature Type of Equilibrium in Liquid (OC) Invariant Temperature

27 219 Eutectic L NaOH +a-NaOH*LiOH

40 250 Peritectic L + LiOH a-LiOHONaOH

Inversion a-LiOH*NaOH e & L i O H * N a O H - 180

UNCLASSIFIED ORNL-LR-DWG 20463R

500

450

400

I

0 I 350 a 3

E W

W I-

t

300

250

200

450

LiOH (mole %)

Fig. 42 The System LiOH-NaOH.

140

Page 147: Ornl 2548

4.3. The System LiOH-KOH C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed

at the Oak Ridge National Laboratory, 1951, Preliminary diagram.

Invariant Equilibria

Mole X KOH Invariant Temperature Type of Equilibrium

in Liquid ( OC)

Phase Reaction at

Invariant Temperature

40

70

315 Incongruent melting point of L + LiOH +3LiOH*2KOH 3 L i OHoSKOH

245 Eutectic L e 3 L i O H * 2 K O H +P-KOH

UNCLASSIFIED ORNL-LR-DWG 20460R

600

500 f

- 0

W n 3

n W

W I-

400

5 a I 300

200

& 3 lo

10 20 30 40 50 60 70 80 90 KOH KOH (mole %I

400 I LiOH

Fig. 4.3. The System LIOH-KOH.

141

Page 148: Ornl 2548

4.4. The System NaOH-KOH G. von Hevesy, "The Binary Systems NaOH-KOH, KOH-RbOH, and RbOH-NaOH," 2.

physik. C h a 73, 667-84 (1910).

400

350

300

G s w 3 a 5 250 a a w

3 k-

200

4 50

400

142

UNCLASSIFIED ORNL-LR-DWG 20458

TRANSIT ION OlAGRAM I I I

KOH 40 20 30 40 50 60 70 80 90 NoOH NaOH (mole %)

Fig. 44 The System NaOH-KOH.

Page 149: Ornl 2548

4.5. The System NaOH-RbOH G. von Hevesy, “The Binary Systems NaOH-KOH, KOH-RbOH, and RbOH-NaOH,” Z.

physik. C h e n 73, 667-84 (1910).

UNCLASSIFIED ORNL-LR-DWG 204 59

3 20

300

280

- 0 ,“ 260 E 2 t a a I 240 w

W I-

220

200 I 480

NaOH (mole %)

Fig. 4 5 . The System NaOH-RbOH.

143

Page 150: Ornl 2548

4.6. The System Ba(OH),-Sr(OH),

K. A. Allen, W. C. Davis, and 8. S. Weaver, unpublished work performed at the Oak Ridge

National Laboratory, 1951. Preliminary diagram. The system Ba(OH),-Sr(OH), contains a single eutectic at 37

Sr(OH),-63 Ba(OH), (mole X), m.p. 360OC.

UNCLASSIFIED

'

144

00 90 Bo(OH), B o ( O H ) ~ (mole %)

Fig. 46. The System Bo(OH)2-Sr(OH)T

-u B U t; [I

Page 151: Ornl 2548

c 1 5. AQUEOUS SYSTEMS

lid 5.1. The System U0,-P,O,-H,O, 25OC Isotherm

tj

J. M. Schreyer, "The Solubility of Uranium(1V) Orthophosphates in Phosphoric Acid So-

lu t ion~,~ ' J . Am. Chem. SOC. 77, 2972 (1955). The transition point between U(HPO,),dH,O and U(HPO4),~H,PO,*H2O as stable solids

was at 0.62 f. 0.02 M U (10.3 wt % UO,) and 9.8 & 0.1 M PO, (42.6 wt % P,O,), density 1.63 f 0.03 g/ml. The compound U(HPO,),~H,PO,~H,O i s incongruently soluble in water.

looh

UNCLASSIFIED ORNL-LR-DWG 1915

Fig. 5.1. The System U02-P205-H20, 2 P C Isotherm.

145

Page 152: Ornl 2548

5.2. The System U0,-H,P0,-H20, 25°C Isotherm

J. M. Schreyer and C. F. Baes, Jr./ ."The Solubility of Uraniurn(V1) Orthophosphates in

Phosphoric Acid Solution," J . Am. Chem. SOC. 76, 3% (1954). The normal phosphate (U02),(P0,),dH20 i s stable below 0.025 mole % H,PO,. The

stability ranges are as follows:

Compound Toto1 Phocphatq Molarity

6.0

<0.014

0.01 4-6.1

>6.1

UNCLASSIFIED DWG 20233

mole Y H,P04

Fig. 5.2 The System U03-HQ04-H20, 2 P C Irot&erm. 0-60 mole % U03, 0-60 mole % H3POa.

146

Page 153: Ornl 2548

of U(H ,P04),(CI04) ,4H ,O.

Fig. !L3. Schreinemakerr' Projection of the System UO2-P2O,-CI,O,-H2O at 25OC. A projection on

the UO2-Cl20,-H20 face, plotted in rectangular coordinates.

147

Page 154: Ornl 2548

U

5.4. The System U0,-Na,O-C0,-H,O, 26OC Isotherm

C. A. Blake, C. F. Coleman, K. B. Brown, D. G. Hill, R. S. Lowrie, and J. M. Schmitt, Studies in the Carbonate-Uranium System,” J . Am. Chem. SOC. 78, 5978 (1956). a*

COMPOSITION wt ’%

UNCLASSIFIED ORNL-LR-DWG 39480

1

Fig. 5.h. The System U03-Na20-C02-H20 at 26OC. Gmpositions are

plotted in weight per cent. I, solutions in equilibrium with sodium uranates;

11, solutions in equilibrium with sodium uranyl hicarbonate; 111, solutions

in equil ibrium with uranyl carbonate. A, Na2C03; B, Nq2C03*H20; C, Na2CO3*7HS20; D, Na2C03* 10H20; E, Na2C03*NaHC03*2H20 (trona); F, NaHCO,; C, U0,C03; H, Na4U02(C03),. The entire upper face of the tri- angular prism represents pure water.

u u bl

h’

148

I]

Page 155: Ornl 2548

The stable uranium-carbonate solids found were UO,CO, and Na,UO,(CO,),. The solution

composition at the transition point (not determined exactly) was at least 26 wt % UO,, 5.6 wt %

Na,O, and 7.2 wt % CO, (mole ratio U03:Na20:C02 = 1:1.0:1.8). Further data on this system are available from the American Documentation Institute

(document No. 5079). These include compositions, pH's, and densities at points in and near the

planes Na,O-C0,-H,O, U0,-Na20-H,O, UO,CO,-Na,CO,-H,O, Na,U0,(C0,),-NaHC03-

H,O, U0,-Na,CO,-H,O, U0,-NaHC0,-H,O, and UO,CO,-Na,O-H,O. Related phase equilibria in the system Na,O-UO,-H,O at 50 and 75OC are reported by

J. E. Ricci and F. J. Loprest, 1. Am. Gem. SOC. 77, 2119 (1955).

UNCLASSIFIED PHOTO 24714

A. Na, UOz ( CO, 3

8. N a z UO, ( CO, ) , c. N a , C 0 3 '10H,O COMPOSITION w t '/o

UO2CO3 Na2C03 A

Fig. 5.46. The Section U02C03-Na2C03-H20 at 26OC.

149

Page 156: Ornl 2548

5.5. Portions of the System ~h0,-Na20-CO2-H20, 25OC Isotherm

F. A. Schimmel, unpublished work performed at the Oak Ridge National Laboratory, 1955. The stable thorium-carbonate solids found were ThOC03*8H,0 and Na,Th(C03)5*12H20.

