Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing...

32
Optimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek Sinha and Eytan Modiano IEEE INFOCOM, April 19, 2018 1

Transcript of Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing...

Page 1: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Optimizing Age of Information in WirelessNetworks with Throughput Constraints

Igor Kadota, Abhishek Sinha and Eytan Modiano

IEEE INFOCOM, April 19, 2018

1

Page 2: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Outlineβ€’ Age of Information and Motivation

β€’ Network Model

β€’ Scheduling Policies and Performance Guaranteesβ€’ Stationary Randomized Policyβ€’ Max-Weight Policyβ€’ Whittle’s Index Policy

β€’ Numerical Results

2

Page 3: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Example:

Age of Information (AoI)

3

Delivery of Packets to BSPacket Generation at i

i

Time

𝐼𝐼[1] Interdelivery Time

Packet Delay Single Source

Single Destination

L[1] L[2]

How fresh is the information at the destination?

Page 4: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Example:

Age of Information (AoI)

4

i

Time

Time

𝐼𝐼[1] Interdelivery Time

Packet Delay

L[1]

Single Source

Single Destination

AoIL[1] L[2]

Delivery of Packets to BSPacket Generation at i

Page 5: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Example:

Age of Information (AoI)

5

i

Time

Time

𝐼𝐼[1] Interdelivery Time

Packet Delay

L[1]

Single Source

Single Destination

AoIL[1] L[2]

Delivery of Packets to BSPacket Generation at i

Page 6: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Example:

Age of Information (AoI)

6

i

Time

Time

𝐼𝐼[1] Interdelivery Time

Packet Delay

L[1] L[2]

Single Source

Single Destination

AoIL[1] L[2]

Delivery of Packets to BSPacket Generation at i

Page 7: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

AoI: time elapsed since the most recently delivered packet was generated.

Relation between AoI, delay and interdelivery time?

Age of Information (AoI)

7

Time

Time

𝐼𝐼[1] Interdelivery Time

Packet Delay

L[1] L[2]

AoIL[1] L[2]

Page 8: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

β€’ Example: (M/M/1): (∞/FIFO) systemControllable arrival rate πœ†πœ† and fixed service rate πœ‡πœ‡ = 1 packet per second.

Minimum throughput requirement DOES NOT guarantee regular deliveries.

AoI, Delay and Interdelivery time

8

Server (𝝁𝝁)

𝝀𝝀

Source

Destination

[1] S. Kaul, R. Yates, and M. Gruteser, β€œReal-time status: How often should one update?”, 2012.

πœ†πœ† 𝔼𝔼[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] 𝔼𝔼[𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑. ] Average AoI0.01 1.01 100.000.53 2.13 1.890.99 100.00 1.01

Page 9: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

β€’ Example: (M/M/1): (∞/FIFO) systemControllable arrival rate πœ†πœ† and fixed service rate πœ‡πœ‡ = 1 packet per second.

Low time-average AoI when packets with low delay are delivered regularly.

AoI, Delay and Interdelivery time

9[1] S. Kaul, R. Yates, and M. Gruteser, β€œReal-time status: How often should one update?”, 2012.

Server (𝝁𝝁)

𝝀𝝀

πœ†πœ† 𝔼𝔼[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] 𝔼𝔼[𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑. ] Average AoI0.01 1.01 100.00 101.000.53 2.13 1.89 3.480.99 100.00 1.01 100.02

Source

Destination

Page 10: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Network - Example

10

Wireless Parking Sensor

Wireless Tire-Pressure Monitoring System

Wireless Rearview Camera

Page 11: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Network - Description

11

1

M𝜢𝜢𝟏𝟏

πœΆπœΆπ‘΄π‘΄Sensors / Nodes

π’’π’’πŸπŸ

𝒒𝒒𝑴𝑴

π’‘π’‘πŸπŸπ’‘π’‘π‘΄π‘΄

Central Monitor

1) Low network-wide AoI

2) Weights πœΆπœΆπ’Šπ’Š represent priority

3) Minimum throughput requirement, π’’π’’π’Šπ’Š

4) Channel is shared and unreliable, π’‘π’‘π’Šπ’Š

Values of M,πœΆπœΆπ’Šπ’Š,π’’π’’π’Šπ’Š,π’‘π’‘π’Šπ’Š are fixed and known

Page 12: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Network - Scheduling Policy πœ‹πœ‹

12

During slot k:

1) BS selects a single node i [𝑒𝑒𝑖𝑖 π‘˜π‘˜ = 1]

2) Selected node samples new data and then transmits

3) Packet is successfully delivered to the BS with probability π’‘π’‘π’Šπ’Š [𝑑𝑑𝑖𝑖 π‘˜π‘˜ = 1]

4) Packet Delay = 1 slot

Class of non-anticipative policies Ξ . Arbitrary policy 𝝅𝝅 ∈ 𝚷𝚷.

