Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A....

23
Optimization Techniques Optimization Techniques for Supply Network Models for Supply Network Models Simone Göttlich Simone Göttlich Joint Work with: Joint Work with: M. Herty, A. Klar (TU M. Herty, A. Klar (TU Kaiserslautern) Kaiserslautern) A. Fügenschuh, A. Martin (TU Darmstadt) A. Fügenschuh, A. Martin (TU Darmstadt) Workshop Math. Modelle in der Transport- und Produktionslogistik Bremen, 11. Januar 2008

Transcript of Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A....

Page 1: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

Optimization Techniques Optimization Techniques for Supply Network Models for Supply Network Models

Simone GöttlichSimone Göttlich

Joint Work with: Joint Work with:

M. Herty, A. Klar (TU Kaiserslautern)M. Herty, A. Klar (TU Kaiserslautern)

A. Fügenschuh, A. Martin (TU Darmstadt)A. Fügenschuh, A. Martin (TU Darmstadt)

Workshop Math. Modelle in der Transport- und ProduktionslogistikBremen, 11. Januar 2008

Page 2: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

MotivationMotivation

Investment costs and rentability

Topology of the network

Production mix and policy strategies

Simulation and Optimization of a Production Network

Typical questions:

Page 3: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Network - Model

ExistenceExtensions

Optimization

ContinuousDiscrete

Modeling

Page 4: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Main AssumptionsMain Assumptions

No goods are gained or lost during the production process.

The production process is dynamic.

The output of one supplier is fed into the next supplier.

Each supplier has fixed features.

MODEL

Page 5: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Network ModelNetwork Model

Idea: Each processor is described by one arc Describe dynamics inside the processor Add equations for queues in front of the processor

queues

Fixed parameters

Page 6: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Network ModelNetwork ModelSee Göttlich, Herty, Klar (2005): Network models for supply chains

A production network is a finite directed graph (E,V) where each arc corresponds to a processor on the intervall Each processor has an associated queue in front.

Definition

Processor:

Queue:

Page 7: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

We define time-dependent distribution rates for each vertex with multiple outgoing arcs. The functions are required to satisfy and

Network Coupling Network Coupling

will be obtained as solutions of the optimization problem

Example:Inflow into queue of arc 2

Inflow into queue of arc 3

Definition

Page 8: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Network - Model

ExistenceExtensions

Optimization

ContinuousDiscrete

Modeling

Page 9: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Optimization ProblemOptimization Problem

Cost functional

Constraints

Positive weightsControls

Processor

Queue

Initial conditions

Page 10: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Solution TechniquesSolution Techniques

Mixed Integer Programming (MIP)

Adjoint Calculus

Optimal control problem with PDE/ODE as constraints!

How to solve ?

MIP LP

Page 11: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Network - Model

ExistenceExtensions

Optimization

ContinuousDiscrete

Modeling

Page 12: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Mixed Integer Program (MIP)Mixed Integer Program (MIP)

A mixed-integer program is the minimization/maximization of a linear function subject to linear constraints.

Problem: Modeling of the queue-outflow in a discete framework

See Fügenschuh, Göttlich, Herty, Klar, Martin (2006): A Discrete Optimization Approach to Large Scale Networks based on PDEs

1See Armbruster et al. (2006): Autonomous Control of Production Networks using a Pheromone Approach

Relaxed queue-outflow1

Solution: Reduce complexity (as less as possible binary variables)

Page 13: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Derivation MIPDerivation MIP

Idea: Introduce binary variables (decision variables)

Problem: Suitable discretization of the -nonlinearity

Example: implies and

Outflow of the queue = Inflow to a processor

Page 14: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Mixed Integer ProgramMixed Integer Program

maximize outflux

processor

queue outflow

initial conditions

Two-point Upwind discretization (PDE) and explicit Euler discretization (ODE) leads to

queue

Page 15: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Advantage MIP Advantage MIP

Bounded queues:

Optimal inflow profile:

In other words: Find a maximum possible inflow to the network such that the queue-limits are not exceeded.

Constraints can be easily added to the MIP model:

Page 16: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Goal

Reduce computational complexity Avoid rounding errors in the CPLEX solver Accelerate the solution procedure

How to do that? Create a new preprocessing where PDE-knowledge is

included Compute lower und upper bounds by bounds strengthening

Disadvantage MIPDisadvantage MIPThe problem has binary variables!

Page 17: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Network - Model

ExistenceExtensions

Optimization

ContinuousDiscrete

Modeling

Page 18: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Adjoint CalculusAdjoint CalculusSee Göttlich, Herty, Kirchner, Klar (2006): Optimal Control for Continuous Supply Network Models

Adjoint calculus is used to solve PDE and ODE constrained optimization problems. Following steps have to be performed:

1. Define the Lagrange – functional:

with Lagrange multipliers and

Cost functional

PDE processor

ODE queue

Page 19: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Adjoint CalculusAdjoint Calculus2. Derive the first order optimality system (KKT-system):

Forward (state) equations:

Backward (adjoint) equations:

Gradient equation:

Page 20: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Network - Model

ExistenceExtensions

Optimization

ContinuousDiscrete

Modeling

Page 21: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

Linear Program (LP)Linear Program (LP)

Outflow of the queue

Idea: Use adjoint equations to prove the reformulation of the MIP as a LP

MIP

LP

Remark: The remaining equations remain unchanged!

Remove the complementarity condition!

Page 22: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich

interior network points

Example

Numerical ResultsNumerical ResultsSolved by ILOG CPLEX 10.0

Page 23: Optimization Techniques for Supply Network Models Simone Göttlich Joint Work with: M. Herty, A. Klar (TU Kaiserslautern) M. Herty, A. Klar (TU Kaiserslautern)

11.01.2008 Simone Göttlich