Temqry Points

Composition of Solution (wt Sa) Solid Phases Present

Tho, Na20 CO2

Na6Th(C03)5*12H20, NaHC03, and 0.62 ' 12.0 9.96 Na2C03*NaHC03*2H20 (trona)

Na6Th(C03)5*12H20, Na2C03*10H20, and trona 0.48 14.1 10.86

EOUILIBRIUM SOLI0 PHASES

a-b z+NaHC03 b z + NaHC03 +TRONA b-c NaHC03+ TRONA

d z +TRONA +Na2C03.40Hp d-e TRONA+Na2C03.10Hz0

b-d Z+TRONA

d-1 Z + No2CO3.4OH2O f 9-h + ThOCO3,8H20 1

I (z= 3Na20 .ThO2.5CO242HP (TRONA= Na2CO3.NaHCO3.2H201

UNCLASSIFIED ORNL-LR-OWG 38043

)

Fig. 5.5~. Perspective Representation of the System Th02-Na20-C02-HZ0 OS a Tetrahedron.

U 1 SO

Page 157: Ornl 2548

The highest thorium solubility found was 3.35 wt % Tho, (3.06 wt % Na20, 3.60 wt % CO,) in equilibrium with solid Na6Th(C0,),*12H20 and ThOC03*8H20. (The terminal points of this

binary line were not established.) The maximum thorium solubility in equilibrium with

Na6Th(C03),*12H,0 and Na,C03*10H,0 was 1.25 wt % Tho, (12.5 wt % Na,O, 9.4 wt % c0,); with Na6Th(C0,),~12H,0 and trona, the highest solubility was 0.7 wt % Tho, (12.6 wt % Na,O, 10.4 wt % CO,). The highest found with Na,Th(C03),*12H,0 and NaHCO, was 1.2 wt % Tho, (5.0 wt % Na,O, 6.0 w t % CO,), which was the most dilute NaHCO, solution tested.

i I

EOUlLlBRlUM SOLID PHASES

a-b z+NaHC03 b 2 + NaHCO- +TRONA

UNCLASSIFIED ORNL-LR-DWG 38013

Tho,

A b-c NaHC03 + k N A

d d-e TRONA+ NazC03~iOHz0 d - f z + NazC03-iOHp g-h 2 + ThOC03.8H20

( z = No6Th(C03)5.i2HZO) (TRONA = Na,C0,~NoHC0,~2HzO)

b-d z+Tf?ONA z + TRONA + NazC0340Hfl

COMPOSITION wt '7-

I I -4

151

Page 158: Ornl 2548

EOUlLlBRlUM SOLID PHASES

a-b 2+NaHC03 b 2 + NaHCOJ +TRONA b-c NaHCq+TRoNA b-d Z+TRONA d +e TRONA +NazC0340Hp d-f 2 +No,C0340H,0 9-h 2 + ThOC03.BHz0

2 + TRONA + Na2C03.!OHfl

( 2 = 3NazO-Th02%02.!2Hfl) (TRONA = Na&O3.NaHC0,~2HZO)

UNCLASSIFIED ORNL-LR-DW 38041

'(Th0;CO.I 0 5 10 15 25 30

Fig. 5 . 5 ~ . The System Th02-Na20-C02-H20 at 2PC. Proiection to the Th02*C02-3Na20*4C02-H20 Portion from 70 to internal plane, represented as an equivalent triangle, along radii from the C02 vertex.

100 W? % H20.

152

Page 159: Ornl 2548

5.6. The System Na,O-C0,-H,O, 25OC Isotherm

F. A. Schimmel, unpublished work performed at the Oak Ridge National Laboratory, 1955. Significant changes from the data of Freeth [Phil. Trans. Roy. SOC. London 233, 35 (1922)1

were found throughout the range; there was closer agreement in the bicarbonate range with the

data of Hill and Bacon [ J . Am. Chem. SOC. 49, 2487 (1927)I.

Transition Points

Compos it ion of Solution

Solid Phases Present (wt %)

NaOH*H20 and Na2C03 40.5 0.85

Na2C03 and Na2C03*H20 31.4 0.72

Na2C03*H20 and Na2C03*7H20 18.7 6.9

Na2CO3*7H20 and Na2C03*10H20 17.85 7.8

Trona and NaHC03 11.9 9.5

Na2C03*10H20 and Na2C03*NaHC03*2H20 (trona) 13.7 10.35

153

Page 160: Ornl 2548

The System Na20-C02-H20, U0C Isotherm

Composition of Saturated Solution (wt %) Equilibrium Solid Phase

Na20 c o 2

41.3 40.5 40.45 31.6 31.4 31.1 29.9 26.6 25.2 23.2 23.15 21.15 19.3 18.95 18.57 18.6 18.7 18.5 17.7 18.3 17.85 17.3 16.1 15.6 15.1 13.7 13.28 13.55 14.1 13.7 17.0 16.7 13.8 11.9 11.55 10.5 9.4 8.1 6.4 5.4 3.9 3.56 3.47

0 0.85 0.8 0.67 0.72 0.78 0.5 0.4 0.55 0.9 1 .o 2.3 4.3 6.0 7.5 7.8 6.9 6.75 7.95 7.3 7.8 7.88 7.9 7.92 8.1 8.85 9.4

10.15 11.0 10.35 13.0 12.7 10.35 9.5 9.3 8.8 B.0 7.5 6.5 5.75 5.0 4.95 4.93

NaOH*H20 Na2C03 Na2C03 Na2C03 Na2C03 and Na2C03*H20 Na2C03*H20 No2C03*H20 Na2C03*H20 Na2C03*H20 No2C03*H20 Na2CO3-H2O Na2C03*H20 Na2C03*H20 Na2C03*H20 Na2C03*H20 (metastable) No2C03*H20 (metastable) Na2C03*H20 and Na2C03*7H20 Na2C03*7H20 (metastable) Na2C03*7H20 (metastable) Na2C03*7H20 Na2C03*7H20 and Na2C03*10H20 Na2C03*10H20 Na2C03*10H20 Na2C03* 10H20 Na2CO3*1OH2O Na2C03* 10H20 Na2C03*10H20 Na2C03*10H20 Na2C03*10H20 (metastable) Na2C03* 1 O H 2 0 and trona* Trona (metastable) Trona (metastable) Trona Trona and NaHC03 NaHC03 NaHC03 NoHC03 NaHC03 NaHC03 NaHC03 NaHC03 NaHC03 NaHC03

*The formula of trona is Na2CO3*NaHCO3*m2O.

154

Page 161: Ornl 2548

UNCLASSIFIED ORNL-LR-DWG 38044

J I

NoQ 5 10 15 20 25 30 35 40 45

155

Page 162: Ornl 2548

i

I I 5.7. Solubility of Uranyl Sulfate in Water

1. C. H. Secoy, J. Am. Chem. SOC. 72, 3343 (1950) (data above 3OOOC). I 2. C. H. Secoy, J. Am. Chem. SOC. 70, 3450 (1948) (data up to 300OC).

3. L. Helmholtz and G. Friedlander, Physical Propert ies of Uranyl Sulfate Solutions, , MDDC-808 (1943) (room temperature data).

i 4. C. Dittrich, Z. p h y s i k Chem. 29, 449 (1899). 5. E. V. Jones and W. L. Marshall, HRP Quar. Prog. Rep. March 15, 1952, ORNL-1280, 1

1 1

a p 180-83.

