Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary...

31
Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier & Jean-Pierre Brancher [email protected] Laboratoire d’ ´ Energ ´ etique et de M ´ ecanique Th ´ eorique et Appliqu ´ ee (LEMTA) UMR 7563 (CNRS - INPL - UHP) ENSEM - 2, avenue de la For ˆ et de Haye BP 160 - 54504 Vandoeuvre Cedex, France Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.1/31

Transcript of Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary...

Page 1: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

Optimal rotary control of the cylinderwake using POD Reduced Order

ModelMichel Bergmann, Laurent Cordier & Jean-Pierre Brancher

[email protected]

Laboratoire d’Energetique et de Mecanique Theorique et Appliquee (LEMTA)

UMR 7563 (CNRS - INPL - UHP)

ENSEM - 2, avenue de la Foret de Haye

BP 160 - 54504 Vandoeuvre Cedex, France

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.1/31

Page 2: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

Outline

I - Flow configuration and numerical methods

II - Optimal control approach

III - Proper Orthogonal Decomposition (POD)

IV - Reduced Order Model of the cylinder wake (ROM)

V - Optimal control formulation applied to the ROM

VI - Results of POD ROM

VII - Nelder-Mead Simplex method

Conclusions and perspectives

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.2/31

Page 3: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

Motivations Cylinder wake flow ?

Prototype configuration of separated flowExperimental study of Tokumaru and Dimotakis (JFM

1991)Re = 15000I Unforced flow

I Forced flow =⇒ 80% of drag reduction

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.3/31

Page 4: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

I - Configuration and numerical method

Two dimensional flow around a circular cylinder at Re = 200Viscous, incompressible and Newtonian fluid

∇ · u = 0 ;∂u

∂t+ (u · ∇)u = −∇P +

1

Re∆u

Cylinder oscillation with a tangential velocity γ(t)

Γe

Γsup

Γs

Γinf

Γc

D

γ(t)

x

y

U∞

Control parameter :

α(t) =γ(t)

U∞

=Rθ(t)

U∞

=Tangential velocityUpstream velocity

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.4/31

Page 5: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

I - Configuration and numerical method

Fractional step method in time (pressure correction)Finite Element Method (FEM) in space (P1, P1)

Numerical domain Ω = −10 ≤ x ≤ 20 ; −10 ≤ y ≤ 10 ; D = 1Mesh : 25042 triangles, 12686 vertices

I Numerical code written by M.Braza (IMFT-EMT2) & D.Ruiz (ENSEEIHT)

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.5/31

Page 6: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

I - Configuration and numerical method

Iso pressure at t = 100.

80 90 100 110 120

-0.5

0

0.5

1

1.5

time units

CD

,C

L

CD

CL

Aerodynamic coefficients.

Iso vorticity at t = 100.

Authors St CD

Braza et al. (1986) 0.2000 1.4000

Henderson et al. (1997) 0.1971 1.3412

He et al. (2000) 0.1978 1.3560

this study 0.1983 1.3972

Strouhal number and drag coefficient.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.6/31

Page 7: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

II - Optimal control Definition

Mathematical method allowing to determine without a priori knowledgea control law based on the optimization of a cost functional.

State equations F(φ, c) = 0 ;(Navier-Stokes + I.C. + B.C.)

Control variables c ;(Blowing/suction, design parameters ...)

Cost functional J (φ, c).(Drag, lift, target function, ...)

Find a control law c and state variables φ such that the cost functional

J (φ, c) reach an extremum under the constraint F(φ, c) = 0.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.7/31

Page 8: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

II - Optimal control Lagrange multipliers

Constrained optimization ⇒ unconstrained optimizationI Introduction of Lagrange multipliers ξ (adjoint variables).I Lagrange functional :

L(φ, c, ξ) = J (φ, c)− < F(φ, c), ξ >

I Force L to be stationary ⇒ look for δL = 0 :

δL =∂L

∂φδφ +

∂L

∂cδc +

∂L

∂ξδξ = 0

I Hypothesis : φ, c and ξ assumed to be independent of each other :

∂L

∂φδφ =

∂L

∂cδc =

∂L

∂ξδξ = 0

where

∂L

∂x= lim

ε−→0

L(x + εδx) − L(x)

ε= 0 ∀δx (Fréchet derivative)

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.8/31

Page 9: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

II - Optimal control Optimality system

I State equations (∂L

∂ξδξ = 0) : F(φ, c) = 0

I Co-state (adjoint) equations (∂L

∂φδφ = 0) :

(

∂F

∂φ

)

ξ =

(

∂J

∂φ

)

I Optimality condition (∂L

∂cδc = 0) :

(

∂J

∂c

)

=

(

∂F

∂c

)

ξ

⇒ Expensive method in CPU time and storage memory for large system !

