Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators...

32
Optimal potentials for Schr¨ odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit` a di Pisa [email protected] http://cvgmt.sns.it “New trends in modeling, control and inverse problems” Enrique Zuazua’s CIMI Chair Toulouse, June 16–19, 2014

Transcript of Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators...

Page 1: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Optimal potentials for

Schrodinger operators

Giuseppe Buttazzo

Dipartimento di Matematica

Universita di Pisa

[email protected]

http://cvgmt.sns.it

“New trends in modeling, control and inverse problems”Enrique Zuazua’s CIMI ChairToulouse, June 16–19, 2014

Page 2: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Paper appeared on JEP (2014). Work incollaboration with:

Augusto Gerolin, Ph. D. student atDipartim. di Matematica - Universita di Pisa,[email protected]

Berardo Ruffini, Post doc fellow atUniversite de Grenoble,[email protected]

Bozhidar Velichkov, Post doc fellow atDipartim. di Matematica - Universita di Pisa,[email protected]

1

Page 3: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

We consider the Schrodinger operator −∆+

V (x) in a given bounded set Ω. The opti-

mization problems we deal with are of the

form

minF (V ) : V ∈ V

,

where F is a suitable cost functional and Vis a suitable admissible class. We limit our-

selves to the case V ≥ 0.

The cost functionals we want to include in

our framework are of the following types.

2

Page 4: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Integral functionals Given a right-hand sidef ∈ L2(Ω) we consider the solution uV of theelliptic PDE

−∆u+ V (x)u = f(x) in Ω, u ∈ H10(Ω).

The integral cost functionals we consider areof the form

F (V ) =∫

Ωj(x, uV (x),∇uV (x)

)dx

where j is a suitable integrand that we as-sume convex in the gradient variable andbounded from below as

j(x, s, z) ≥ −a(x)− c|s|2

3

Page 5: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

with a ∈ L1(Ω) and c smaller than the firsteigenvalue of −∆ on H1

0(Ω). In particular,the energy Ef(V ) defined by

Ef(V ) = infu∈H1

0(Ω)

∫Ω

(1

2|∇u|2+

1

2V (x)u2−f(x)u

)dx

belongs to this class since, integrating byparts its Euler-Lagrange equation, we have

Ef(V ) = −1

2

∫Ωf(x)uV dx

which corresponds to the integral functionalabove with

j(x, s, z) = −1

2f(x)s.

4

Page 6: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Spectral functionals For every admissible

potential V ≥ 0 we consider the spectrum

λ(V ) of the Schrodinger operator −∆+V (x)

on H10(Ω).

If Ω is bounded or has finite measure, or if

the potential V satisfies some suitable inte-

gral properties, the operator −∆+V (x) has a

compact resolvent and so its spectrum λ(V )

is discrete:

λ(V ) =(λ1(V ), λ2(V ), . . .

),

where λk(V ) are the eigenvalues counted with

their multiplicity.

5

Page 7: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

The spectral cost functionals we consider are

of the form

F (V ) = Φ(λ(V )

)where Φ : RN → R is a given function. For

instance, taking Φ(λ) = λk we obtain

F (V ) = λk(V ).

We say that Φ is continuous (resp. lsc) if

λnk → λk ∀k =⇒ Φ(λn)→ Φ(λ)(resp. Φ(λ) ≤ lim inf

nΦ(λn)

).

6

Page 8: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Optimization problems for changing sign po-

tentials have been recently considered by Carlen-

Frank-Lieb for the cost F (V ) = λ1(V ). They

prove the inequality:

λ1(V ) ≥ −cp,d( ∫

RdVp+d

2− dx

)1p.

Our goal is to obtain similar inequalities for

more general cost functionals and integral

constraints on the potential; on the other

hand, we limit ourselves to the case of non-

negative potentials.

7

Page 9: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

The motivation

Problems of the same kind arise in shape

optimization, where one has to minimize a

shape cost F (Ω) in a suitable admissible class

A of domains. Again, two interesting classes

of problems are the one of integral costs

F (Ω) =∫j(x, uΩ(x),∇uΩ(x)

)dx,

where uΩ solves the elliptic PDE (with f

given)

−∆u = f in Ω, u ∈ H10(Ω),

8

Page 10: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

and the one of spectral costs

F (Ω) = Φ(λ(Ω)

)being λ(Ω) = (λ1(Ω), . . . ) the spectrum ofthe Dirichlet Laplacian in Ω.

It is known since the ’80 that, unless addingsevere geometrical constraints as convexityor uniform exterior cone condition on thecompeting domains, the class of domains isnot compact. More precisely, sequences Ωn

can be constructed such that uΩn convergesto some function u which is not of the formuΩ, for any domain Ω.