, p 210-1 1.

4

6. E. V. Jones and W. L. Marshall, HRP Quar. Prog. Rep. Jan. 31, 1959, ORNL-2696,

i

The two-liquid-phase region of this system in actuality must be represented by the three 4

I components UO,, SO,, and H,O. The curve representing the boundary of liquid-liquid immisci-

bility do not connect two solutions containing stoichiometric UO,SO, but rather connect solu-

1 bility is correct for stoichiometric solutions. However, the t i e lines within the region of immisci- i

, ~

i I I J I

~

! 1 i

tions containing varying concentrations and ratios of UO, and SO, (Fig. 5.10). A t low concen-

trations and high temperatures, that is, below 0.02 m UO,SO, and above 25OoC, hydrolysis

occurs to produce a nonstoichiometric solution phase. The point of hydrolysis is dependent on

concentration and temperature (see Sec 5.13).

Note: Revised data (ref 5) are used to construct the immiscibility boundary in the figure.

Earlier data (ref 1) showed higher temperatures in this region and a possible likelihood of acid

impurity in the solutions. I 1

I

I !

156

Page 163: Ornl 2548

L L;

350

300

250 - 0 0 Y

: 200 3

f00

50

UNSATURATED SOLUTION ( L 2 ) +

r, SOLUTIO - TWO- LIQUID PHASES t\

U N SATURATED S 0 LUT ION \ U02S04* 3 H20 + SOLUTION

-50 ICE + U02S04. 3 H20

0 1 2 3 4 5 6 7 0 9 m, moles/1000 g H20

I I , I I I I I I

Fig. 5.7. The System U0,S04-H20.

1 57

Page 164: Ornl 2548

5.8. TwoSLiquidSPhase Region of UO,SO, i n Ordinary and Heavy Water

E. V. Jones and W. L. Marshall, HRP Qum. Prog. Rep. March 15,1952, ORNL-1280, p 180-83. The two curves shown are boundary curves for liquid-liquid immiscibility obtained by ob-

serving the phase-transitional behavior of known U02S04-H20 (D20) solutions in sealed tubes

as a function of temperature. For later reference, this procedure i s designated the visual-

synthetic method. As was described in Sec 5.7, the concentrations and compositions of the two

phases within the boundary region at equilibrium cannot be obtained from this figure. Mixtures

which are solutions at lower temperatures separate into two liquid phases as the temperature i s

raised, according to the boundary curves.

‘1 58

Page 165: Ornl 2548

340

3

I- 280 W

270

U N C L A S S I F I E D ORNL-LR-DWG 29344

I I I I I 4

0 1 2 3 4 5 6

m, moles U02S04 / I O 0 0 gm H20, D20

Fig. 5.8. Two-Liquid-Phase Region of UO,SO, in Ordinary and Heavy

Water.

159

Page 166: Ornl 2548

5.9. The System U0,-SO,-H,O

1. A. Colani, Bull. SOC. ch in France [41 43, 754-62 (1928). 2. J. S. Gill, E. V. Jones, and C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1953,

ORNL-1658, p 87. The 25' data on the SO,-rich side are those of Colani. The higher temperature data are

those of Gill, Jones, and Secoy, obtained by filtration techniques at temperature. The number

and identity of the solid phases in the U0,-rich regions at 25, 100, and 175OC are somewhat

uncertain. Subsequent unpublished work of F. E. Clark and C. H. Secoy has disclosed that the

K solid i s identical (x-ray diffraction) with the mineral uranopilite, 6UO,*SO,*Xfl,O, that the G

solid is not identifiable as any known mineral, and that at least one additional unidentified

solid phase occurs at 25 and 100'. The liquidus curves for the 25 and 100' isotherms are

essentially correct as shown except that the transition points (two solid phases) occur at some-

what lower concentrations than those indicated.

UNCLASSlFl ED DWG 21934

H2°

K = URANOPILITE

G = G BASIC SALT 6 U03-S03* 18 ( ?) H20

(5U0, 2S0, yH20)?

A= UO, - 2S03- 1.5H20

.u

-u

U Fig. 5.9~. The System U03-SO3-H20 ot 2PC.

160

6'

Page 167: Ornl 2548

t ! 161

Page 168: Ornl 2548

162

U II

UNCLASSIFIED DWG 21936

Fig. 5.9~. The System U03-S03-H20 at 1 7 9 C

Page 169: Ornl 2548

UNCLASSIFIED

163

Page 170: Ornl 2548

5.10. Coexistence Curves for Two Liquid Phases in the System U02S04-H,S04-H20 H. W. Wright, W. L. Marshall, and C. H. Secoy, HRP Qum. Prog. Rep. Oct. 1, 1952,

Al l curves in this figure must extrapolate to the critical temperature of water (374.2OC) at zero concentration of uranium. These are boundary curves which were determined by

observing sealed tubes in which immiscibility occurred in U0,-SO,-H,O solutions upon varying

the temperature. As was explained in Sec 5.7, they do not represent concentrations and compo-

sitions of the two liquid phases within the temperature-concentration region of immiscibility

but are lower solution boundary curves.

ORNL-1424, p 108.

164

Page 171: Ornl 2548

450

425

4 00

375 - z 5 W a 3

a

H w a

W + 350

32 5

300

27 5 I 5 IO 15

URANIUM (wt %)

UN ORNL-

/

S

20 25

Fig 5.10. Coexistence Curves for Two Liquid Phases in the System U02S04-H2S04-H20.

165

Page 172: Ornl 2548

5.11. Two-Liquid-Phase Region of the System UO2SO4-H2SO,-H2O R. E. Leed and C. H. Secoy, Cbem. Quat. Pmg. Rep. Sept. 30, 1950, ORNL-870, p29-30;

C. H. Secoy, Cbem. Quar. Prog. Rep. Dec. 31, 1949, ORNL-607, p 33-38. In contrast with the immiscibility curves shown in Fig. 5.10, each of these curves must

extrapolate to a critical temperature curve for SO,-H,O in which a small or negligible amount of

UO, is dissolved. Since SO, dissolved in H,O (neglecting any dissolved UO,) w i l l elevate the

critical temperature, the curves obtained from solutions containing a constant amount of free

H2S04 wi l l a l l extrapolate to critical temperatures higher than that (374.2%) for H,O alone.

UNCLASSIFIED DWG. 10085

I 1 I I I \ I

410 / I

4 0 0 1 / \ \ I

2901 I I I I I I I 0 IO 20 30 40 50 60 70 0

WEIGHT PERCENT UO2SO4

Fig. 5.11. Two-Liquid-Phase Region of the System U02S04-H2S04-H20.

166

Page 173: Ornl 2548

i

!

i c li

j li !

5.12. Two-Liquid=Phase Coexistence Curves for U0,-Rich Solutions i n the System U0,-SO,- H,O With and Without HNO,

E. V. Jones and W. L. Marshall, HRP Quar. Prog. Rep. ]uly 1, 1952, ORNL-1318, p 147-48. These curves have been obtained by the visual-synthetic method mentioned in Sec 5.8. They

are therefore boundary curves and do not describe compositions and concentrations within the

I iqu id-I iqu id immi sci bi I ity region.