Bewley et al. (2000) : 108 grid points

⇒ Ensure only a local (generally not global) minimum

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.9/31

Page 10: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

II - Optimal control Iterative method

I c(0) given ; for n = 0, 1, 2, ... and while a convergence criterium is notsatisfied, do :

1. From t = 0 to t = T solve the state equations with c(n) ;→ state variables φ(n)

2. From t = T to t = 0 solve the co-state equations with φ(n) ;→ co-state variables ξ(n)

3. Solve the optimality condition with φ(n) and ξ(n) ;→ objective gradient δc(n)

4. New control law → c(n+1) = c(n) + ω(n) δc(n)

I End do.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.10/31

Page 11: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

II - Optimal control Reduced Order Model (ROM)

"without an inexpensive method for reducing the cost of flowcomputation, it is unlikely that the solution of optimization problemsinvolving the three dimensional unsteady Navier-Stokes system willbecome routine"

M. Gunzburger, 2000

x∆

Initialization

Optimization

Optimization on simplified model

a(x), grad a(x)

f(x), grad f(x)

Recourse to detailed model (TRPOD)High−fidelity model

Approximation model

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.11/31

Page 12: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

III - Proper Orthogonal Decomposition (POD)

I Introduced in fluid mechanics (turbulence context) by Lumley (1967).

I Look for a realization φ(X) which is closer, in an average sense, tothe realizations u(X). (X = (x, t) ∈ D = Ω × R

+)

I φ(X) solution of the problem : maxφ

〈|(u, φ|2〉 s.t. ‖φ‖2 = 1.

I Snapshots method, Sirovich (1987) :∫

T

C(t, t′)a(n)(t′) dt′ = λ(n)a(n)(t).

I Optimal convergence L2 norm (energy) of φ(X)⇒ Dynamical order reduction is possible.

I Decomposition of the velocity field :

u(x, t) =

NP OD∑

i=1

a(i)(t)φ(i)(x).

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.12/31

Page 13: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

III - POD POD modes : uncontrolled flow (γ = 0)

First POD mode.

Third POD mode.

Second POD mode.

Fourth POD mode.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.13/31

Page 14: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

III - Reduced Order Model of the cylinder wake (ROM)

I Galerkin projection of NSE on the POD basis :

(

φ(i),∂u

∂t+ (u · ∇)u

)

=

(

φ(i), −∇p +1

Re∆u

)

.

I Integration by parts (Green’s formula) leads :

(

φ(i),∂u

∂t+ (u · ∇)u

)

=(

p, ∇ · φ(i))

−1

Re

(

(∇ ⊗ φ(i))T , ∇ ⊗ u)

− [p φ(i)] +1

Re[(∇ ⊗ u)φ(i)].

with [a] =

Γ

a · n dΓ and (A, B) =

Ω

A : B dΩ =∑

i, j

Ω

AijBji dΩ.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.14/31

Page 15: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

III - Reduced Order Model of the cylinder wake (ROM)

I Velocity decomposition with NPOD modes :

u(x, t) = um(x) + γ(t) uc(x) +

NP OD∑

k=1

a(k)(t)φ(k)(x).

I Reduced order dynamical system where only Ngal ( NPOD) modesare retained (state equations) :

d a(i)(t)

d t=Ai +

Ngal∑

j=1

Bij a(j)(t) +

Ngal∑

j=1

Ngal∑

k=1

Cijk a(j)(t)a(k)(t)

+ Di

d γ

d t+

Ei +

Ngal∑

j=1

Fij a(j)(t)

γ + Giγ2

a(i)(0) = (u(x, 0), φ(i)(x)).

Ai, Bij , Cijk, Di, Ei, Fij and Gi depend on φ, um, uc and Re.Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.15/31

Page 16: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

IV - Reduced Order Model of the cylinder wakeStabilization

Integration and "optimal" stabilization of the POD ROM forγ = A sin(2πStt), A = 2 and St = 0.5.

POD reconstruction errors ⇒ temporal modes amplification

0 5 10-1.5

-1

-0.5

0

0.5

1

1.5

a(n

)

time unitsTemporal evolution of the first 6 POD

temporal modes.

I Reasons :

Extraction by POD only of thelarge energetic eddies

Dissipation takes place in smalleddies

I Solution :

Addition of an optimal artificialviscosity on each POD mode

projection (Navier-Stokes)prediction before stabilization (POD ROM)prediction after stabilization (POD ROM).