9

Page 11: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

The example, found by Cioranescu-Murat, isillustrated below

Ωn is the complement of the union of small holes.

10

Page 12: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Tuning carefully the radius of the holes wehave that uΩn converges weakly H1 to thefunction u which solves

−∆u+ cu = f

for a suitable constant c.

Later Dal Maso-Mosco have characterized allpossible limits of sequences of the form uΩn;they are the functions uµ solutions of

−∆u+ µu = f

where µ is a capacitary measure (i.e. µ(E) =0 for all sets E with cap(E) = 0).

11

Page 13: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

To have a functional framework, we denoteby M+

0 (D) the class of capacitary measureson D, and by H1

µ the Sobolev space

H1µ =

u ∈ H1(Rd) :

∫Rd|u|2 dµ < +∞

,

with norm

‖u‖21,µ =∫Rd|∇u|2 dx+

∫Rdu2 dx+

∫Rdu2 dµ.

It is a Hilbert space and the existence anduniqueness of a solution uµ to

−∆u+ µu = f

follows by the usual Lax-Milgram method.

12

Page 14: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

• Every domain Ω is a capacitary measure,

given by

∞Ωc(E) =

0 if E ⊂ Ω up to cap zero

+∞ otherwise.

• Every potential V is a capacitary measure,

given by µ = V dx.

• If S is a smooth d− 1 manifold and V ≥ 0

is in L1(S), then the measure µ = V dHd−1

is of capacitary type.

13

Page 15: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Definition We say that a sequence (µn) ofcapacitary measures γ-converges to the ca-pacitary measure µ if the sequence of resol-vent operators

Rµn : L2(Ω)→ L2(Ω)

converges strongly to Rµ. In other words,for every f the solutions un of

−∆u+ µnu = f, u ∈ H10(Ω)

converge in L2(Ω) to the solution of

−∆u+ µu = f, u ∈ H10(Ω).

14

Page 16: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Properties of the γ-convergence

• The γ-convergence is equivalent to:

Rµn(1)→ Rµ(1).

In this way, the distance

dγ(µ1, µ2) = ‖Rµ1(1)−Rµ2(1)‖L2(Ω)

metrizes the γ-convergence.

• The space M0(Ω) endowed with the dis-tance dγ is a compact metric space.

• Identifying a domain A with the measure∞Ω\A, the class of all smooth domains A ⊂Ω is dγ-dense in M0(Ω).

15

Page 17: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

• The measures of the form V (x) dx, with V

smooth, are dγ-dense in M0(Ω).

• If µn → µ for the γ-convergence, the spec-

trum of the compact resolvent operator Rµnconverges to the spectrum of Rµ; then the

eigenvalues of the Schrodinger operator −∆+

µn defined on H10(Ω) converge to the corre-

sponding eigenvalues of the operator −∆+µ.

16

Page 18: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

The case of bounded constraints

Proposition If Vn → V weakly in L1(Ω) the

capacitary measures Vn dx γ-converge to V dx.

As a consequence, all the optimization prob-

lems of the form

minF (V ) : V ∈ V

with F γ-l.s.c (very weak assumption) and

V closed convex and bounded in Lp(Ω) with

p > 1, admit a solution.

17

Page 19: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Example If p > 1 the problem

maxEf(V ) : V ≥ 0,

∫ΩV p dx ≤ 1

has the unique solution

Vp =(∫

Ω|up|2p/(p−1) dx

)−1/p|up|2/(p−1),

where up is the minimizer on H10(Ω) of

1

2

∫Ω|∇u|2 dx+

1

2

(∫Ω|u|2p/(p−1) dx

)p−1p −

∫Ωfu dx

corresponding to the nonlinear PDE

−∆u+ C|u|2/(p−1)u = f.

18

Page 20: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Similar results for λ1(V ) (see also [HenrotBirkhauser 2006]).

If p < 1 the problem

maxEf(V ) : V ≥ 0,

∫ΩV p dx ≤ 1

has no solution. Indeed, take for instancef = 1; it is not difficult to construct a se-quence Vn such that∫

ΩV pn dx ≤ 1 and Ef(Vn)→ 0.

The conclusion follows since no potential Vcan provide zero energy.

19

Page 21: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

An interesting case is when p = 1.

The solution of

maxEf(V ) : V ≥ 0,

∫ΩV dx ≤ 1

is in principle a measure. However, it is pos-sible to prove that for every f ∈ L2(Ω), de-noting by w the solution of the auxiliary prob-lem

minu∈H1

0(Ω)

1

2

∫Ω|∇u|2 dx+

1

2‖u‖2L∞(Ω)−

∫Ωuf dx

,

and setting M = ‖w‖L∞(Ω), ω+ = w = M,ω− = w = −M,

20

Page 22: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

we have

Vopt =f

M

(1ω+ − 1ω−

).