UNCLASSIFIED DWG. 15625

I I I I I 1

-- I I w 270- K 3 I- U e w a E 300- I-

290 -

280 -

+- u= 1.20 AND CONTAINING so4 t r n

0 io 20 30 40

TOTAL URANIUM ( w t X )

Fig. 5.12 Two-Liquid-Phose Coexistence Curves for U03-Rich Solutions in the System U0,-SO,-H,O With and Without HNOp

167

Page 174: Ornl 2548

5.13. Solubility of UO, in H,SO,-H,O Mixtures

W. L. Marshall, Anal. Chem. 27, 1923 (1955). The data are represented in this manner in order to show the full concentration range on one

figure and to best indicate the degree of precision. The solid phase i s a-U0,*H20 below 205OC and &UO,*H,O above 205OC. These curves represent hydrolysis equilibria.

UNCLASSIFIED ORNL-LR-DWG. i 8 4 0 A R

168

SOLUBILITY MOLE RATIO UO,/ H,S04

Fig. 513. Solubility of U03 in H2S0,-H20 Mixtures.

0 U u

Page 175: Ornl 2548

5.14. Effect of Excess H,SO, on the Phase Equilibria in Very Dilute UO,SO, Solutions

1. W. L. Marshall, Anal. Chem. 27, 1923 (1955). 2. H. W. Wright, W. L. Marshall, and C. H. Secoy, HRP Quat. Prog. Rep. Oct. 1, 1952,

ORNL-1424, p 108. The curves were drawn by C. H. Secoy from data used for Figs. 5.10 and 5.13.

UNCLASSIFIED ORNL-LR-DWG t9400

350 -

- 325 -

W LT 3

LT W a 5

!z

300 -

275 -

Fig. %14 U02S04 Solutions.

Effect of Excess H2S04 on the Phase Equilibria in Very Dilute

169

Page 176: Ornl 2548

5.15. Second*Liquid*Phase Temperatures of UO,SO,-Li,SO, Solutions

R. S. Greeley, S. R. Buxton, and J. C. Griess, "High Temperature Behavior of Aqueous

UO,SO,-Li ,SO, and U02S04-BeS04," paper presented at American Nuclear Society 2nd Winter

Meeting, New York City (Oct. 1957). Also R. S. Greeley and J. C. Griess, HRP Dynmic So-

lution Corrosion Studies for Quarter Ending July 31, 1956, ORNL CF-56-7-52, p 30-31. These data were obtained by the visual-synthetic method mentioned in Sec 5.8.

400 7 -

380 - -

360 - - - u

w cc 3 I-

e 340 - -

Q 320 -

a

P 300'. d W

B

280 - -

260 - -

240 -

UNCLASSIFIED ORNL-LR-DWG 491Ot

CONCENTRATIONS ARE UNCOR FOR LOSS OF WATER TO VAPOR AT ELEVATED TEMPERATURES

0 0.02 0.05 0.t 0.2 0.5 4.0 2.0 5.0 LizSO4 (m)

Fig. 5. IS Second-Liquid-Phase Temperatures of U02S04-Li *SO, So- lutions.

1 70

c

Page 177: Ornl 2548

Y

5.16. Second-Liquid-Phase Temperatures for UO,SO, Solutions Containing Li,SO, or BeSO,

R. s. Greeley and J. C. Gtiess, HRP Dynamic Solution Corrosion Studies for Quarter Ending

July 31, 1956, ORNL CF-56-7-52, p 30. Liquid-liquid immiscibility occurs at the boundary curves as the temperature i s raised.

4 0

35' - E W

3 l-

a

a a w a z w I-

3 O<

2 51

UNCLASSIFIED ORNL-LR-DWG 1580

0 2 S 0 4 + 25MOLE % Li2S04

0 .5 I .o 1.5 2.0 2.5 3 .0 MOLALITY OF UO,SO,

Fig. 5116. Second-Liquid-Phose Temperatures for UO,x), Solutions Con- toining Li2S04 or BeSOC

I -

171

Page 178: Ornl 2548

5.17. Second*Liquid.Phase Temperatures for BeSO, Solutions Containing UO,

R. S. Greeley and J. C. Griess, HRP Dynamic Solution Corrosion Studies {or Quarter Ending July 31, 1956, ORNL CF-56-7-52, p 31.

Liquid-liquid immiscibility occurs at the boundary curves as the temperature is raised.

4 OC

35( - 0 0

W

3 I-

- a

a a a W

E c 30(

254 0 C

I

UNCLASSIFIED ORNL-LRDWG %E04

i 4.0 1.5 2 .o 2.5 3.0 MOLALITY OF Beso4

Fig, 5.17. Second-Liquid-Phase Temperatures fur BeSO, Solutions Can-

taining UOg

172

Page 179: Ornl 2548

u i

Lj i

I= j

I;

' U i i

5.18. The System NiS0,-UO,SO,-H,O at 25OC E. V. Jones, J. S. Gill, and C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1954, ORNL-1813,

p 16667. Also included in the reference are solubility data for this system at 175 and 25OOC. The

data at high temperature are not in sufficient quantity for a diagram to be presented.

UNCLASSIFIED ORNL-LR-DWG 3713A

Fig. 518. The System NiSOa-UO2SO4-H20 at 2 9 C . Compositions are

plotted in weight per cent.

173

Page 180: Ornl 2548

5.19. PhaseaTransition Temperatures in Solutions Containing CuSO,, U02S0,, and H2S04 F. E. Clark, J. S. Gill, R. Siusher, and C. H. &coy, 1. Cbem. Eng. Data4, 12 (1959). All data were obtained by the visual-synthetic method mentioned in Sec 5.8 and represent

temperatures at which immiscibility occurred upon raising the temperature. No deductions can

be made regarding compositions within the two-liquid-phase region.

UNCLASSIFIED ORNL-LR-OWG 244226

0 5 IO t5 2 9 uo2 SO4 Iwt 70)

15 15

- 10 - to f r - - 0" Q 3 5 ; 5

0 0 0 5 to 45 20

0 5 10 I5 20 0 5 IO 15 20 uO2SO4(wt%) U02SO4IWt 70)

--- TEMPERATURE CONTOUR LINES (isotherms) FOR APPEARANCE OF TWO LIQUID PHASES

&\v REGION OF BLUE-GREEN CRYSTALLINE SOLIOS

111111111111 REGION OF RED SOLIDS

A REFERENCE COMPOSITION OF 0.1 m C u S a 0.t m UOzSO4

+. REFERENCE COMPOSITION OF HRT FUEL 0.005 m CuS04 0.04 m UQSO4

I5 20 (PLUS co 0 0 2 5 m H2S04)155%) 0 5 IO lm2SO4~wt%1 uo,so, (wt%)

C

c c E

Li

Fig. 519. Phase-Transition Temperatures In Solutions containing cum4, U02S0, and H2SOC

174

C

Page 181: Ornl 2548

5.20. The Effect of CuSO, and NiSO, on PhaseaTransition Temperatures: 0.04 m UO,SO,;

C. H. Secoy et al., HRP Quar. Prog. Rep. July 31, 1957, ORNL-2379, p 163. Also additional

F. Moseley, Core SoIution StabiIity in the Homogeneous Aqueous Reactor; the Effect of

0.01 m H,SO,

data:

Corrosion Product und Copper Concentrations, HARD(C)/P-41 (May 1957). The curves for liquid-liquid immiscibility were drawn from data obtained by the visual-

synthetic method mentioned in Sec 5.8. Saturation temperatures for solid-liquid equilibria were

obtained by measuring solution concentrations as a function of temperature and determining a

break in the curve. The numbers in parentheses are temperatures at which the indicated solid

phase appeared upon raising the temperature. Solid phases indicated in parentheses were found

in small quantity.