Central MonitorRunning policy 𝝅𝝅

1

M𝜢𝜢𝟏𝟏

πœΆπœΆπ‘΄π‘΄Sensors / Nodes

π’’π’’πŸπŸ

𝒒𝒒𝑴𝑴

π’‘π’‘πŸπŸπ’‘π’‘π‘΄π‘΄

Page 13: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

β€’ Age of Information associated with node iat the beginning of slot k is given by π’‰π’‰π’Šπ’Š(π’Œπ’Œ).

β€’ Recall: Packet Delay = 1 slot

β€’ Evolution of AoI:

Network - Age of Information

13Slots

Slots

Delivery of packets from sensor i to the BS

321

𝐑𝐑𝐒𝐒(π’Œπ’Œ + 𝟏𝟏) = �𝟏𝟏,

π’‰π’‰π’Šπ’Š π’Œπ’Œ + 1,

if 𝑑𝑑𝑖𝑖 π‘˜π‘˜ = 1

otherwise

π’‰π’‰π’Šπ’Š(π’Œπ’Œ)

Page 14: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Network - Objective Function

β€’ Expected Weighted Sum AoI when policy πœ‹πœ‹ is employed:

β€’ Minimum Throughput Requirements:

β€’ Channel Interference:14

𝔼𝔼 π½π½πΎπΎπœ‹πœ‹ =1𝐾𝐾𝐾𝐾

𝔼𝔼 οΏ½π‘˜π‘˜=1

𝐾𝐾

�𝑖𝑖=1

𝑀𝑀

πœΆπœΆπ’Šπ’Šπ’‰π’‰π’Šπ’Šπ…π…(π’Œπ’Œ) , where π’‰π’‰π’Šπ’Šπ…π… π’Œπ’Œ is the AoI of node i and πœΆπœΆπ’Šπ’Š is the positive weight

οΏ½π‘žπ‘žπ‘–π‘–πœ‹πœ‹: = limπΎπΎβ†’βˆž

1πΎπΎοΏ½π‘˜π‘˜=1

𝐾𝐾

𝔼𝔼[π’…π’…π’Šπ’Š(π’Œπ’Œ)] β‰₯ π’’π’’π’Šπ’Š ,βˆ€π‘–π‘– ∈ {1,2, … ,𝐾𝐾}, where set π’’π’’π’Šπ’Š 𝑖𝑖=1𝑀𝑀 is feasible.

�𝑖𝑖=1

𝑀𝑀

π’–π’–π’Šπ’Š(π’Œπ’Œ) ≀ 1 ,βˆ€π‘˜π‘˜ ∈ {1,2, … ,𝐾𝐾}

Page 15: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

β€’ Policy πœ‹πœ‹βˆ— that solves (8) is AoI-optimal and achieves π‘‚π‘‚π‘‚π‘‚π‘‡π‘‡βˆ—

β€’ Policy πœ‚πœ‚ ∈ Ξ  that attains 𝑂𝑂𝑂𝑂Tπœ‚πœ‚ is πœ“πœ“-optimal when16

(Age of Information)

(Minimum Throughput)

(Channel Interference)

Scheduling Policies

π‘‚π‘‚π‘‚π‘‚π‘‡π‘‡βˆ— ≀ 𝑂𝑂𝑂𝑂Tπœ‚πœ‚ ≀ πœ“πœ“π‘‚π‘‚π‘‚π‘‚π‘‡π‘‡βˆ—

Page 16: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Summary of Results:

17

Scheduling Policies

Scheduling Policy Technique Optimality Ratio Simulation Result

Optimal Stationary Randomized Policy Renewal Theory 2-optimal ~ 2-optimal

Max-Weight Policy LyapunovOptimization 4-optimal close to optimal

Whittle’s Index Policy RMAB Framework 8-optimal close to optimal

Page 17: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Summary of Results:

18

Scheduling Policies

Scheduling Policy Technique Optimality Ratio Simulation Result

Optimal Stationary Randomized Policy Renewal Theory 2-optimal ~ 2-optimal

Max-Weight Policy LyapunovOptimization 4-optimal close to optimal

Whittle’s Index Policy RMAB Framework 8-optimal close to optimal

Page 18: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Stationary Randomized Policies

β€’ Policy R: in each slot k, select node i with probability πππ’Šπ’Š ∈ 0,1 .