Note that in particular, we deduce the con-

ditions of optimality

• f ≥ 0 on ω+,

• f ≤ 0 on ω−,

•∫ω+

f dx−∫ω−f dx = M.

21

Page 23: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

The case of unbounded constraints

We consider now problems of the form

minF (V ) : V ≥ 0,

∫Ω

Ψ(V ) dx ≤ 1

with admissible classes of potentials unboundedin every Lp. For example:• Ψ(s) = s−p, for any p > 0;• Ψ(s) = e−αs, for any α > 0.

Theorem Let Ω be bounded, F increas-ing and γ-lower semicontinuous, Ψ strictlydecreasing with Ψ−1(sp) convex for somep > 1. Then there exists a solution.

22

Page 24: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Examples If Ψ(s) = s−p with p > 0, the

optimal potential for the energy Ef is

Vopt =(∫

Ω|u|2p/(p+1) dx

)1/p|u|−2/(p+1)

where u solves the auxiliary problem

minu∈H1

0(Ω)

∫Ω|∇u|2dx+

( ∫Ω|u|2p/(1+p)dx

)(1+p)/p−∫

Ω2fudx

which corresponds to the nonlinear PDE

−∆u+ Cp|u|−2/(p+1)u = f, u ∈ H10(Ω)

where Cp is a constant depending on p.

23

Page 25: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

Similarly, if Ψ(s) = e−αs, we have

Vopt =1

α

(log

(∫Ωu2 dx

)− log

(u2))

where u solves the auxiliary problem

minu∈H1

0(Ω)

∫Ω|∇u|2dx+

1

α

∫Ωu2( ∫

Ωlog(u2)dx− log(u2)

)dx−

∫Ω

2fudx.

which corresponds to the nonlinear PDE

−∆u+ Cαu−1

αu log(u2) = f, u ∈ H1

0(Ω)

where Cα is a constant depending on α.

24

Page 26: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

PROBLEMS WITH Ω = Rd

When Ω = Rd most of the cost function-als are not γ-lower semicontinuous; for ex-ample, if V (x) is any potential, with V =+∞ outside a compact set, then, for everyxn → ∞, the sequence of translated poten-tials Vn(x) = V (x + xn) γ-converges to thecapacitary measure

I∅(E) =

0 if cap(E) = 0

+∞ if cap(E) > 0.

Thus increasing and translation invariant func-tionals are never γ-lower semicontinuous.

25

Page 27: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

• for the problem

maxF (V ) : V ≥ 0,

∫RdV p dx ≤ 1

most of the results obtained in the case Ω

bounded can be repeated.

In the cases F = Ef and F = λ1 in gen-

eral the optimal potentials are not compactly

supported, even if f is compactly supported.

For instance, taking f = 1B1the optimal

potential Vopt is radially decreasing and sup-

ported in the whole Rd.

26

Page 28: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

y

-3 -1 1 3

up

The solution up and f = χB(0,1) does not have a compact support.

27

Page 29: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

• for the problem

minF (V ) : V ≥ 0,

∫RdV −p dx ≤ 1

we do not have a general existence theorembut only proofs in some special cases, as theDirichlet Energy Ef (or the first eigenvalueof the Dirichlet Laplacian).

In these cases, if f is compactly supported,we have that 1/Vopt is compactly supported,that is Vopt = +∞ out of a compact set(hence the Dirichlet condition is imposed outof a compact set to the related PDE).

28

Page 30: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

y

-3 -1 1 3up

The solution up and f = χB(0,1) has a compact support.

29

Page 31: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

If we limit ourselves to the spectral optimiza-

tion problems

minλk(V ) : V ≥ 0,

∫RdV −p dx ≤ 1

the problems are:

Problem 1. for every k an optimal potential

Vk exists;

Problem 2. for every k the optimal poten-

tial Vk above is such that 1/Vk is compactly

supported.

30

Page 32: Optimal potentials for Schr odinger operators fileOptimal potentials for Schr odinger operators Giuseppe Buttazzo Dipartimento di Matematica Universit a di Pisa buttazzo@dm.unipi.it

In [Bucur-B.-Velichkov] (SIAM J. Math. Anal.

(to appear), http://cvgmt.sns.it) we showed

the two problems above have a positive an-

swer.

For the moment the proof cannot be adapted

to other kinds of cost functionals F (V ), as

for instance integral functionals or spectral

functionals.

31