0.04

0.03 u : h

F

!e v

0" 0.02

2

0.04

264 -

(2:9) (&9) -282 -282

UNCLASSIFIED OR N L- LR- D W G 2 3 0 t 4 A

1 75

Page 182: Ornl 2548

5.21. The System U0,-CuO-NiO-SO,-D,O at 300OC; 0.06 m SO,

J. S. Gill, R. Slusher, and W. L. Marshall, HRP QUW. Prog. Rep. Jmz 31, 1959, ORNL-2696, p 205-13.

The variation in solution composition in the presence of one, two, and three solid phases was

determined at 3OOOC from 0.04 to 0.2 m SO,. Solubility relationships at 0.06 m SO, were ob-

tained from these separate solubility curves, and the skeletal volume figure for the five-compo-

nent system was drawn. Other skeletal figures can be drawn at varibus SO, concentrations.

This investigation i s s t i l l in progress, and the data are subject to revision.

UNCLASSIFIED ORNL- LR-OWG. 357f4A

T Ternary Composition

0.044 m NiO I 0.040m CuO

0.025 m uo3 I I / I I

0.07 ( I

U03. UOzS04 SOLID QUESTIONABLE

/ /

0 0.04 OD 2 0.03 m -

CUO

, / 1.03

1 76

Fig. 5.21. The System UO3-Cu0-N1O~SO3-D20 ot 3OO0C; 0.06 m SO3.

c

B

P

ii

Page 183: Ornl 2548

I I

I 1 P

5.22. Solubility of Nd,(SO,), in 0.02 m UO,SO, Solution Containing 0.005 m H,S0,(180-3W°C) R. E. Leuze et at., HRP Quat. Prog. Rep. April 30, 1954, ORNL-1753, p 176-79.

Also included in the reference are preliminary solubility data for rare earth sulfate mixtures

as well as Ce,(SO,), and La,(SO,), in 0.02 m UO,SO,, 0.005 m H,SO,.

40.0

5.0

UNCLASSIFIED

ORNL-LR-DWG 925A

J- TRACER- FILTRATION METHOD '\. -. 'Q. \,

- --- 9,. --a-

0.1 (80 200 220 240 260 280 300

TEMPERATURE ("C)

Fig. 5.22. blubility of Ndz(S04), in 0.02 m U02S04 Solution Containing 0.005 m H ,SO, ( 180-300°C).

177

Page 184: Ornl 2548

5.23. Solubility of La,(SO,), in UO,SO, Solutions E. V. Jones, M, H. Lietrke, and W. L. Marshall, J . Am, Chem. SOC. 79, 267 (1957); also

The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water mzd in

Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955). Experimental data for Figs. 5.23-5.27 were obtained by the visual-synthetic method

The very large effect of UO,SO, must be noted and indicates consider- described in Sec 5.8. able solvation of other species by aqueous UO,SO,,

UNCLASSIFI DWG. 1464

300

25C

- 0 0 Y

W 2 oc E 2, I-

W

a a a H W I-

15c

1 oc

5(

- 1 i I I I \ \ \

-

I I I

A TWO L I Q U I D PHASES A MUTHMANN AND ROLIQ

r IN 4.35 m U02 SO4

IN 0.427 m U02S04

- \

\J IN H20

t I I I

1.0 2.0 3.0 4.0

L a 2 ( S O 4 I 3 ( w t ‘IO)

Fig. 5.23. Solubility of Lo,(SO$~ in UO,sO, blutions. li L’

178 C

Page 185: Ornl 2548

I li I

i : k I I

i i

5.24. Solubility of CdSO, in UO,SO, Solutions

E. V. Jones, M. H. Lietzke, and W. L. Marshall, 1. Am. Chem. SOC. 79, 267 (1957); also

The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in

Aqueous Uranyl SuZfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955). See comments in Sec 5.23.

UNCLASSlFl ED DWG. 14613A

h

0

W LT 3 !- a LT W a z W I-

0 Y

25C

20c

150

1 oc

50

0

IN 0.127 m UO,SO,

@ BENRATH

Fig. 5.24 Solubility of CdSO, in U01S04 Solutions.

I

179

Page 186: Ornl 2548

I

5.25. Solubility of Cr,SO, in U02S0, Solutions

E. V. Jones, M. H. Lietrkc, and W. L, Marshall, I. Am. Chem. SOC. 79, 267 (1957); also

The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in

Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955). See comments in Sec 5.23.

UNCLASSIFIED DWG. 146!7A

180

I;

Fig. 5.25. Solubility of Cs$04 in U0,504 blutionr.

'44

Page 187: Ornl 2548

5.26. Solubility of Y &SO,), in UO,SO, Solutions

E. V. Jones, M. H. Lietzke, and W. L. Marshall, /. Am. Chem. SOC. 79, 267 (1957); also

The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in

Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955). See comments in Sec 5.23.

35c

30C

- 250 V 0 Y

W K 3

E w t

5 a

I-

200

tl I O 0 L

i irv

UNCLASSIFIED DWG 14635A

I I I I I I I

I I I I I I I I i .o 2.0 3.0 4.0

Y 2 (SO,), ( w t Yo)

Fig, 5.26. Solubility of Y2(SO4I3 in UO,SO, Solutions.

Page 188: Ornl 2548

P -!J

u B c

5.27. Solubility of Ag,SO, in UO,SO, Solutions LJ E. V. Jones, M. H. Lietzke, and W. L. Marshall, 1. Am. Chem. SOC. 79, 267 (1957); also

The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in

Aqueous UrunyZ Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955). See comments in Sec 5.23.

UNCLASSlnEO DWG. 14645A

B A R R E -

-

Ag,Ss (WT%)

Fig. 5.27. Solubility of AB2%, in U02S04 blutionr.

182

c

Page 189: Ornl 2548

B c I,

aqueous U02S0,.

400

:: - 40 -I

3 J 0 cn

- rn

- v) 0 c x E Y * 0 cn

4.0

0.4

UNCLASSIFIED DWG. 45530A

I i I I I I I I I I 1 I I

I I I I I 1 I I I I I I I

MOLALITY uo,so,

Fig. L28. Solubility at 25OoC of BaSO, in UO2S0,-H20 Solutions.

i i u 183

Page 190: Ornl 2548

5.29. Solubility of H2W04 i n 0.126 and 1.26 M UO,SO, C. E. Coffey, W. L. Marshall, and G. H. Cartledge, HRP Quar. Prog. Rep. Oct. 31, 1953,

ORNL-1658, p 96-99. The data shown in the figures were obtained by direct sampling of equilibrated solutions, by

the filter bomb method, and by the synthetic method described previously in Sec 5.8. In 0.126 M

UO,SO, the solubility of H2W04 first shows a positive temperature coefficient of solubility and

then, above 100°C, a negative coefficient of solubility. In 1.26 M U02s04 the temperature

coefficient of solubility is positive up to 285q the temperature at which two liquid phases

form - a characteristic of U02S04-H,O solutions.

UNGLA SSl Fl ED DWG. 247608

300

G 200 v

w U 3 + U w Q H

a

E 100

0 0 t.0 2.0 3.0

SOLUBILITY (MOLARITY OF H,WO, x to3)

Fig. 5 . 2 9 ~ Solubility of H2W04 in 0.126 M UOzS04.