β€’ Packet deliveries from node i is a renewal process with π‘°π‘°π’Šπ’Š~ 𝐺𝐺𝑑𝑑𝐺𝐺(πππ’Šπ’Šπ’‘π’‘π’Šπ’Š)β€’ Sum of π’‰π’‰π’Šπ’Š π’Œπ’Œ over time is a renewal-reward process.

19

π’‰π’‰π’Šπ’Š(π’Œπ’Œ)

4321

π‘°π‘°π’Šπ’Š

Page 19: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Stationary Randomized Policies

β€’ Policy R: in each slot k, select node i with probability πππ’Šπ’Š ∈ 0,1 .

β€’ Packet deliveries from node i is a renewal process with π‘°π‘°π’Šπ’Š~ 𝐺𝐺𝑑𝑑𝐺𝐺(πππ’Šπ’Šπ’‘π’‘π’Šπ’Š)β€’ Sum of π’‰π’‰π’Šπ’Š π’Œπ’Œ over time is a renewal-reward process.

20

π’‰π’‰π’Šπ’Š(π’Œπ’Œ)

4321

limπΎπΎβ†’βˆž

1πΎπΎοΏ½π‘˜π‘˜=1

𝐾𝐾

𝔼𝔼 π’‰π’‰π’Šπ’Š(π’Œπ’Œ) =𝔼𝔼 π‘°π‘°π’Šπ’ŠπŸπŸ/2 + π‘°π‘°π’Šπ’Š/2

𝔼𝔼 π‘°π‘°π’Šπ’Š=

1πππ’Šπ’Šπ’‘π’‘π’Šπ’Š

π‘°π‘°π’Šπ’Š

Page 20: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Stationary Randomized Policies

β€’ Policy R: in each slot k, select node i with probability πππ’Šπ’Š ∈ 0,1 .

β€’ Packet deliveries from node i is a renewal process with π‘°π‘°π’Šπ’Š~ 𝐺𝐺𝑑𝑑𝐺𝐺(πππ’Šπ’Šπ’‘π’‘π’Šπ’Š)β€’ Sum of π’‰π’‰π’Šπ’Š π’Œπ’Œ over time is a renewal-reward process.

21

(Age of Information)

(Minimum Throughput)

(Probability)

Page 21: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Stationary Randomized Policies

β€’ Policy R: in each slot k, select node i with probability πππ’Šπ’Š ∈ 0,1 .

β€’ Packet deliveries from node i is a renewal process with π‘°π‘°π’Šπ’Š~ 𝐺𝐺𝑑𝑑𝐺𝐺(πππ’Šπ’Šπ’‘π’‘π’Šπ’Š)β€’ Sum of π’‰π’‰π’Šπ’Š π’Œπ’Œ over time is a renewal-reward process.

β€’ Optimal Stationary Randomized Policy R* uses probabilities πππ’Šπ’Šβˆ— i=1M that can

be obtained offline with Algorithm 1 (omitted in this presentation).

22

Page 22: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Stationary Randomized Policies

β€’ Policy R: in each slot k, select node i with probability πππ’Šπ’Š ∈ 0,1 .

β€’ Packet deliveries from node i is a renewal process with π‘°π‘°π’Šπ’Š~ 𝐺𝐺𝑑𝑑𝐺𝐺(πππ’Šπ’Šπ’‘π’‘π’Šπ’Š)β€’ Sum of π’‰π’‰π’Šπ’Š π’Œπ’Œ over time is a renewal-reward process.

β€’ Optimal Stationary Randomized Policy R* uses probabilities πππ’Šπ’Šβˆ— i=1M that can

be obtained offline with Algorithm 1 (omitted in this presentation).

Theorem: for any network configuration, policy R* is 2-optimal.