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.16/31

Page 17: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

IV - Reduced Order Model of the cylinder wakeStabilization

0 2 4 6 8 10 12 1410-2

10-1

100

〈|a(n

)|〉

POD modes index

Comparison of energetic spectrum.

5 100

0.001

0.002

0.003

0.004

0.005

0.006

0.007

|〈|a

(n)|〉−

〈|a(n

)proj|〉|

POD modes index

Comparison of absolute errors.

I Good agreements between POD ROM spectrum and DNS spectrumI Reduction of the reconstruction error between predicted (POD ROM)and projected (DNS) modes

⇒ Validation of the POD ROM

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.17/31

Page 18: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

V - Optimal control formulation based on ROM

I Objective functional :

J (a, γ(t)) =

∫ T

0

J(a, γ(t)) dt =

∫ T

0

Ngal∑

i=1

a(i)2 +α

2γ(t)2

dt.

α : regularization parameter (penalization).

I Co-state equations :

d ξ(i)(t)

dt= −

Ngal∑

j=1

Bji + γ Fji +

Ngal∑

k=1

(Cjik + Cjki) a(k)

ξ(j)(t) − 2a(i)

ξ(i)(T ) = 0.

I Optimality condition (gradient) :

δγ(t) = −

Ngal∑

i=1

Di

dξ(i)

dt+

Ngal∑

i=1

Ei +

Ngal∑

j=1

Fija(j) + 2Giγ(t)

ξ(i) + αγ.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.18/31

Page 19: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VI - Results of POD ROM Generalities

I No reactualization of the POD basis.

I The energetic representativity is a priori different to the dynamicalone :

→ possible inconvenient for control,

→ a POD dynamical system represents a priori only the dynamics (andits vicinity) used to build the low dynamical model.

I Construction of a POD basis representative of a large range ofdynamics :

→excitation of a great number of degrees of freedom scanning γ(t) inamplitudes and frequencies.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.19/31

Page 20: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VI - Results of POD ROM Excitation

0 10 20 30 40 50-5

-4

-3

-2

-1

0

1

2

3

4

5

γe

time units0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

St

γe(t) = A1 sin(2πSt1 t) × sin(2πSt2 t − A2 sin(2πSt3 t))

with A1 = 4, A2 = 18, St1 = 1/120, St2 = 1/3 and St3 = 1/60.

I 0 ≤ amplitudes ≤ 4 and Fourier analysis ⇒ 0 ≤ frequencies ≤ 0.65

I γe initial control law in the iterative process.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.20/31

Page 21: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VI - Results of POD ROM Energy

0 10 20 30 40 5010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

γ = 0γ = γe

λ(i

)

POD modes index0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

rela

tive

Ec

POD modes index

I Stationary cylinder γ = 0 : → 2 modes out of 100 are sufficient torestore 97% of the kinetic energy.

I Controlled cylinder γ = γe : → 40 modes out of 100 are thennecessary to restore 97% of the kinetic energy

⇒ Improvement of the POD ROM robustness to dynamical evolutions.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.21/31

Page 22: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VI - Results of POD ROM Optimal control

0 10 20 30-3

-2

-1

0

1

2

3

γopt

time units0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

2000

2500

3000

St

I Reduction of the wake instationarity. γopt ' A sin(2πStt) with A = 2.2and St = 0.53

J (γe) = 9.81 =⇒ J (γopt) = 5.63.

I The control is optimal for the reduced order model based on POD.

I Is it also optimal for the Navier-Stokes model ?Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.22/31

Page 23: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VI - Results of POD ROM Comparison of wakes’ organization

I No mathematical proof concerning the Navier Stokes optimality.

no control γ = 0 optimal control γ = γopt

Isocontours of vorticity ωz .

I no control : γ = 0 ⇒ Asymmetric flow.→ Large and energetic eddies.

I optimal control : γ = γopt ⇒ Symmetrization of the (near) wake.→ Smaller and lower energetic eddies.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.23/31

Page 24: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VI - Results of POD ROM Aerodynamic coefficients

10 20 30 40 50 60 701

1.1

1.2

1.3

1.4

1.5

CD

time units50 100 150

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

CL

time units

I Important drag reduction :CD0 = 1.40 for γ = 0 and CD = 1.04 for γ = γopt

CD/CD0 = 0.74 ⇒ more than 25%.

I Decrease of the lift amplitude :CL = 0.68 for γ = 0 and CL = 0.13 for γ = γopt.