-J

u

t:

u

Page 191: Ornl 2548

UNCLASSIFIED DWG. 21757 B

I

l b

300

c ,o 200 -

0

I

TWO LIQUID PHASES

SOLUTION

SOLID + SOLUTION

0 10 20 30 40 SOLUBILITY ( MOLARITY OF H ~ W O ~ x io3)

Fig. 129b. Solubility of H,WO, in 1.26 M U0,%,

185

i

Page 192: Ornl 2548

E 5.30. Phase Stability of H,WO, in 1.26 M UO,F,

C. E. Coffey, W. L. Marshall, and G. H. Cartledge, HRP Quar. Prog. Rep. Oct. 31, 1953,

ORNL-1658, p 96-99. u The methods of solubility and stability determination were the same as for analogous studies

of H,WO, in UO,SO, (Sec 5.29). The data on the figure as drawn show temperatures at which

hydrolytic precipitation of an unidentified solid phase occurs from solutions stable at lower

temperatures.

P

Page 193: Ornl 2548

i i ! i ! h;.

300

200 0 - w U ?

E too

a U w a I

0

i ! il

I SOLID + SOLUTION

/

UNCLASSIFIED DWG.24764 B

0

A' T SOLUTION I

0 1.0 2.0 3.0 4.0 5.0 SOLUBILITY (MOLARITY OF H,WO, x to3)

Fig. 5.30. Phose Stability of H2W0, in 1.26 M U02Fr

j 11 187

Page 194: Ornl 2548

5.31. The System UO,(NO,),-H,O

Match 31, 1951, ORNL-1053, p 22-25. 1. Reported in full by W. L. Marshall, J. S, Gill, and C. H. Secoy, Chem. Qum. Prog. Rep.

2. Reported in part by W. L. Marshall, J. S. Gill, and C. H. Secoy, I . A m Chem. SOC. 73, 1867 (1951).

AS in the case of the system UO,SO,-H20, hydrolysis occurs at high temperatures and low

concentrations, resulting in precipitation of UO,*H,O from stoichiometric U02(N0,), solutions.

In addition, decompqsition of NO,’ occurs at elevated temperature to produce an equilibrium

vapor phase of nitrogen oxides. Letter A represents a region of complete solution. Data at low

temperature up to point F were obtained by direct analysis of equilibrated solutions, whereas

the high-temperature data were obtained by the visual-synthetic method described in Sec 5.8.

188

Page 195: Ornl 2548

I

: L i

I

400

350

300

250

o 200 Y

IO0

50

0

UNCLASSIFIED DWG. 10868

I I I I I I I I 1

A

G n

0, :: PRECIPITATION LIMITS = VAPOR PHASE COLORATION

3

Fig L31. The System U02(N03)2-H20.

Page 196: Ornl 2548

5.32. Phase Equilibria of UO, and HF in Stoichiometric Concentrations (Aqueous System)

W. L. Marshall, J. S. Gill, and C. H. Secoy, J . Am. Chem. SOC. 76, 4279 (1954). The two-liquid-phase region and the region of "basic" solid solution + saturated solution

are in actuality segments of the three-component system U0,-HF-H,O, in which he equilibrium

phases are nonstoichiometric with regard to UO,F,. This system is somewhat analogous to the

system U0,-H,SO,-H,O (see See 5.7).

I I I I I I I I I I SOLID + SUPER CRITICAL FLUID I

- H -A-A-A-A-A--AA-A-&- I

400

350

300

250

- V 0,

200 U 3 i- a a f 150 5 I-

100

50

0

- 5 0 I I I I I I I

y UOeF2* 2H20+LIQUID I I-

K UNSATURATED SOLUTION

0 0 A OUR DATA €3 DATA OF DEAN 0 DATA OF KUNIN

€34 7' 16

e'. e ,f (D a U02F2 - 2H20

+ SATURATED $ SOLUTION

A f ICE +SATURATED SOL'N. o-.-.-.a.*. 0;B

_ _ 0 !O 20 30 40 5 0 60 70 80 90

WEIGHT PERCENT AS U02F2

Fig. 132 Phase Equilibria of U 0 3 and HF in Stoichiometric Concentrations (Aqucous System).

Page 197: Ornl 2548

5.33. Solubility of Uranium Trioxide i n Orthophosphoric Acid Solutions

W. L. Marshall, J.S. Gill, and H. W. Wright, HRP Qum. Ptog. Rep. May 15, 1951, ORNL-1057, p 112-15.

The data were obtained for the most part by equilibrating solutions of known concentration in

sealed tubes for various times at different temperatures. Phase changes were observed visually.

UNCLASSIFIED DWG. 11232

350 I I I I I I I I ----- /--

0'

CURVE A I MOLAR Ha PO4 CURVE B EMOLAR H3 PO4 CURVE C 3MOLAR H3 PO4

0 0 I OUR DATA 4 A KUHN AN0 RYON 0 LOS ALAMOS

191

Page 198: Ornl 2548

5.34, Solubility of Uranium Trioxide in Phosphoric Acid at 250OC J. S. Gill, W. L. Marshal1,and H. W. Wright, HRP Quar. Prog. Rep. Aug. 15, 1951,ORNL-l121,

p 119-21. Solution and solid mixtures were equated at 25OOC in sealed glass tubes. The tubes were

cooled rapidly to room temperature, and the solution and solid phases were analyzed. The slow

reversibility of equilibrium conditions made this procedure possible.

1.6

1.4

1.2

- s m 1.0

0 3 Y 0 >- k 0.8 2 m

' 0.6

3 -I

0.4

0.2

clj LI €j n

C 0 1

Fig. 5.34. Solubility of Uronium Trioxide in Phosphoric Acid at 250°C.

2 3 4 5 6 7 8

CONCENTRATION OF H,PO, (Y)

U

c 192

Page 199: Ornl 2548

5.35. Solubility of UO, in H,PO, Solution

B. J. Thamer et al., The Properties of Phosphoric Acid Solutions of Uranium 4s Fuels for

Homogeneous Reactors, LA-2043 (March 6, 1956); W. L. Marshall, J. S. Gill, and H. W. Wright, HRP Quar. Prog. Rep. M a y 15, 1951, ORNL-1057, p 112-15; and J. s. Gill, W. L. Marshall, and H. W. Wright, HRP Quar. Prog. Rep. Aug. 15, 1951, ORNL-1121, p 119-21.

This figure represents a compilation from the data of B. J. Thamer et al. of Los Alamos and W. L. Marshall et al. of Oak Ridge National Laboratory.

UNCLASSIFIED ORN L - LR - DWG 293 46

2

1

> k 0.5

4 A 0 I 3

0.2

0.1 1 .o 2 5

PO4 MOLARITY

\

40 20

Fig. 5.35. Solubility of UO, I? H3P04 slution.

193

Page 200: Ornl 2548

U

il 5.36. The System U02Cr04-H20 ’

1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, J . Am. Chem. SOC. 77, 4705 (1955).

t40 n

I I I I I - NON-BINARY

(30 -SOLID + LIQUID

120

-

- -

- B + LIQUID

too- r -

2. W. L. Marshall, HRP Qum. Prog. Rep. Mmcb 31, 1953, ORNL-1554, p 105-6. The solid phases are U02Cr045’/2H20 (A) and U 0 2 C r 0 4 d 2 0 ( B ) . Curve rs represents

the boundary of a region in which hydrolytic precipitation of a basic uranyl chromate occurs.

In the same concentration range the dichromate, U02Cr20,, is stsble to the critical temperature

and apparently dissolves in the supercritical fluid (ref 2). E UNCLASSIFIED

ORNL-LR-DWG 54448

1 LIQUID 90 c 80

70

60

50

40

30

20

to

0

-10

A + LIQUID

0 10 20 30 40 50 60 70 Uo2Cro4 (.wt o/~)

Fig. %36. The System U02Cr0,-H20.