23

Page 23: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Summary of Results:

24

Scheduling Policies

Scheduling Policy Technique Optimality Ratio Simulation Result

Optimal Stationary Randomized Policy Renewal Theory 2-optimal ~ 2-optimal

Max-Weight Policy LyapunovOptimization 4-optimal close to optimal

Whittle’s Index Policy RMAB Framework 8-optimal close to optimal

Page 24: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Max-Weight Policy

β€’ Minimum Throughput Requirements:

β€’ Throughput debt:

β€’ Lyapunov Function:

25

π’™π’™π’Šπ’Š(π’Œπ’Œ + 𝟏𝟏) = π‘˜π‘˜π’’π’’π’Šπ’Š βˆ’οΏ½π‘‘π‘‘=1

π‘˜π‘˜

π’…π’…π’Šπ’Š(𝒕𝒕)

οΏ½π‘žπ‘žπ‘–π‘–πœ‹πœ‹: = limπΎπΎβ†’βˆž

1πΎπΎοΏ½π‘˜π‘˜=1

𝐾𝐾

𝔼𝔼[π’…π’…π’Šπ’Š(π’Œπ’Œ)] β‰₯ π’’π’’π’Šπ’Š ,βˆ€π‘–π‘– ∈ {1,2, … ,𝐾𝐾}, where set π’’π’’π’Šπ’Š 𝑖𝑖=1𝑀𝑀 is feasible.

𝐿𝐿 π‘˜π‘˜ ≔12�𝑖𝑖=1

𝑀𝑀

πœΆπœΆπ’Šπ’Šπ’‰π’‰π’Šπ’ŠπŸπŸ π’Œπ’Œ + 𝑉𝑉 π‘₯π‘₯𝑖𝑖+(π‘˜π‘˜) 2 , where V is a constant

and π‘₯π‘₯𝑖𝑖+ π‘˜π‘˜ = max 0, π‘₯π‘₯𝑖𝑖(π‘˜π‘˜)

Page 25: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Max-Weight Policy

β€’ Max-Weight is designed to reduce the Lyapunov Drift.

β€’ Lyapunov Function:

β€’ Lyapunov Drift:

β€’ Policy MW: in each slot k, select the node with highest value of π‘Šπ‘Šπ‘–π‘–(π‘˜π‘˜), where:

26

π‘Šπ‘Šπ‘–π‘– π‘˜π‘˜ =πœΆπœΆπ’Šπ’Šπ’‘π’‘π’Šπ’Š

2π’‰π’‰π’Šπ’Š π’Œπ’Œ π’‰π’‰π’Šπ’Š(π’Œπ’Œ) + 2 + π‘‰π‘‰π’‘π’‘π’Šπ’Šπ‘₯π‘₯𝑖𝑖+(π‘˜π‘˜)

𝐿𝐿 π‘˜π‘˜ ≔12�𝑖𝑖=1

π‘€π‘€πœΆπœΆπ’Šπ’Šπ’‰π’‰π’Šπ’ŠπŸπŸ π’Œπ’Œ + 𝑉𝑉 π‘₯π‘₯𝑖𝑖+(π‘˜π‘˜) 2

βˆ† π‘˜π‘˜ ≀ βˆ’οΏ½π‘–π‘–=1

𝑀𝑀𝔼𝔼 π’–π’–π’Šπ’Š π’Œπ’Œ π’‰π’‰π’Šπ’Š π’Œπ’Œ , π‘₯π‘₯𝑖𝑖 π‘˜π‘˜ 𝑖𝑖=1

𝑀𝑀 π‘Šπ‘Šπ‘–π‘– π‘˜π‘˜ + 𝐡𝐡𝑖𝑖(π‘˜π‘˜)

βˆ† π‘˜π‘˜ ≔ 𝔼𝔼 𝐿𝐿 π‘˜π‘˜ + 1 βˆ’ 𝐿𝐿 π‘˜π‘˜ π’‰π’‰π’Šπ’Š π’Œπ’Œ , π‘₯π‘₯𝑖𝑖(π‘˜π‘˜) 𝑖𝑖=1𝑀𝑀

Page 26: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Max-Weight Policy

β€’ Policy MW: in each slot k, select the node with highest value of π‘Šπ‘Šπ‘–π‘–(π‘˜π‘˜), where:

Theorem: MW satisfies ANY feasible set of throughput requirements π’’π’’π’Šπ’Š 𝑖𝑖=1𝑀𝑀

Theorem: for every network with 𝑉𝑉 ≀ 2βˆ‘π‘–π‘–=1𝑀𝑀 πœΆπœΆπ’Šπ’Š /𝐾𝐾, the MW is 4-optimal.