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.24/31

Page 25: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VI - Results of POD ROM Numerical costs

I Optimal control of NSE by He et al. (2000) :→ harmonic control law with A = 3 and St = 0.75.

⇒ 30% drag reduction.

I Optimal control POD ROM (this study) :→ harmonic control law with A = 2.2 and St = 0.53.

⇒ 25% drag reduction.

Reduction costs using POD ROM compared to NSE :CPU time : 100Memory storage : 600

→ "Optimal" control of 3D flows becomes possible !

I Does the POD ROM control law correspond to the global minimum ?

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.25/31

Page 26: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VI - Results of POD ROM Numerical optimization

1.02121 0.989091

0.796364

0.712919

0.709227

0.8927271.34242

1.6101

1.70646

1.13899

0.839192

0.956970.967677

0.935556

0.828485

0.764242

0 0.25 0.5 0.75 1 1.250

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

A

StIso-relative- drag coefficient

CD(A, St)/CD0 in (A, St) plan.

Observations

I Minimum is located in a smoothvalley

→ Global minimum :around A = 4.4 and St = 0.76

I Maximum is located in a sharppeak

→ Global maximum :near St = 0.2, the natural frequency :lock-on flow

Finding the global minimum with an optimization algorithmmay be difficult due to the smooth valley

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.26/31

Page 27: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VI - Results of POD ROM Local versus global minimum

I POD ROM control law does not correspond to the global minimum

→ POD ROM parameters : A = 2.2 and St = 0.53 ⇒ CD = 1.04

→ Global minimum parameters : A = 4.4 and St = 0.76 ⇒ CD = 0.98

I Results in (A, St) quite different but not so far in terms of CD

→ The smooth valley is reached

I Improvement : coupling to the POD ROM approach an efficient newoptimization algorithm for smooth fonctions

→ Take results obtained by POD ROM as initial conditions

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.27/31

Page 28: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VII - Nelder-Mead Simplex method Generalities

Advantages

I Numerical simplicities

I Adaptive topology

I Free gradient optimization method

I Good results with smooth functions

Drawbacks

I No proof of optimality for simplex dimensions greater than two

I Need to fix free parameters

I Maybe more iterations than gradient based optimisation algorithms...

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.28/31

Page 29: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

VII - Nelder-Mead Simplex method Results

1.02121 0.989091

0.796364

0.712919

0.8927271.34242

1.6101

1.70646

1.13899

0.839192

0.956970.967677

0.935556

0.828485

0.764242

0 0.25 0.5 0.75 1 1.250

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

A

StIso-relative- drag coefficient

CD(A, St)/CD0 in (A, St) plan.

Observations

I Topology adaptation function ofthe curve of the valley

I Minimum found by the simplexmethod :

A = 4.5 and St = 0.76→ Seems to be the global mini-mum

I 30 NSE resolutions ⇒ 5% ad-ditive drag reduction compared toPOD ROM

Relative drag reduction by POD ROM : 25% (1 NSE resolution)Usefulness of coupling a new algorithm ?

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.29/31

Page 30: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

Conclusions

Important drag reduction obtained by POD ROM : more than 25% ofrelative drag reduction

This solution is not the global minimum of the drag function

POD ROM compared to NSE ⇒ important reduction of numericalcosts :→ Reduction factor of the CPU time : 100→ Reduction factor of the memory storage : 600

"OPTIMAL" CONTROL OF 3D FLOWS POSSIBLE BY POD ROM

Coupling POD ROM with the Nelder-Mead simplex method leads a

priori to the global minimum of the drag function

But the gain on the drag function is quite small (5%) compared toresults obtained by POD ROM

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.30/31

Page 31: Optimal rotary control of the cylinder wake using …mbergman/PDF/Slides/EFFC...Optimal rotary control of the cylinder wake using POD Reduced Order Model Michel Bergmann, Laurent Cordier

Perspectives

Improve the representativity of the POD ROM

→ "Optimize" the temporal excitation γe

→ Mix snapshots corresponding to different dynamics (temporalexcitations)→ Introduction of shift-mode ?

Look for harmonic control γ(t) = A sin(2π St t) with POD basisreactualization (closed loop on NSE and not only on POD ROM)

Coupling the POD ROM approach with Trust Region POD method(TRPOD)

=⇒ proof of convergence under weak conditions

Introducing the pressure into the POD dynamical system

→ pressure contribution to drag coefficient : 80%

Optimal control of the Navier-Stokes equations

Optimal rotary control of the cylinder wake using POD Reduced Order Model – p.31/31