80 A 90 400

c

Page 201: Ornl 2548

U

Li k; L

L 5.37. Variation of Li ,CO, Solubility with UO,CO, Concentration at Constant CO, Pressure

1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, HRP Quar. P tog . Rep. Iuly 31, 1955,

(25OOC)

ORNL-1943, p 227-35. 2. W. L. Marshall, F. J. Loprest, and C. H, Secoy, HRP Quat. Prog. Rep. Jan. 31, 1956,

ORNL-2057, p 131-32. The solubility relationships in the figure indicate strong complexing of UO,cO, with Li,CO,

under CO, pressure. The formation of HCO,' species in solution i s indicated.

4 .ooo

0.800

0.600

Y F - rg 0 0 I -I .-

P 0.400

t 0.200

0 0 0 L

UN CLASS ORNL-LR-DW

-I- * 3.37 moles of Li per mole of U - (LiZCO3 IS SOLID PHASE) . 1 1 - a * I . . .I. .I I .

I 4 4.44 motes OT LI per mole OT u AT ISOBARIC INVARIANT

2 0.04 0.06 0.08 0.10 0.12 0.i4 0.t6 0.48

Fig 5.37. Variation of Li2C03 Solubility with UOZC03 Concentration at

Constant C02 Pressure (25OOC). I ' a,

195

Page 202: Ornl 2548

Ll G

5.38. The System Li20-U03-C0,-H20 at 2 5 0 O C and 1500 psi

~

1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, HRP Quar. Prog. Rep . July 31, 1955,

ORNL-1943, p 227-35. 2. W. L. Marshall, F. J. Loprest, and C. H. Secoy, HRP Quat. Pmg. Rep . Jm 31, 1956,

ORNL-2057, p 131-32. As CO, pressure is increased, the area of complete solution (indicated by the shading)

increases. As temperature i s increased, the solution area decreases.

UNCLASSIFIED ORNL-LR-DWG 143428

H2° 100

196

10 0 5 10

90

U 0 3 ( W t % )

Fig. 5.38. The System Li20-U03-C02-H20 at 25pC and 1500 psi.

u

Page 203: Ornl 2548

1

II; i u

5.39. The System Th(NO,),=H,O

1. Reported in ful l by W. L. Marshall, J. S. Gill, and C. H. &coy, HRP Quar. Prog. Rep.

NOW 30, 1950, ORNL-925, p 279-90. 2. W. L. Marshall, J. S. Gill, and C. H. Secoy, J. Am. Chem. SOC. 73, 4991 (1951). Hydrolytic precipitation of Tho, and thermal decomposition of NO,- in this system occur in

an analogous manner to the reactions occurring in the system UO,(NO,),-H,O (see Sec 5.31). A t higher temperatures the two-component system in actuality must be considered in terms of the three components Tho,, HNO,, and H,O.

Y

WEIGHT PERCENT Th(N03)4

Fig. 5.39. The System Th(NO.J4-H2O.

UNCLASSIFIED DWG. 9967

197

Page 204: Ornl 2548

5.40. Hydrolytic Stability of Thorium Nitrate-Nitric Acid and Uranyl Nitrate Solutions

1. W. L. Marshall and C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1953, ORNL-1658,

198

ORNL-1053, p 22-25. The data used to draw the individual curves were obtained by observations at various tem-

The procedure

The curve for hydrolytic precipi-

peratures of tubes that contained different solutions of known concentration.

was analogous to that used for obtaining data for Fig. 5.33. tation of UO,(NO,), is taken from ref 2.

UNCLASSIFIED ORNL-LR-DWG. 247598

380 1 I I 1

340

Y

440

400 4 4.0 2 .o

THORIUM, URANIUM (M)

Fig. 5.40. Nitrate Solutions.

Hydrolytic Stobiliiy of Thorium Nitrate-Nitric Acid and Uranyl

Page 205: Ornl 2548

5.41. The System ThO,-CrO,-H,O at 25OC 1. H. T. S. Britton, J . Cbsm. SOC. 123, 1429 (1923). 2. W. L. Marshall, F. J. Loprest, and c. H. Secoy, HRP Quar. Prog. Rep. Jan. 31, 19S5,

ORNL-1853, p 205-6. The phase diagram at 2 5 O was determined by Britton. Points 1-7 indicate compositions

investigated at high temperature by Marshall, Loprest, and Secoy. These solution compositions

were phase stable up to 16OOC for point 7 and 32OOC for point 1.

UNCLASSIFIED ORNL-LR-DWG 5020A

Flg. 141. ystc ,-Cr03-H20 at 2 9 C . Compositions are in

weight per cent.

I

, liv Ll i

199

Page 206: Ornl 2548

5.42. Phase Stability of Th0,-H3P0,-H,0 Solutions at High Concentrations of Tho, W. L. Marshall, experimental data in ORNL research notebook 2881, p 35 (May 1953). Solutions of uppropriate concentrations were prepared and analyzed. These solutions were

sealed in glass tubes and shaken at various temperatures for times varying from 1 hr to several

days. In this manner the phase stability boundaries with respect to concentration and temper-

ature were established. At first inspection of the figure it is surprising that more Tho, can be

dissolved per liter at the lower H,PO,/ThO, ratio than at the higher ratio. Actually, there

is a physical volume limitation due to the high fractional volumes occupied by Tho, and H3P0, at these concentrations. As any solution is diluted with H,O, hydrolysis of thorium in solution

occurs. At room temperature, solutions in which the H,PO4/ThO2 ratio is 5 1 are gels, whereas

1O:l ratio solutions are st i l l fluid.

1 -

HYDROLYTIC PRECl PlTAT I ON y’qi,$zpN HYDROLYTIC >’

PRECIPITATION> ’:& REGION REGION

UNCLASSIFIED ORN L- LR - DWG ,38529

400 I I I I I I

FOR 40:4 MOLE ). FOR 5:t MOLE RATIO, >’ H3P04/Th02 -

k \I RATIO, %FQ4/Th02

I I I I I I

\I” 1 350 1 0

300

250

I-

200

GRAMS Tho2 PER LITER OF SOLUTION (25°C)

Fig. 5.42 Phose Stability of Th02-H3P04-H20 Solutions at High Concentrations of T h O r

200

A

Page 207: Ornl 2548

ACKNOWLEDGMENT

Acknowledgment i s made to the following for permission to reproduce copyrighted material:

American Ceramic Society

American Institute of Mining, Metallurgical, and Petroleum Engineers

Analytical Chemistry

]oumal of Chemical and Engineering Data

Ioumal of Physical Chemistry

Iournal of the American Chemical Society

U.S. Atomic Energy Commission

20 1

Page 208: Ornl 2548
Page 209: Ornl 2548

0 RNL-2548 Chemistry - General I TID-4500 (15th ed.)

IN TERN AL DI ST RI BU TI0 N

1. R. D. Ackley 55. J. S. Culver

4J I !