27

π‘Šπ‘Šπ‘–π‘– π‘˜π‘˜ =πœΆπœΆπ’Šπ’Šπ’‘π’‘π’Šπ’Š

2π’‰π’‰π’Šπ’Š π’Œπ’Œ π’‰π’‰π’Šπ’Š(π’Œπ’Œ) + 2 + π‘‰π‘‰π’‘π’‘π’Šπ’Šπ‘₯π‘₯𝑖𝑖+(π‘˜π‘˜)

Page 27: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Max-Weight Policy vs Whittle’s Index Policy

β€’ Policy MW: in each slot k, select the node with highest value of π‘Šπ‘Šπ‘–π‘–(π‘˜π‘˜), where:

Theorem: MW satisfies ANY feasible set of throughput requirements π’’π’’π’Šπ’Š 𝑖𝑖=1𝑀𝑀

Theorem: for every network with 𝑉𝑉 ≀ 2βˆ‘π‘–π‘–=1𝑀𝑀 πœΆπœΆπ’Šπ’Š /𝐾𝐾, the MW is 4-optimal.

β€’ Policy Whittle: in each slot k, select the node with highest value of 𝐢𝐢𝑖𝑖(π‘˜π‘˜), where:

28

π‘Šπ‘Šπ‘–π‘– π‘˜π‘˜ =πœΆπœΆπ’Šπ’Šπ’‘π’‘π’Šπ’Š

2π’‰π’‰π’Šπ’Š π’Œπ’Œ π’‰π’‰π’Šπ’Š(π’Œπ’Œ) + 2 + π‘‰π‘‰π’‘π’‘π’Šπ’Šπ‘₯π‘₯𝑖𝑖+(π‘˜π‘˜)

𝐢𝐢𝑖𝑖 π‘˜π‘˜ =πœΆπœΆπ’Šπ’Šπ’‘π’‘π’Šπ’Š

2π’‰π’‰π’Šπ’Š π’Œπ’Œ π’‰π’‰π’Šπ’Š π’Œπ’Œ +

2π’‘π’‘π’Šπ’Šβˆ’ 1 + πœ½πœ½π’Šπ’Š

Page 28: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Summary of Results:

29

Scheduling Policies

Scheduling Policy Technique Optimality Ratio Simulation Result

Optimal Stationary Randomized Policy Renewal Theory 2-optimal ~ 2-optimal

Max-Weight Policy LyapunovOptimization 4-optimal close to optimal

Whittle’s Index Policy RMAB Framework 8-optimal close to optimal

Page 29: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Numerical Results

β€’ Metric:β€’ Expected Weighted Sum AoI : 𝔼𝔼 π½π½πΎπΎπœ‹πœ‹

β€’ Network Setup with M nodes. Node i has:β€’ channel reliability π’‘π’‘π’Šπ’Š = 𝑖𝑖/𝐾𝐾 [increasing]β€’ weight πœΆπœΆπ’Šπ’Š = (𝐾𝐾 + 1 βˆ’ 𝑖𝑖)/𝐾𝐾 [decreasing]β€’ throughput requirement π’’π’’π’Šπ’Š = πœ–πœ–π’‘π’‘π’Šπ’Š/M, where πœ–πœ– in 0; 1

β€’ Each simulation runs for 𝐾𝐾 = 𝐾𝐾 Γ— 106 slotsβ€’ Each data point is an average over 10 simulations

30

Page 30: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

31

𝝐𝝐 = 𝟎𝟎.πŸ—πŸ—

2x

Page 31: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

32

𝑴𝑴 = πŸ‘πŸ‘πŸŽπŸŽ

2x

Page 32: Optimizing Age of Information in Wireless Networks with ...kadota/PDFs/INFOCOM_2018.pdfOptimizing Age of Information in Wireless Networks with Throughput Constraints Igor Kadota, Abhishek

Final Remarksβ€’ In this presentation:

β€’ Age of Information and Network Modelβ€’ Three low-complexity scheduling policiesβ€’ Performance guaranteesβ€’ Numerical Results: Max-Weight has superior performance

β€’ In the paper: β€’ Derive Universal Lower Bound on Age of Informationβ€’ Discuss Indexability and Whittle’s Index Policyβ€’ Additional simulation results

β€’ Recent result not in the paper: Drift-Plus Penalty Policy is 2-optimal33

1

M𝜢𝜢𝟏𝟏

πœΆπœΆπ‘΄π‘΄

π’’π’’πŸπŸ

𝒒𝒒𝑴𝑴

π’‘π’‘πŸπŸπ’‘π’‘π‘΄π‘΄

𝝅π