2. R. E. Adams 3. G. M. Adamson

56. D. R. Cuneo 57. J. E. Cunninaham -

4. L. G. Alexander 58. D. G. Davis 5. K. A. Allen 59. R. J. Davis 6. C. F. Baes 60. W. C. Davis

7-11. C. J. Barton 61. J. H. DeVan 12. S. E. Beall 62. R. R. Dickison 13. P. R. Bell 63. L. M. Doney 14. J. 0. Betterton 64. F. A. Doss 15. A. M. Bilfings 65. J. S. Drury 16. D. S. Billington 66. A. S. Dworkin 17. C. A. Blake 67. L. B. Emlet (K-25) 18. J. P. Blakely 68. J. L. English

69. J. E. Eorgan 19. R. E. Blanco 20. F. F. Blankenship 70. R. B. Evans 21. M. Blander 71. D. E. Ferguson 22. E. P. Blizard 72. J. L. Fowler 23. C. M. Blood 73. A. P. Fraas 24. A. L. Boch 74. H. A. Friedman 25. E. G. Bohlman 75. J. H. Frye, Jr. 26. S. E. Bolt 76. C. H. Gabbard 27. G. E. Boyd 28. M. A. Bredig 29. J. C. Bresee 79. J. H. Gillette 30. R. B. Briggs 31. H. R. Bronstein 81. J. M. Googin (Y-12) 32. J. R. Brown 82. R. S. Greeley 33. K. B. Brown 93. A. T. Gresky 34. W. E. Browning 84. J. C. Griess 35. F. R. Bruce 85-89. W. R. Grimes 36. W. D. Burch 90. E. Guth 37. S. R. Buxton 91. P. A. Haas 38. S. Cantor 92. P. H. Harley

93. C. S. HarriII 94. L. A. Harris 95. P. N. Haubenreich 96. G. M. Hebert 97. H. L. Hemphill 98. J. W. H i l l 99. E. C. Hire

100. E. E. Hoffman

77. W. R. Gall 78. J. S. Gi l l

80. L. 0. Gilpatrick

103. R. W. Horton 104. A. S. Householder 105. H. lnsley

52. J. H. Crawford 106. G. H. Jenks 53. C. R. Croft 107. D. T. Jones 54. F. L. Culler 108. E. V. Jones

203

Page 210: Ornl 2548

204

109. W. H. Jordan 110. P. R. Kasten 111. G. W. Keilholtz 112. C. P. Keim 113. M. T. Kelley 114. M. J. Kelley 115. B. W. Kinyon 116. N. A. Krohn 117. J. A. Lane 118. S. Longer 119. C. G. Lawson 120. J. E. Lee, Jr. 121. R. E. Leed 122. R. E. Leuze 123. W. H. Lewis 124. M. H. Lietzke 125. T. A. Lincoln 126. S. C. Lind 127. R. B. Lindauer 128. R. S. Livingston 129. J. T. Long 130. R. A. Lorenz 131. R. E. Lowrie 132. M. 1. Lundin 133. R. N. Lyon 134. J. P. McBride 135. W. B. McDonald 136. H. F. McDuffie 137. H. A. McLain 138. R. A. McNees 139. H. G. MacPherson 140. T. N. McVay 141. J. R. McWherter 142. W. D. Manly

143-147. W. L. Marshall 148. R. E. Meadows 149. R. P. Metcalf 150. R. P. Milford 151. A. J. Miller 152. J. W. Miller 153. C. S. Morgan 154. K. Z. Morgan 155. R. E. Moore 156. R. L. Moore 157. J. P. Murray (Y-12) 158. M. L. Nelson 159. G. J. Nessle 160. R. F. Newton 161. L. G. Overholser 162. L. F. Parsly, Jr. 163. R. L. Pearson 164. F. N. Peebles

165. D. Phill ips 166. L. R. Phillips (Y-12) 167. M. L. Picklesimer 168. W. T. Rainey 169. A. D. Redman 170. S. A. Reed 171. P. M. Reyling 172. D. M. Richardson 173. R. C. Robertson 174. A. D. Ryon 175. H. C. Savage 176. H. W. Savage 177. F. A. Schimmel (Y-12) 178. J. M. Schmitt 179, J. M. Schreyer (Y-12) 180. H. E. Seagren 181. C. H. Secoy 182. C. L. Segaser 183. J. H. Shaffer 184. E. M. Shank 185. R. J. Shell 186. R. P. Shields 187. E. D. Shipley 188. M. D. Silverman 189. M. J. Skinner 190. R. Slusher 191. N. V. Smith 192. W. T. Smith, Jr. 193. A. H. Snell 194. B. A. Soldano 195. 1. Spiewak 196. H. H. Stone 197. R. A. Strehlow 198. 8. J. Sturm 199. C. D. Susano 200. J. E. Sutherland 201. J. A. Swartout 202. A. Taboada 203. E. H. Taylor

204-213. R. E. Thoma 214. D. G. Thomas 215. M. Tobias 216. D. S. Toomb 217. D. B. Trauger 218. J. Truitt 219. W. E. Unger 220. R. Van Winkle 221. F. C. VonderLage 222. W. T. Ward I

223. G. M. Watson 224. B. S. Weaver 225. C. F. Weaver

Page 211: Ornl 2548

226. A. M. Weinberg 227. K. W. West 228. M. E. Whatley , ~

229. G. C. Williams 230. C. E. Winters 231. H. W. Wright 232. J. P. Young 233. F. C. Zapp 234. P. H. Emmett (consultant) 235. H. Eyring (consultant) 236. D. G. Hi l l (consultant) 237. C. E. Larson (consultant)

238. W. 0. Milligan (consultant) 239. J. E. Ricci (consultant) 240. G. T. Seaborg (consultant) 241. E. P. Wigner (consultant) 242. Biology Library

243-244. Central Research Library 245. Health Physics Library

246-265. Laboratory Records Department 266. Laboratory Records, ORNL R.C. 267. Reactor Experimental Engineering Library 268. ORNL - Y-12 Technical Library,

Document Reference Section

EXTERNAL DISTRIBUTION I: 269-270. Stanford Research Institute, Menlo Park, Calif. (1 copy ea. to D. Cubicciotti and

J. W. Johnson) 271-272. National Lead Co., P. 0. Box 158, Cincinnati 39, Ohio (1 copy ea. to R. E. DeMarco

and K. Notz) 273. Geophysical Laboratory, Carnegie Institution of Washington, 2801 Upton St.,

Washington 8, D.C. (J. W. Grieg) 274. Mound Laboratory, Miamisburg, Ohio (E. F. Eichelberger)

St. Paul 9, Minn. (1 copy ea. to J. R. Johnson and G. D. White) 277. Chemical Separations and Development Branch, Nuclear Technology, Division of

Reactor Development, AEC, Washington 25, D.C. (F. Kerze, Jr.) 278. Dept. of Chemistry, Brown University, Providence 12, R.I. (C. A. Kraus) 279. Mallinckrodt Chemical Works, Uranium Division, P.O. Box 472, St. Charles, Mo.

(C. W. Kuhlman) 280. Portland Cement Association Fellowship, National Bureau of Standards, Washington 25,

D. C. (E. M. Levin) 281-282. National Carbon Research Laboratories, P.O. Box 6116, Cleveland, Ohio (1 copy ea. to

G. W. Mellors and S. Senderoff)

275-276. Minnesota Mining and Manufacturing Co., Central Research Dept., 2301 Hudson Rd.,

283. College of Mineral Industries, Pennsylvania State University, University Park, Pa.

1663, Los Alamos, N. M. (B. J. Thamer) 285. Dept. of Physics, University of Chicago, Chicago, 111. (W. H. Zachariasen) 286. Reaction Motors Division, Thiokol Chemical Corp., Denville, N.J. (F. L. Loprest)

National Bureau of Standards, ington 25, D. C. (H. F. McMurdie) 25, D.C. (G. W. Morey)

289. National Carbon 290. Division of Res pment, AEC, Washington 291. Division of Res 292. Division of Reactor Deve

rbide Corporation, Parma, Ohio (F. E. Clark)

2 . Given distribution as shown in TID-4500 (15th ed.) under Chemistry-General category (75 copies - OTS)

205